CS 6140: Machine Learning - Fall 2021— Paul Hand

Midterm 1 Study Guide and Practice Problems
Due: Never.

Names: Sample Solutions

This document contains practice problems for Midterm 1. The midterm will only have 5 problems. The midterm will cover material up through and including the bias-variance tradeoff, but not including ridge regression. Skills that may be helpful for successful performance on the midterm include:

1. Setting up and solving a linear regression problem with features that are nonlinear functions of the model's input.
2. Writing down the optimization problem for least squares linear regression using matrix-vector notation
3. Familiarity with matrix multiplication, in particular when multiplying by diagonal matrices
4. Evaluating the true positive rate, false positive rate, precision, and recall of a predictor for binary classification
5. Setting up a logistic regression problem and writing down the appropriate function that is being minimized
6. Computing the mean, expected value, and variance of uniform random variables
7. Explaining causes and remedies for overfitting and underfitting of ML models

Linear Regression
Dote $\left\{\left(x^{(i)}, y^{(1)}\right)\right\}_{i=1, \ldots, n} \quad x \in \mathbb{R}^{d}$

Hole $y=f_{\theta}(x)+$ noise
means find o st.

$$
y^{(i)} \approx f_{\theta}\left(x^{(i)}\right)
$$

Linear Regression

$$
f_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\ldots .+\theta_{n} x_{d}
$$

Least Squares

$$
\begin{aligned}
& x^{(i)} \in \mathbb{R}^{d}, \quad \theta \in \mathbb{R}^{d+1}, y^{(i)} \in \mathbb{R} \\
& X^{-}=\left[\begin{array}{c}
1,-x^{(i)^{\top}}- \\
\vdots \\
1,-x^{(n)} \\
1 \\
\text { if bias is present }
\end{array}\right] \in \mathbb{R}^{m \times(d+1)} \\
& y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(m)}
\end{array}\right] \in \mathbb{R}^{n} \\
& \theta=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]
\end{aligned}
$$

Then
$\min _{\theta} \frac{1}{2}\|y-X \theta\|_{2}^{2}$

$$
\equiv \min _{\theta} \frac{1}{2} \sum_{i=1}^{n}\left[y^{(i)}-\left(\theta_{0}+\theta_{1} x_{1}^{(i)}+\ldots+\theta_{d} x_{d}^{(i)}\right)\right]^{2}
$$

Solution

$$
\theta=\left(X^{t} X\right)^{-1} X^{t} y
$$

(if x has rank x)

Question 1.

Consider the following training data.

x_{1}	x_{2}	y
0	0	0
0	1	1.5
1	0	2
1	1	2.5

x

Suppose the data comes from a model $y=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+$ noise for unknown constants $\theta_{0}, \theta_{1}, \theta_{2}$. Use least squares linear regression to find an estimate of $\theta_{0}, \theta_{1}, \theta_{2}$.

Response:

$$
\text { Let } X=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad y=\left(\begin{array}{c}
0 \\
1.5 \\
2 \\
2.5
\end{array}\right), \quad \theta=\left(\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right)
$$

We solve the least squares problem

$$
\min _{\theta}\|y-X \theta\|^{2}
$$

The solution is given by

$$
\theta=\left(x^{t} x\right)^{-1} x^{t} y
$$

$$
\begin{aligned}
& \text { Solving } x^{t} x=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 1 \\
2 & 1 & 2
\end{array}\right),\left(x^{t} x\right)^{-1}=\left(\begin{array}{ccc}
3 / 4 & -1 / 2 & -1 / 2 \\
-1 / 2 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right) \\
& \text { So } \quad \theta=\left(\begin{array}{l}
0.5 \\
2 \\
0.5
\end{array}\right) \Rightarrow \begin{array}{l}
\theta_{0}=0.5 \\
\theta_{1}=2 \\
\theta_{2}=0.5
\end{array}
\end{aligned}
$$

Remark
Sometimes a nonlinear mooted mosul can be turned to linear moolel vie some nonlinear transformation of the oblate

Question 2.
Consider the following training data:

x	y
1	3
2	1
3	0.5

$$
\begin{aligned}
& \log (a-b)=\log (b)+\log (a) \\
& \log a^{b}=b \log a
\end{aligned}
$$

for $c>0$

Suppose the data comes from a model $y=c x^{\beta}+$ noise, for unknown constants c and β. Use least squares linear regression to find an estimate of c and β.
Response:
Write $\underbrace{\log y}_{y^{\prime}}=\underbrace{\log c}_{\theta_{1}}+\underbrace{\beta}_{\theta_{2}} \underbrace{\beta \log x}_{x^{\prime}} \equiv y^{\prime}=\theta_{1}+\theta_{2} x^{\prime}$

Let $X=\left(\begin{array}{cc}1 & 0 \\ 1 & \log 2 \\ 1 & \log 3\end{array}\right), \quad y=\left(\begin{array}{c}\log 3 \\ 0 \\ \log 0.5\end{array}\right), \quad \theta=\binom{\log c}{\beta}$
Solve $\min _{\theta}\|y-X \theta\|^{2}$
Solution given by $\theta=\left(X^{t} X\right)^{-1} X^{t} y$
Using humpy, we compute $\theta=\binom{0.899}{-0.5}$

$$
\Rightarrow \begin{aligned}
& C=e^{0.899} \\
& \beta=-0.5
\end{aligned} \quad \Rightarrow \begin{aligned}
& C=2.45 \\
& \beta=-0.5
\end{aligned}
$$

Question 3.
(a) Let $\theta^{*} \in \mathbb{R}^{d}$, and let $f(\theta)=\frac{1}{2}\left\|\theta-\theta^{*}\right\|^{2}$. Show that the Hessian of f is the identity matrix.

Response:
(b) Let $X \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^{n}$. For $\theta \in \mathbb{R}^{d}$, let $g(\theta)=\frac{1}{2}\|X \theta-y\|^{2}$. Show that the Hessian of g is $X^{t} X$.

Response:
a) $(H)_{S h}=\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} f(\theta)$

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{k}} f(\theta)=\left(\theta_{k}-\theta_{k}^{x}\right) \rightarrow \lambda^{k=2} \frac{\partial}{\partial \theta_{2}} f(\theta) \\
& \frac{\partial}{\partial \theta_{j}} \frac{\partial}{\partial \theta_{k}} f(\theta)=\frac{\partial}{\partial \theta_{j}}\left(\theta_{k}-\theta_{k}^{x}\right)=\left\{\begin{array}{ll}
1 & \text { if } j=k \\
0 & \text { if } j \neq k
\end{array} \|\right.
\end{aligned}
$$

So $H_{j k}=\left\{\begin{array}{ll}1 & \text { it } \begin{array}{c}j=k \\ 0 \\ \text { it } \\ j \neq k\end{array},\end{array} \Rightarrow H=I_{d}\right.$

$$
\begin{aligned}
f(\theta+h) & =\frac{1}{2}\left\|(\theta+h)-\theta^{*}\right\|_{2}^{2} \quad\|v\|^{2}=v^{\top} V \\
& =\frac{1}{2}\left\|\left(\theta-\theta^{*}\right)+h\right\|^{2} \\
& =\underbrace{\frac{1}{2}\left\|\theta-\theta^{*}\right\|^{2}}_{f(\theta)}+\underbrace{\left(\theta-\theta^{*}\right)^{r}}_{v^{\top} h} h+\underbrace{\frac{1}{2}\|h\|^{2}}_{\substack{\downarrow \\
\text { Somenthing }}} \\
& \Rightarrow \nabla f(\theta)=\left(\theta-\theta^{*}\right) \Rightarrow \\
{[H(\theta)]_{j \mu} } & =\frac{\partial}{\partial \theta_{j}}\left(\frac{\partial}{\partial \theta_{k}} f(\theta)\right)=\frac{\partial}{\partial \theta_{j}}[\nabla f(\theta)]_{k} \\
& =\frac{\partial}{\partial \theta_{j}}\left[\theta_{k}-\theta_{k}^{*}\right]= \begin{cases}0 & \text { if } j \neq k \\
I & \text { if } j=K\end{cases} \\
{[H(\theta)]_{\|} } & =\frac{\partial}{\partial \theta_{1}}\left[\theta_{1}-\theta_{I}^{*}\right]=1
\end{aligned}
$$

$$
\begin{aligned}
f(\theta+h)= & \frac{1}{2}\left\|(\theta+h)-\theta^{*}\right\|_{2}^{2} \quad\|v\|^{2}=v^{\top} v \\
= & \frac{1}{2}\left\|\left(\theta-\theta^{*}\right)+h\right\|^{2} \\
= & \frac{1}{2}\left\|\theta-\theta^{*}\right\|^{2}+\left(\theta-\theta^{*}\right)^{\top} h+\frac{1}{2}\|h\|^{2} \\
= & f(\theta)+\left(\theta-\theta^{*}\right)^{\top} h+\frac{1}{2} h^{\top}(I h)+0 \\
\Rightarrow & \nabla f(\theta)=\theta-\theta^{*} \\
& H=I
\end{aligned}
$$

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

graplient $\quad \nabla f(\theta) \in \mathbb{R}^{d \times 1}$

$$
\begin{aligned}
& {[\nabla f(\theta)]_{k}=\frac{\partial}{\partial \theta_{k}} f(\theta) \quad\left[\begin{array}{c}
\partial_{k} f \\
\vdots \\
\partial_{d} f
\end{array}\right]} \\
& \begin{array}{ll}
02 \\
f(\theta+h)=f(\theta)
\end{array}+\underbrace{\nabla f(\theta)^{\top} h+\theta(\|h\|)^{\prime} \text { but }} \text { for } h \rightarrow 0 \\
& \downarrow \\
& {\left[f(\theta+h)=f(\theta)+\underline{v}^{\top} \underline{h}+\text { somenthing }\right]} \\
& \lim _{h \rightarrow 0} \frac{\text { somenthing }}{\text { Nhy }}=0 \\
& \Rightarrow \quad v=\nabla f(\theta)
\end{aligned}
$$

Hession $\quad \nabla^{2} f(\theta) \approx H(\theta) \in \mathbb{R}^{d x \theta 1}$

$$
[H(\theta)]_{j k}=\frac{\partial}{\partial \theta_{j}} \frac{\partial}{\partial \theta_{k}} f(\theta)=\frac{\partial}{\partial \theta_{k}} \frac{\partial}{\partial \theta_{j}} f(\theta)=[H(\theta)]_{K j}
$$

$0 r$

$$
J \nabla f(\theta)=\left[\begin{array}{c}
-\nabla_{\theta}\left(\partial_{\theta_{\mu}} f\right)^{\top}- \\
\vdots \\
-\nabla_{\theta}\left(\partial_{\theta_{\alpha}} f\right)^{\top}-
\end{array}\right] \quad\binom{\text { Durivati } V_{a} / \sqrt{2} \text { cobien }}{\text { of the grookient }}
$$

$o r$

$$
f(\theta+h)=f(\theta)+\nabla f(\theta)^{\top} h+\frac{1}{2} h^{\top} H(\theta) h+\underbrace{0\left(\|h\|^{2}\right)}_{\text {Somenthing }}
$$

$\lim _{n \rightarrow 0} \frac{\text { Somenthing }}{n}$
b) $g(\theta)=\frac{1}{2}\|X \theta-y\|^{2}$
$8(\theta+h)$
By Class,

$$
\begin{aligned}
\nabla g(\theta) & =x^{t}(X \theta-y) \\
& =x^{t} x \theta-x^{t} y
\end{aligned}
$$

Let $M=X^{t} X \in \mathbb{R}^{d \times d}$. Let m_{k} be $k^{\text {th }}$ row of M

So

$$
\begin{aligned}
\frac{\partial g}{\partial \theta_{k}} & =\left(M \theta-x^{t} y\right)_{k} \\
& =\frac{m_{k}^{t} \theta}{\tau}-\left(x^{t} y\right)_{k}
\end{aligned}
$$

So

$$
\frac{\partial}{\partial \theta_{j}} \frac{\partial g}{\partial \theta_{k}}=\frac{m_{k j}}{m_{j \text { th only of } m_{k}} .}
$$

Thus

$$
H=M=X^{t} X
$$

$$
\begin{aligned}
& {[\nabla g(\theta)]_{K}=\left[M \theta-x^{\top} y\right]_{K}} \\
& M \theta=\left[\begin{array}{c}
m_{1}^{\top} \theta \\
m_{2}^{\top} \theta \\
m_{d}^{\top} \theta
\end{array}\right] \quad \text { when } m_{j} M \\
& M=\left[\begin{array}{c}
-m_{1}^{\top}- \\
-m_{2}^{T}- \\
-m_{d}^{\top}-
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& g(\theta+h)=\frac{1}{2}\|x(\theta+h)-y\|_{2}^{2} \\
& =\underbrace{\frac{1}{2}\|x \theta-y\|^{2}}_{g(\theta)}+\underbrace{\left(x^{\top}(x \theta-y)\right.}_{\nabla_{g}(\theta)})^{\top} h+\frac{1}{2} h^{\top} \underbrace{\top}_{H} x h
\end{aligned}
$$

Matrix Multiplication

$$
\begin{aligned}
\cdot & A \in \mathbb{R}^{d_{2} \times d_{1}}, B \in \mathbb{R}^{d_{1} \times d_{3}} \\
& A B \in \mathbb{R}^{d_{2} \times d_{3}}
\end{aligned}
$$

- If you find that for $A \in \mathbb{R}^{d_{2}+d_{1}}$

$$
A=\underbrace{\text { something }}_{d_{2} \times d_{1}}+\underbrace{\text { something else }}_{d_{2} \times d_{1}}
$$

- $A \in \mathbb{R}^{d \times d}$ (SQUARE!)
and invertible $\quad A^{-1} A=A A^{-1}$
- $A \in \mathbb{R}^{d \times 0}$ diagonal matrix if when it $\quad A_{i j}=0 \quad A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$ Note you com still have $A_{i i}=0$
- Note that if $x \in \mathbb{R}^{d}$ and A diagonal

$$
[A x]_{i}=A_{i i} \underline{x}_{i} \quad[A x]_{2}=A_{22} x_{2}
$$

- $B \in \mathbb{R}^{d \times m}$ and $A \in \mathbb{R}^{d \times d}$ diagonal if $B=\left[\begin{array}{c}-b_{1}- \\ \vdots \\ -b_{\alpha-}-\end{array}\right] \quad b_{i}$ i-th sow

$$
\begin{gathered}
\bullet C \mathbb{R}^{m \times d}=\left[C_{z}, \ldots, C_{d}\right] \\
C A=\left[\begin{array}{l}
\mid A_{11} C_{1}, \ldots, A_{d d} C_{0} \\
\hat{1} \mid \\
\text { didy }
\end{array},\right.
\end{gathered}
$$

c_{i} i-th colemm

Binary Classification

Model $y=\sigma\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)=\hat{y}(x ; \theta)$
where 1
"Sigmoid"

Solver $\min _{\theta} \sum_{i=1}^{n} L\left(y_{i}, \hat{y}\left(x^{(i)} ; \theta\right)\right)$ fer $\hat{\theta}$

Predict:
For new sample x, predict

$$
\left\{\begin{array}{l}
\text { class } 1 \text { if } \hat{y} \geqslant 1 / 2 \\
\text { class } 0 \text { if } \hat{y}<1 / 2
\end{array}\right.
$$

Decision boundary $\quad \hat{y}=\frac{1}{2}$

$$
\sigma(z)=\frac{1}{2} \quad \text { if } \quad z=0
$$

\Rightarrow Decision boundary: $\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}=0$

Question 4.
Consider a binary classification problem whose features are in \mathbb{R}^{2}. Suppose the predictor learned by logistic regression is $\sigma\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)$, where $\theta_{0}=4, \theta_{1}=-1, \theta_{2}=0$. Find and plot curve along which $\mathrm{P}($ class 1$)=1 / 2$ and the curve along which $\mathrm{P}($ class 1$)=0.95$.

$$
\begin{aligned}
& \text { Response: } \\
& \qquad \begin{array}{c}
\sigma\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)=\frac{1}{2} \\
\Rightarrow \quad \theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}=0 \\
\Rightarrow \quad 4-x_{1}=0 \\
x_{1}=4
\end{array}
\end{aligned}
$$

$$
\sigma\left(\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}\right)=0.95
$$

Recall $\sigma(z)=\frac{e^{z}}{e^{z}+1}=\frac{1}{1+e^{-z}}$

$$
\text { So } \begin{aligned}
& \sigma(z)=0.95 \Rightarrow \frac{1}{1+\epsilon^{-2}}=0.95 \\
& \Rightarrow e^{-z}=-1+\frac{1}{0.95}=0.0526 \\
& \Rightarrow z=2.94 \\
& \Rightarrow \theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}=2.94 \Rightarrow 4-x_{1}=2.94 \Rightarrow x_{1}=1.06
\end{aligned}
$$

Decision boundary is $x_{x_{2}}$ linear

Consider a class classification problem (3 (no bios $\left.\begin{array}{c}\text { worm } \\ \text { term }\end{array}\right)$
Training Dabia: $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1 \cdots n}$
$\chi^{(i)} \in \mathbb{R}^{d}$ for all i

$$
\begin{aligned}
& x^{(i)} \in \mathbb{R}^{d} \\
& y^{(i)} \in \mathbb{R}^{3}, \quad y^{(i)}=\left\{\begin{array}{lll}
\binom{1}{0} & \text { if } y^{(i)} \text { ot class } 1 \\
(0) & \text { it } y^{(i)} \text { ot clos } z \\
0 & 0 \\
0 & \text { it } y^{(i)} \text { ot class } 3
\end{array}\right.
\end{aligned}
$$

Model: $y=\operatorname{Softmax}\left(z_{1}, z_{2}, z_{3}\right)$

$$
\operatorname{logits}\left\{\begin{array}{lll}
z_{1}= & \theta_{1} \cdot x & \text { w/ } \theta_{1} \in \mathbb{R}^{d} \\
z_{2}= & \theta_{2} \cdot x & \theta_{2} \in \mathbb{R}^{d} \\
z_{3}= & \theta_{3} \cdot x & \theta_{3} \in \mathbb{R}^{d}
\end{array}\right.
$$

"logits are linear in parameters of model"

$$
\operatorname{softmax}\left(z_{1}, z_{2}, z_{3}\right)=\left(\begin{array}{l}
\frac{e^{z_{1}}}{e^{z_{1}}+e^{z_{2}}+e_{3}} \\
\frac{e^{z_{2}}}{z_{1}} \\
e^{z_{2}}+e^{z_{3}} \\
\frac{e^{z_{3}}}{e_{1}} e^{z_{2}}+e^{z_{3}}
\end{array}\right) \text { vp to } 1
$$

Train g

$$
\min _{\theta} \sum_{i=1}^{n} L\left(y^{(i)}, \operatorname{sottmax}\left(\theta_{1} \cdot x^{(i)}, \theta_{2} \cdot x^{(i)}, \theta_{3} \cdot x^{(i)}\right)\right)
$$

$\log \operatorname{loss}: \quad L\left(y, \underset{\mid}{\substack{\mid \\ \mathbb{R}^{3}}}{ }_{\mathbb{R}^{3}}^{3} y_{c=1} \log \hat{y}_{c}\right.$

Prediction:
Given x, compote $\hat{y}(x ; \hat{\theta}) \in \mathbb{R}^{3}$
predict class \hat{c} w/ $\hat{c}=\underset{c}{\operatorname{argmax}} \hat{y}_{c}$

What will decision boundary look like for 3-class classification?

Question 5.
Consider a 3-class classification problem. You have trained a predictor whose input is $x \in \mathbb{R}^{2}$ and whose output is softmax $\left(x_{1}+x_{2}-1,2 x_{1}+3, x_{2}\right)$. Find and sketch the three regions in \mathbb{R}^{2} that gets classified as class 1,2 and 3 . Response:

The predicted class corresponds to the largest component of softmax, Which is the same as the largest input to softmax.

$$
\begin{aligned}
& Z_{1}=x_{1}+x_{2}-1 \\
& Z_{2}=2 x_{1}+3 \\
& Z_{3}=x_{2}
\end{aligned}
$$

a) Where is classified as class 1?

$$
\Rightarrow \begin{aligned}
& x_{1}+x_{2}-1>2 x_{1}+3 \\
& L_{\text {line }}^{-x_{1}+x_{2}>4} \\
& -x_{1}+x_{2}=4
\end{aligned} \& \quad \begin{aligned}
& x_{1}+x_{2}-1>x_{2} \\
& x_{1}>1 \\
& L \operatorname{lime} 2 \\
& x_{1}=1
\end{aligned}
$$

b) Where is classifical as class $2:$

$$
\begin{aligned}
& 2 x_{1}+3>x_{1}+x_{2}-1 \quad \& \quad 2 x_{1}+3>x_{2} \\
& -x_{1}+x_{2}<4 \quad \& \quad 2 x_{1}-x_{2}>-3
\end{aligned}
$$

c) Where is classified as class 3:

$$
\begin{array}{lll}
x_{2}>x_{1}+x_{2}-1 & \& & x_{2}>2 x_{1}+3 \\
x_{1}<1 & \& & 2 x_{1}-x_{2}<-3
\end{array}
$$

Precision: $\frac{T P}{T P+F P}$
Recall: $\frac{T P}{T P+F N}$

What fraction of predictal positives are real?

What fraction of positives are correctly predicted?

Want high precision \& high recall

RISK

- $f: x \mapsto f(x) \quad$ prolictor
-l loss $\Rightarrow()^{2}$

Risk of f is

$$
R(f)=\mathbb{E}_{(x, y) \sim D} \quad \ell(y, f(x))
$$

But No S

If f olepenols on some θ then

$$
R(\theta)=R\left(f_{\theta}\right)=\underline{\mathbb{E}_{(x, y) \sim D}} \ell\left(y, f_{\theta}(x)\right)
$$

Note θ here is just a parauneter fixed (constent)

Note when we sturdy Bias-Voriance :. then $\hat{\theta}$ is estimated from data \Rightarrow Random so we also toke expectation over $S=$ samples

$$
\mathbb{E}_{s, x, y}
$$

$$
y=x+\varepsilon \quad \mathbb{E}_{x y} \rightarrow \mathbb{E}_{x \varepsilon}
$$

Question 6.
Suppose $x \sim \operatorname{Uniform}([-1,1])$ and $y=\underline{x}+\underline{\varepsilon}$, where $\varepsilon \sim \operatorname{Uniform}([-\gamma, \gamma])$ for some $\gamma>0$. Consider a predictor given by $f_{\theta}(x)=\theta_{1}+\theta_{2} x$, where $\theta \in \mathbb{R}^{2}$. Evaluate the risk of f_{θ} with respect to the square loss. Your answer should be a deterministic expression only depending on θ_{1}, θ_{2}, and γ.

Response:

$$
\begin{aligned}
R(\theta) & =\mathbb{E}_{x, \varepsilon}\left[\left(f_{\theta}(x)-y\right)^{2}\right]=\mathbb{E}_{x, \varepsilon}\left[\left(\theta_{1}+\theta_{2} x-x-\varepsilon\right)^{2}\right] \\
& =\mathbb{E}_{x \varepsilon}\left[\left(\theta_{1}+\left(\theta_{2}-1\right) x-\varepsilon\right)^{2}\right]=\int_{-1} x^{2} \frac{1}{2} d x=\left.\frac{1}{6} x^{3}\right|_{-1} ^{1} \\
& =\mathbb{E}_{x \varepsilon}\left[\theta_{1}^{2}\right]+\mathbb{E}_{x \varepsilon}\left[\left(\theta_{2}-1\right)^{2} x^{2}\right]+\mathbb{E}\left[\varepsilon^{2}\right] \\
& -2 \mathbb{E}_{x \varepsilon}\left[\theta_{1} \varepsilon\right]-2 \mathbb{E}_{x \varepsilon}\left[\theta_{1}\left(\theta_{2},-1\right) x\right]-2 \mathbb{E}_{x \varepsilon}\left[\left(\theta_{2}-1\right) x \varepsilon\right]
\end{aligned}
$$

Sima θ_{1}, θ_{2} or deterministic $\Rightarrow \mathbb{E}[\theta, \varepsilon]=\theta_{1} \mathbb{E}[\varepsilon]$
$\mathbb{E}[x]=\mathbb{E}[\varepsilon]: 0$ and $\quad x$ end ε indies. $\Rightarrow \mathbb{E}[x \varepsilon]=\mathbb{E}[x] \mathbb{E}[\varepsilon]$

$$
R(\theta)=\theta_{1}^{2}+\frac{1}{3}\left(\theta_{2}-1\right)^{2}+\frac{1}{3} \gamma^{2}
$$

$$
\mathbb{E}[x]=\int_{-1}^{1} x \operatorname{pif}(x) d x=\int_{-1}^{1} \frac{x}{2} d x=0
$$

The roson is polf of uniform in $[a, b]=\frac{1}{(b-l)}$

$$
\begin{aligned}
& \mathbb{E}\left[x^{2}\right]=\int_{-1}^{1} x^{2} \cdot \frac{1}{2} d x \\
& \mathbb{E}[\varepsilon]=\int_{-\gamma}^{\gamma} \varepsilon \frac{1}{2 \gamma} d \varepsilon=0
\end{aligned}
$$

Question 7.
You are training a logistic regression model and you notice that it does not perform well on test data.

- Could the poor performance be due to underfitting? Explain.
- Could the poor performance be due to overfitting? Explain.

Unolufiting yes, logist regression separates the 2 classes using only a line. this might be too simple to explain the veriatipus in the date
Consider for example the case of 2 classes
separable by a curved line.

Ougrfitting
YGS, if there are too many
features, the data could appear
to be linearly separable as a
mathematical artifact. This could
result in overfitting of braining data.

