Day 9 - Statistical Learning Framework and Bias Variance Tradeoff

Agenda:

- Statistical learning framework
- Derivation of square loss for regression
- Derivation of log loss / cross-entropy loss for classification
- Terms related to the statistical learning framework
- Bias variance tradeoff

Statistical Fromework for ML (supervised)

Assume:

- · (X, y) are sampled from a joint probability distribution
- · Training data $D = \{(X_i, y_i)\}_{i=1\cdots n}$ are iid samples

· Test data are also iid samples OF THE SAME DISTRIBUTION

Can estimate the model/predictor by maximum likelihood estimation

3

Evaluate performance on test daba {(Xi, Yi)}i=1-m $\frac{1}{m}\sum_{i=1}^{m} \&(\mathcal{Y}_{i},\widehat{f}(\mathcal{X}_{i}))$

Linear Regression and Square Loss

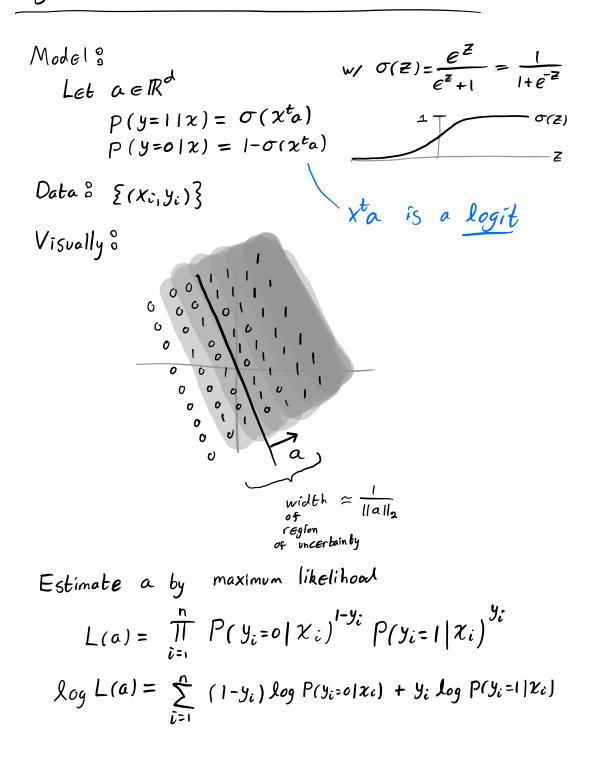
Let
$$a \in \mathbb{R}^{n}$$
, $X \in \mathbb{R}^{n}$
Model: $Y_i = X_i^{\dagger}a + E_i \quad \forall E_i \sim \mathcal{N}(0, \sigma^2)$
Data: $D = \{(X_i, Y_i)\}_{i=1\dots n}$

Estimate a by maximum likelihood

$$pdf$$
 of \mathcal{E}_i is $\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{Z^2}{2\sigma^2}}$ over $Z \in \mathbb{R}$
likelihood of data (using $\mathcal{E}_i = y_i - \chi_i^t a$)
 $L(a) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i - \chi_i^t a)/2\sigma^2}$ by integration
 $log L(a) = -\sum_{i=1}^n \frac{(y_i - \chi_i^t a)^2}{2\sigma^2} + terms constant in a$
maximizing data likelihood \iff minimizing square loss

$$\max_{a} L(a) \iff \min_{\substack{i \ge 1\\ a}} \sum_{\substack{i \ge 1\\ i \ge 1\\ i \ge 1}} \left(\chi_{i}^{t}a - y_{i} \right)^{2}$$

$$square loss \ l(\hat{y}_{i}y) = |\hat{y} - y|^{2}$$



Cross entropy loss

$$\begin{array}{l}
\mathcal{L}_{CE}\left(P,q\right) = -\sum_{Z\in\mathbb{Z}} P(Z)\log Q(Z) = -\mathbb{E}(\log q) \\
\begin{array}{l}
\mathcal{L}_{SCRETE} \\
\mathcal{L}$$

 $\begin{array}{c} \text{Maximizing data likelihood} \rightleftharpoons \text{Minimizing Cross entropy loss} \\ \max_{a} L(a) \Leftrightarrow \min_{a} -\sum_{i=1}^{n} \left(y_i \log \left(\sigma(x_i^{t_a}) \right) + (1-y_i) \log(1-\sigma(x_i^{t_a})) \right) \\ R_{CE} \left(\left(\begin{pmatrix} y_i \\ 1-y_i \end{pmatrix} \right), \left(\begin{pmatrix} \sigma(x_i^{t_a}) \\ 1-\sigma(x_i^{t_a}) \end{pmatrix} \right) \end{array}\right) \end{array}$

Formalism for Statistical Framework for ML (supervised)

Training data
$$-S = \{(X_{i}, y_{i})\}_{i=1} \dots n$$

n points in $X \times Y$

Predicter/hypothesis - any function
$$f : X \rightarrow Y$$
 that $x \mapsto y$

Outputs a prediction y for any instance x

What is the label set for classification with three classes?

Consider k-dimensional features. When training a binary classifier for logistic regression with no bias term, what is the hypothesis class?

Is it useful to consider the hypothesis class of ALL functions from X to Y?

Data generation model

Simple Version probability
- Assume
$$X \sim D$$
, where D is a distribution
over X
- Each sample is independent
- $y = f(X)$ for a "correct" function f_{\cdot}^{*}

- Assume $(X,Y) \sim D$, a joint probability distribution over $X \times Y$ There is some marginal distribution of X, P_X . For any x, there is a conditional distribution over Y D_{YIX} (a) Generate training data (x_i, y_i) for i = 1...8 by $x_i \sim \text{Uniform}([0, 1])$, and $y_i = f(x_i) + \varepsilon_i$, where $f(x) = 1 + 2x - 2x^2$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ and $\sigma = 0.1$. Plot the training data and the function f.

In the following example:

What is the distribution \mathbb{D}_{χ} ?

What is the conditional distribution \mathcal{P}_{YIX} ?

Example: Suppose
$$\chi \sim \mathcal{N}(0, 1)$$

 $y | \chi \sim B_{Grnov} ||_i [G(\chi+1)]$

Plot (X1Y) according to this distribution

Loss – how bad is the prediction of an instance relative to its label
$$\mathcal{L}(y, \hat{y}) \in \mathbb{R}$$
 label prediction

Examples

- Square loss $l(y,\hat{y}) = ||y-\hat{y}||^2$ if $y,\hat{y} \in \mathbb{R}^d$

$$-\log \log \left(y, \hat{y}\right) = \sum_{i=1}^{k} y_i \log \hat{y}_i \quad \text{if } y \in \mathbb{R}^k$$

$$a \text{ one-hol}$$

$$Gn \text{ calings}$$

$$\& \hat{y} \in \mathbb{R}^k \text{ is}$$

$$a \text{ probability } \text{ dist}$$

$$OVer \quad k \text{ labels}$$

- 0-1 loss
$$\mathcal{Q}(y, \hat{y}) = \begin{cases} 1 & \text{if } \hat{y} = y \\ 0 & \text{if obvise} \end{cases}$$

Risk - Expected loss of a predictor
for new data samples
$$R(f) = \mathbb{E} \lambda(y, f(x)) \\ (x, y) \sim D$$
aha "generalization error"
"error" "test error"
"population error"
"generalization error"

Test error - Use a Sinite test set
to assess generalization

$$\frac{1}{m} \sum_{i=1}^{m} \lambda(y_{i}^{test}, \hat{f}(x_{i}^{test}))$$

$$\approx \underbrace{\mathbb{E}}_{(x^{test}, y^{test}) \sim D} \lambda(y_{i}^{test}, \hat{f}(x_{i}^{test}))$$
Model complexity - Cardinality or dimensionality of
hypothesis set 7/ # unknown
porameters

Activity:

Which hypothesis class is more complex?

Let
$$f_{\theta}(\chi) = \theta \cdot \chi$$
 for $\chi \in \mathbb{R}^2$, $\theta \in \mathbb{R}^2$

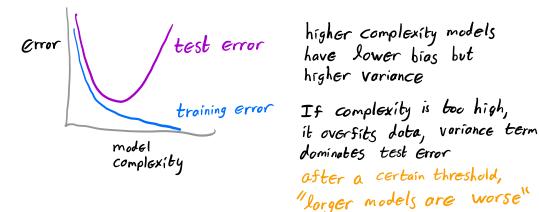
$$\mathcal{H} = \left\{ f_{(1)}, f_{(2)} \right\} \text{ vs } \mathcal{H} = \left\{ f_{(1)}, f_{(2)}, f_{(1)} \right\}$$

$$\mathcal{H} = \left\{ f_{(i)}, f_{(i)}, f_{(i)} \right\} \text{ vs } \left\{ f_{\Theta} \mid \Theta \in \mathbb{R}^{2} \right\}$$

Bias-Voriance Tradeoff

What class of hypotheses should you search over?

Standard Statistical ML story:



Why is braining error monotonically decreasing?

Why is test error initially decreasing?

If you have 10^3 data samples, how complex of a data model would you consider?

Why does understanding this tradeoff matter?

Why shouldn't you use test data to estimate madel parameters? Wouldn't more data lead to a better model? Bias - Variance Decomposition

Consider regression model $y = f(x) + \varepsilon$ W/ $\mathbb{E}[\varepsilon|\chi] = 0$ Let $S = \{(x_i, y_i)\}_{i=1\cdots n}$ be iid samples Estimate f by an algorithm producing \hat{f}_S Evaluate \hat{f}_S by expected loss on a new sample $R(\hat{f}_S) = \mathbb{E}_{x,y} (\hat{f}_S(x) - y)^2$ risk test square loss Performance will vary based on S. Take expectation over S.

$$\mathbb{E}_{S} \mathbb{R}(\hat{f}_{S}) = \mathbb{E}_{\chi_{1}y_{1}S} \left(\hat{f}_{S}(\chi) - y \right)^{2}$$

$$Ne \quad \text{will decompose into } 3 \text{ effects}^{\circ}_{\circ} \text{ bias, voriance, irreducible} \\ \mathbb{E}_{S} \mathbb{R}(\widehat{f}_{S}) = \mathbb{E}_{\chi_{1}y_{1}S} \left[\left(\widehat{f}_{S}(\chi) - \widehat{f}(\chi) - \varepsilon \right)^{2} \right] \\ = \mathbb{E}_{\chi_{1}y_{1}S} \left(\widehat{f}_{S}(\chi) - \widehat{f}(\chi) \right)^{2} - 2 \mathbb{E} \left[\left(\widehat{f}_{S}(\chi) - \widehat{f}(\chi) \right) \varepsilon \right] + \mathbb{E} \left[\varepsilon^{2} \right] \\ = \mathbb{E}_{\chi_{1}y_{1}S} \left(\widehat{f}_{S}(\chi) - \widehat{f}(\chi) \right)^{2} + Var(\varepsilon) \\ Var(\varepsilon)$$

Evaluating the first term, Conditioning on X,

$$\mathbb{E}_{S}\left(\hat{f}_{S}(\chi)-f(\chi)\right)^{2} = \mathbb{E}_{S}\left[\left|\left(\hat{f}_{S}(\chi)-\mathbb{E}_{S}\hat{f}_{S}(\chi)\right)+\left(\mathbb{E}_{S}\hat{f}_{S}(\chi)-f(\chi)\right)\right|^{2}\right]$$

=
$$\mathbb{E}_{S}\left(\hat{f}_{S}(\chi)-\mathbb{E}_{S}\hat{f}_{S}(\chi)\right)^{2}+2\mathbb{E}_{S}\left(\hat{f}_{S}(\chi)-\mathbb{E}_{S}\hat{f}_{S}(\chi)\right)\left(\mathbb{E}_{S}\hat{f}_{S}(\chi)-f(\chi)\right)+\mathbb{E}_{S}\left(\mathbb{E}_{S}\hat{f}_{S}(\chi)-f(\chi)\right)^{2}$$

$$\stackrel{O}{\longrightarrow} S \xrightarrow{i_{1}} Cxpecbubium \quad does not depend on S$$

$$= \underbrace{\mathbb{E}_{s}\left(\widehat{f}_{s}(\chi) - \mathbb{E}_{s}\widehat{f}_{s}(\chi)\right)^{2} + \left(\mathbb{E}_{s}\left(\widehat{f}_{s}(\chi) - \widehat{f}(\chi)\right)\right)^{2}}_{Variance of \widehat{f}_{s}(\chi)} \underbrace{\mathcal{E}_{s}(\chi)}_{squared bias}$$

So,

$$E_{S} R(\hat{f}) = E_{\chi} (f(\chi) - E_{S} \hat{f}_{S}(\chi))^{2} + E_{\chi} Var_{S} \hat{f}_{S}(\chi) + Vor(\xi)$$

expected squared bias expected voriance irreducible
of estimate of estimate error

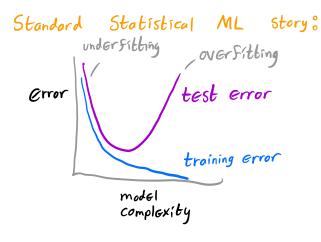
Illustration of bias variance tradeoff

Suppose $y = \chi + \varepsilon$

Low complexity model $\overset{\circ}{\circ}$ y = c $\mathbb{E}_{\chi} (f(\chi) - \mathbb{E}_{S} \hat{f}_{S})^{2}$ is high $\mathbb{E}_{\chi} \operatorname{Vor}_{S} \hat{f}_{S}(\chi)$ is low

High complexity model $\Im y = C_0 + C_1 \chi + C_2 \chi^2 + \cdots + C_k \chi^k$

$\mathbb{E}_{\chi}(f(\chi) - \mathbb{E}_{S}\hat{f}_{S})^{2}$ is low $\mathbb{E}_{\chi} \operatorname{Vor}_{S}\hat{f}_{S}(\chi)$ is high	

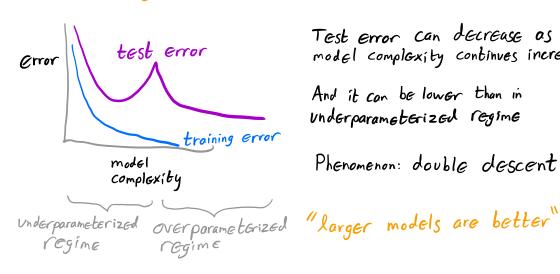


higher complexity models have lower bios but higher variance

If complexity is boo high, it overfits dota, vorionce term dominates test Error

after a certain threshold, "lorger models are worse"

Modern Story based on Neural Nets:



Test error can decrease as model complexity continues increasing,

And it can be lower than in underparameterized regime

Phenomenon: double descent

If you have 10^3 data samples, how complex of a data model would you consider?

Why is being critically parameterized bad for generalization?

In the overparameterized regime, do all models with O training Error generalize well? How is good generalization possible in the Over parameterized regime?

Why does understanding this tradeoff matter?