


Day 8 - Statistical Learning Framework 
 
Agenda:




Statistical learning framework
•
Derivation of square loss for regression
•
Derivation of log loss / cross-entropy loss for classification
•
Terms related to the statistical learning framework
•
Bias variance tradeoff
•
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CS 6140: Machine Learning — Fall 2021— Paul Hand

HW 3
Due: Wednesday October 6, 2021 at 2:30 PM Eastern time via Gradescope.

Names: [Put Your Name(s) Here]

You can submit this homework either by yourself or in a group of 2. You may consult any and
all resources. Make sure to justify your answers. If you are working alone, you may either write
your responses in LaTeX or you may write them by hand and take a photograph of them. If you
are working in a group of 2, you must type your responses in LaTeX. You are encouraged to
use Overleaf. Create a new project and replace the tex code with the tex file of this document,
which you can find on the course website. To share the document with your partner, click Share
> Turn on link sharing, and send the link to your partner. When you upload your solutions to
Gradescope, make sure to take each problem with the correct page or image.

Question 1. Linear regression with multivariate responses.

Consider training data {(x(i), y(i))}i=1...n, where x
(i) 2 Rd and y

(i) 2 Rk . Consider a model
y = Ax, where A 2 Rk⇥d is unknown. Estimate A by solving least squares linear regression

min
A

nX

i=1

ky(i) �Ax(i)k2.

(a) Find A in the case of training data

8>><>>:

0
BBBB@

 
1
0

!
,

0
BBBBBBB@

1
1
0

1
CCCCCCCA

1
CCCCA,
0
BBBB@

 
0
1

!
,

0
BBBBBBB@

0
1
1

1
CCCCCCCA

1
CCCCA,
0
BBBB@

 
1
1

!
,

0
BBBBBBB@

2
3
1

1
CCCCCCCA

1
CCCCA

9>>=>>;. You may use a com-

puter to perform linear algebra. Hint: the problem can be simplified by observing that
each output dimension can be computed separately from the others. If you use this fact,
justify it in your response.

Response:

(b) Consider the case of generic training data. Let Y be the k ⇥n matrix such that Yji = y
(i)
j

. Let

X be the n ⇥ d matrix where Xij = x
(i)
j

. Provide a formula for the least squares estimate
of A. Make sure to check that the matrix dimensions match in any matrix products that
appear in your answer. Use the same hint as in part (a).

Response:

(c) Show that any prediction under this learned model is a linear combination of the response
values (y(1), . . . , y(n)). That is, for the A in part (b), show that Ax 2 span(y(1), . . . , y(n)) for any
x. You may assume that X is rank d.

Response:

Question 2. Logistic Regression
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http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html
https://www.gradescope.com/courses/308434
http://www.overleaf.com
http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html


Consider training data {(xi ,yi )}i=1...n, where xi 2 Rd and yi 2 {0,1}. Consider the logistic data
model ŷ = �(✓ · x), where x 2 Rd , ✓ 2 Rd , and � is the logistic function �(z) = e

z
/(ez +1).

(a) Show that � 0(z) = �(z)(1��(z)).

Response:

(b) Let f (✓) =
P

n

i=1�yi log ŷi � (1� yi ) log(1� ŷi ), where ŷi = �(✓ · xi ). Compute rf (✓). Use the
fact in part (a) to simplify your answer.

Response:

(c) If M =
P

n

i=1 xix
t

i
, show that ztMz � 0 for any z 2 Rd .

Response:

(d) Using a summation and vector and/or matrix products, write down a formula for the
Hessian, H , of f with respect to ✓. Show that ztHz � 0 for any z 2 Rd .

Response:
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StagtigtimIFrameworkforMI
supervised

X y are sampled from a joint probability distribution

Training data D CtiYo i n
are iid samples

Test data are also iid samples

Can estimate the model predictor by maximum likelihoodestimation

Results usually in an optimization problem

I argmin Ill fetid Yi empirical risk

felt
i minimization

where
l loss function Eg try yl ly yl
It hypothesis class eg degree d polynomial

Evaluate performance on test data ii Yi m

II llyi.hix.tl






































































































Model Yi Xia Ei w Ei No o

Data's D Xiii it n

Estimate a by maximum likelihood

pdf of Ei is fo É over Ze IR

likelihood ofdata using EE Yi Xia
a IT IE E

Yi titalyzor

log Lra E Tiff terms constant in a

maximizing data likelihood minimizing square loss

may Lead main E Ixia yes
Tquareloss lfj.gl lyy






































































































Lognigggregressionandcrossentropylosy
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Estimate a by maximum likelihood
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Cross Entropy loss

lce P q Ezra
1099121 Eptogg

discrete
r v s over 8

Maximizing data likelihood minimizing cross entropylos
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Statistical Framework for ML supervisedF

Im.is arbiarysetofobjectslinstances
that could be labelled

usually represented as a feature
Vector in Rd
could be infinite dimensional

Label Set Y set of possible labels

Eg Rd for regression

1,03 for binary classification

Finiteset for multiclass classification

Training data S Xiii in n

n points in Xx

Predictor hypothesis any function h X s that
X to y

outputs a prediction y for any
instance X

Hypothesis class H a set of predictors hypotheses

that are being considered

Eg H degree d polynomials



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Data generation model

Simple version probability

Assume X D where D is an distribution

over X
Each sample is independent

y fix for a correct function f

Realistic version

Assume IX Y D a joint probability

distribution over Xxy

There is some marginal distribution

of X DX

For any x there is a conditional

distribution over y Dy z






































































































Loss how bad is the prediction of an

instance relative to its label

119,5 EIR
lab'd prediction

Examples

Square loss try y Ily 511 if yjelRd

log loss fly y EYology if YER
are one hot
Encodings

jerk is
a probabilitydist
over k labels

O 1 loss hey jl
g

if 5 9
O if O'wise






































































































Risk Expected loss of a predictor
for new data samples

Rih E dry hix
KY ND

aka generalization error

Error test error

population Error

Goal of learning

To find a h such that Rih
is minimal Want to solve

min Roth
hat

challenge We don't know D We only

have samples S






































































































Empirical Risk approximation of risk based

Minimization on training data S

E
EIEIY.sn

Test Error Use a finite test set
to assess generalization

1M If yitest pretest
5 1






































































































Bias Variance Tradeoff

Standard Statistical ML story

i highercomplexity models
error

L
have lower bias but
higher variance

it overfits data variance term
Iodmflexity dominates test error

after a certain threshold

larger models are worse

Why is training Error monotonically decreasing

Why is test error initially decreasing













































 
























































If you have 103 data samples

how complex of a data model would

you consider

Why does understanding this tradeoff matter






































































































BivarianceDecomposition

Consider regression model

y Frate W EEE 27 0

Let D Xinyi n
be rid samples

Estimate f by an algorithm producing f

Evaluate Fp by Expected loss on a new sample

ri
Ex I x y

tastple sqtareloss

Performance will vary based on D
Take Expectation over D

IED RIFT Ex Fx 912

We will decompose into 3 Effects bias variance irreducible
error

EDRIFI E Fora free et

Ew Fort Fr 2EtF fÉJt Ere
Tarte

ftp.IForxl frx ftVarre

Evaluating the first term Conditioning on X

IE Fort fix Epffforx Ettore E Forti free

IE Fort IE 21 2IEDFWE.FIIIEpF IXI FrxDtIEIIEpFDIXI FrXI
Inexpectation Toesnotdepend
in D On D






































































































So
IE RIF FRI IE raft VarFoix Varley

expectedsquaredbias Yepectedvariance irreducible
Of Estimate

terror
of Estimate

Illustration of bias variance tradeoff

suppose y Xt E

Lj
Low complexity model y c

EyVarifort is low
fi i

tE

Ex t EDM is w

4 44 1ExVarifort is high






































































































Standard Statistical ML story

EW
i d

have lower bias but
higher variance

If complexity is too high
it overfits data variance term
dominates test ErrorTimplexity
after a certain threshold

larger models are worse

Modern Story based on Neural Nets

Test Error Can decrease as
Error model complexity continues increasing

And it can be lower than in
underparameterized regime

kit

Phenomenon double descent

Iverparametrized larger models are better
underpartameteridd

regimeregime 1
Q Are larger models better
b c we have so much data that
it captures the Entire problem domain

































Choose a neural network with 10000 or 100000 parameters





















Critically parameterized:  # parameters = # data points



How many values of parameters would fit data exactly? 1.   Neural net must contort itself to fit 
the exact data.  No expectation for generalization.















there is an infinity of model parameters that fit data exactly.  Gradient descent will find one of 
them.  Would all solutions generalize well?





There are solutions that don’t generalize well.

Build them by adding poison training data














and is actually overfitting

If you have 103 data samples

how complex of a data model would

you consider

Why is being critically parameterized bad

for generalization

In the over parameterized regime
do all models with O training Error

generalize well

I
Iet









































Expect near perfect fitting of your training data


How is good generalization possible in the

over parameterized regime

F

set of models
that exactly fit trainingdata

Why does understanding this tradeoff matter

Parameter space 
 Parameters that you find from 

running Gd from a reasonable 
initialization have small norm 
 
That has a regularizing effect 


