


Day 6 - Logistic Regression (continued) 
 
Agenda:




Classification and Logistic Regression
•
Training binary classifiers
◦
Evaluating classifiers
◦
Training multiclass classifiers
◦













More thoughts on square capital example and whether to approach problem as 
regression or classification




































































Parametric Approach: Choose a model for f with unknown parameters.  Estimate the 
parameters. 
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Binary Classification in 2D with logistic regression 
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Question: 
 
Consider a binary classification problem.  What property of the data would lead logistic 
regression to learn a good classifier? 
 
 
 
 

 

 
 
 
 
 
 
 

What loss function should you use

One choice log loss
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Question: With the following data, does a minimizer to the optimization problem even 
exist? 
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Evaluating Classifiers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Activity:  Someone invents a test for a rare disease that affects 0.1% of the population.  
The test has accuracy 99.9%.   Are you convinced this is a good test? 
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Activity: You are building a binary classifier that detects whether a pedestrian is crossing 
the sidewalk within 30 feet of a self driving car.  If the detection is positive, the car puts 
on the breaks.  Would you rather have good precision and great recall or good recall and 
great precision? 
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There is a trade off between True Positives and False Positives, and between 
True Negatives and False Negatives 
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Receiver Operating Characteristic Curves 
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Comparing classifiers and Area-Under-Curve (AUC)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also common to plot precision-recall curves 
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Multiclass Classification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider a 3 class classification problem in bias
term
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What will decision boundary look like for 3-class classification? 
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CS 6140: Machine Learning — Fall 2021— Paul Hand

HW 3
Due: Wednesday October 6, 2021 at 2:30 PM Eastern time via Gradescope.

Names: [Put Your Name(s) Here]

You can submit this homework either by yourself or in a group of 2. You may consult any and
all resources. Make sure to justify your answers. If you are working alone, you may either write
your responses in LaTeX or you may write them by hand and take a photograph of them. If you
are working in a group of 2, you must type your responses in LaTeX. You are encouraged to
use Overleaf. Create a new project and replace the tex code with the tex file of this document,
which you can find on the course website. To share the document with your partner, click Share
> Turn on link sharing, and send the link to your partner. When you upload your solutions to
Gradescope, make sure to take each problem with the correct page or image.

Question 1. Linear regression with multivariate responses.

Consider training data {(x(i), y(i))}i=1...n, where x
(i) 2 Rd and y

(i) 2 Rk . Consider a model
y = Ax, where A 2 Rk⇥d is unknown. Estimate A by solving least squares linear regression

min
A

nX

i=1

ky(i) �Ax(i)k2.

(a) Find A in the case of training data
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9>>=>>;. You may use a com-

puter to perform linear algebra. Hint: the problem can be simplified by observing that
each output dimension can be computed separately from the others. If you use this fact,
justify it in your response.

Response:

(b) Consider the case of generic training data. Let Y be the k ⇥n matrix such that Yji = y
(i)
j

. Let

X be the n ⇥ d matrix where Xij = x
(i)
j

. Provide a formula for the least squares estimate
of A. Make sure to check that the matrix dimensions match in any matrix products that
appear in your answer. Use the same hint as in part (a).

Response:

(c) Show that any prediction under this learned model is a linear combination of the response
values (y(1), . . . , y(n)). That is, for the A in part (b), show that Ax 2 span(y(1), . . . , y(n)) for any
x. You may assume that X is rank d.

Response:

Question 2. Logistic Regression

1

http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html
https://www.gradescope.com/courses/308434
http://www.overleaf.com
http://khoury.northeastern.edu/home/hand/teaching/cs6140-fall-2021/index.html


Consider training data {(xi ,yi )}i=1...n, where xi 2 Rd and yi 2 {0,1}. Consider the logistic data
model ŷ = �(✓ · x), where x 2 Rd , ✓ 2 Rd , and � is the logistic function �(z) = e

z
/(ez +1).

(a) Show that � 0(z) = �(z)(1��(z)).

Response:

(b) Let f (✓) =
P

n

i=1�yi log ŷi � (1� yi ) log(1� ŷi ), where ŷi = �(✓ · xi ). Compute rf (✓). Use the
fact in part (a) to simplify your answer.

Response:

(c) If M =
P

n

i=1 xix
t

i
, show that ztMz � 0 for any z 2 Rd .

Response:

(d) Using a summation and vector and/or matrix products, write down a formula for the
Hessian, H , of f with respect to ✓. Show that ztHz � 0 for any z 2 Rd .

Response:
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