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5 1 BASICS



Experiment frequentist view

is any procedure
which has a

well defined set ofoutcomes

Experiment Rolling a standard

6sided die once

sample outcomes are the potential

eventualities of an experiment
6 Possible outcomes 1,23,4 5,6



sample space the totality of the sample
outcomes

The sample space is 1 41,33 4 5 6

Event is a subset of the sample space

Event rolling a 2 42

Event rolling an even number 2,4 63



let F be the set of events of r

A Probability Measure is a function
IP F to I

that satisfies

Note

disjoints sets Ai nAj d

e countable collection ofsets

Ai Az An for some N

02

As Az An Anti infinite



ComplementofA

I



Q Larsen Marx 2.3.2

let A and B two events in s

Suppose that

PCA O 4 IP B 0.5 and IP ANB 0.1

Find the probability that

E A or B but not both occur

E orange

E AABC U C B A AC



Example Roll a 6 sided die

I

A Rolling a number smaller than 3

31,2

13 Rolling an even number

I 2,416

IP AIB PLANB
P B É I



Q

Two cards are drawn from a standardobek

one after the other without replacement

Find the probability that the first card
is a heart and the second is red



5 2 RANDOM VARIABLES



A random Variable X is some

uncertain quantity of interest

whose value depends on the outcome

of a random event

X r R

where or G P is a probability space



Examples

Flip a coin 2 times

D tt th ht hb

X Number of heads

IP X 2 P Shh

IP X 1 P tht this L

2 Faiz 6 sided die are rolled

X sum of the outcomes

IP X 11 P 315,61 6,5 4 36



5.2.2Discrete Random Variables

A random variable X is called discrete

if the set of possible outcomes

is finite or countable

Example

Flip a coin repeatedly infinite times

x Numberof tosses until the first head

X E 41,2 3



The probability mass function p.m f

is a function p X r Io i

pix IP X x

such that

Exa PA L

Note pix completely specify X

Example
Flip a coin twice

X number ofheads

X O X L X 2

pix I I



pal

112

114

8 I a

Q

Flip a coin repeatedly infinite time

x Numberof tosses until the first head



Example Bernoulli

If E is any event then the

BERNOULLI R.V ON E ES

y
if E occurs

0 if E does not occur

PCI P X 1 PIE plot I PIE



5.2.3 Continuous Random Variable

X takes real values

Examples

Temperature at the peakof Mount Everest

The weight of a tennis ball

Def A continuous probability

densityfunction p R to o is

a function such that

1 pix dx 1



Def X is a continuous random variable

if there exists a continuous probability

density function such that for any
Oo Ia I b I too

we have

IP a EX b Lpox of

Remark
pass pic

p o IP x a

IP X e O



Ix If
I

I



Notation

e p E is used to denote the entire

probability distribution

pix is used to denote p evaluated

at x

p R ooo



Def The cumulative distribution

of a continuous random variable X

is

F x P Tex L plz dz

It satisfies

e IPA x T FA
NEX X x

b Platte b F b Fla

C Ling FA I

d ftp.o Fix o

e F x pix



E CLarsen Marx



5 3 JOINT DISTRIBUTIONS



X and Y are discrete R.V then

they can be completely described by the

Joint probability mass function

p Rt to I

such that

IP X x Y y p x y

Ey PA y
I



Example Larsen Marx



X and Y are Continuous R.V then

they can be completely described by the

Joint probability mass function

p Rt to oo

such that

IP ee Xt b CE Ye d L pix y dxdy

f pix y dxoly 1

00 00



Example
The Joint uniform distribution

pctY
I go

atte b

I cexed
b o c d

If R is a region in the rectangle

Fe b x k d

their

IP X Y ER D pay dxoly
Ara R

b o c d

Note this only depends on the size of
the region



Remark

All the above generalizes to

Xi Xn

random variables defining appropriate

Joint distributions

P Xa Xa Xn



5.3.1 Independent random Variables

Two random Variables X and Y
are said independent if

Paya s P x pyas

where

Px Joint probability olistrib

p probability distrib of x

P probability distrib of y



A collection of random Variables

Xi Xz Xm

are collectively independent when

P x Xa Xm IIPaki P cx Pafa PalmX Xm



Xi Xn are independent and identically

distributed i i d when

Px x Pex Tx

and they are independent

Px
xn

x kn I Pai



5.3.2 Marginal distribution

given the joint probability
distribution of X and Y

We can derive the probability
distribution of the Sigle Variables

PIX F P x y discrete lose

P x L pix 9 dy continuous lose

P is a marginal distribution of Px



Example Larsen Marx



Q Consider pix s f glad
b

on cexed

Find P and py

Are X an Y independent



5 4 Expectations

The average value of a

random variable is described

by its expected value

FIX Ey pix Coliscreticase

too

FIX L xp e dx
continuous case

Oo



Properties

E is a linear map on the

vector space of random Variables

E EI a Xi É 4 FIX

For Pe IR X p constant RV is a RV

and

EEP p

Xi Xn are independent

III Xi I ELY



5 6 Covariance

For two variables X and Y

the covariance measures

the linear dependence between

the two

Cor X Y Exy X EE Y EE

Ey XY EETEY



When Cor X Y 0 we say that

X and Y are uncorrelated

If X and Y are independent

Cor X Y 0



5 5 Variance

The Variance of X is

Var X Cov X X E X EET

FIX EE

The standard deviation of X is

Foret

Remark X and Fork have the same units



Properties

Var LX LaVar x

X per
Var X 0

Vor X that tt n EVarlxi

if Y Xn are uncorrelated



The Gaussian Normal distribution

I has a gaussian distribution
with meany and variance 62 if

P G tag exp EI for xer

then

FIX p and Varix 62

We write X Nlm 62

Rt

From Larsen Marx



5 8 Estimation of Parameters



Probability functions provide
models of random phenomena

For example a normal

distribution can be used to

can be used for the height
Northeastern students

How to find the parameters of
these models e.g M e



5.8.1 Maximum likelihood estimation

It Im are random Variables

with

p.ol.f.PE

xn
t's Xm O

where O is an unknown parameter

Xi Xn are the corresponding observations

real numbers

goal Estimate the parameter o

given data D Jai xn



Maximum likelihood estimate

Given date D lx xn the

Likelihood function is

L o pix xm O

The Maximum Likelihood estimate Ence

of O is

Once argmax LeoO

Q What are possible issues with this



When Xi Xn are i i ol then

P x xn 0 II Eti DXi Xm

Then

log Leo Ii log P Hijo
is the Log likelihood

Then

One argmax log Leo
O

or

One arymin log Leo
O

8 tf



Example
Xi Xu are i i d Nlp 2 Variables

and x in their observations

goal Estimate p and 6

Likelihood

Limo II Ig expft im

Negative Log likelihood

log Lipe o log12064 f É xi pet



The maximum likelihood estimates
are given by

True Once

argginItlog12964 If I
Xi m

Recall from coleulus

If pine Once are minimuma of log Lyn o

then

9g L me o

I
fo Line 0



fg log Llp t ÉHi m o

g log Llp t I ÉHi Mt o

solving the 2 equations we find

face I I IE Ti EMPIRICAL
MEAN

EMPIRICAL
the I ÉWi T VARIANCE

Remark Oneshouldcheek that these are

indeed max of the Likelihood
e.g looking at and derivatives



The bias of an estimator of a

true parameter Q is

bias o ETO O

it can be shown that

bias pine 0

bias Ence to biased

In statistics thefollowing estimator is used

Fumes I É ti pret

bias Emi o umbasitol


