CS 6140

MATH REVIEW 2

09-15-2021

JORIO COCOLA cocola.je northeastern.edu

References

- Garrett Thomas - "Mettimatics of Machine Learning"
- Deisenroth et al. "Mathematics for Machile Learning"
- Kevin Murphy - "Probabilistic Machine Learning"
- Larsen \& Marx - "An Introduction to Mathematical statics and its Applications"

Remark Below sections refer to Garrett Thomas' notes
5.1 BASICS

- Experiment (frequentist view) is any procedure which has a well-olefined set of outcomes

Experiment : "Rolling e stanolerd
6. sold she once"

- Sample outcomes are the potential eventualities of an experiment 6 Possible outcomes: $1,2,3,4,5,6$
- Sample space the totality of the sample outcomes

The sample space is $\Omega=\{1,2,3,4,5,6\}$

- Event is a subset of the sample space
- Event: "rolling a 2" $=\{2\}$
- Event : "rolling an even number" $=\{2,4,6\}$

Let \mathcal{F} be the set of events of Ω
A Probability Measure is a function

$$
\mathbb{P}: \mathcal{F} \rightarrow[0,1]
$$

that satisfies
(i) $\mathbb{P}(\Omega)=1$
(ii) Countable additivity: for any countable collection of disjoint sets $\left\{A_{i}\right\} \subseteq \mathcal{F}$,

$$
\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)
$$

Note

- disjoints sets: $A_{i} \cap A_{j}=\phi$
- Countable collection of sets:
$\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}$ for some N
02
$\left\{A_{1}, A_{2}, \ldots, A_{N}, A_{N+1}, \ldots\right\}$ (infinite)

Proposition 26. Let A be an event. Then
(i) $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$. (Complement of \mathbf{A})
(ii) If B is an event and $B \subseteq A$, then $\mathbb{P}(B) \leq \mathbb{P}(A)$.
(iii) $0=\mathbb{P}(\varnothing) \leq \mathbb{P}(A) \leq \mathbb{P}(\Omega)=1$

Proposition 27. If A and B are events, then $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$.

Proposition 28. If $\left\{A_{i}\right\} \subseteq \mathcal{F}$ is a countable set of events, disjoint or not, then

$$
\mathbb{P}\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} \mathbb{P}\left(A_{i}\right)
$$

Q (Larsen \& Marx, 2.3.2)
Let A and B two events in Ω. Suppose that

$$
\mathbb{P}(A)=0.4 ; \quad \mathbb{P}(B)=0.5 \text { and } \mathbb{P}(A \cap B)=0.1
$$

Find the probability that
$E=A$ or B but not both occur
 $E=$ range ${ }^{\circ}$

$$
E=\left(A \wedge B^{c}\right) \cup\left(B \cap A^{c}\right)
$$

5.1.1 Conditional probability

The conditional probability of event A given that event B has occurred is written $\mathbb{P}(A \mid B)$ and defined as

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

assuming $\mathbb{P}(B)>0 .{ }^{12}$

Example "Roll a 6-siolut ole"

$A="$ Rolling a number smaller than 3 "

$$
=\{1,2\}
$$

$B="$ Rolling en even number"

$$
=\{2,4,6\}
$$

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{3}
$$

5.1.2 Chain rule

Another very useful tool, the chain rule, follows immediately from this definition:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)
$$

Q
Two cards are drawn from e standard die one offer the other without rapbeoment

Find the probability that the first card is a heart and the second is red

5.1.3 Bayes' rule

Taking the equality from above one step further, we arrive at the simple but crucial Bayes' rule:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

5.2 RANDOM VARIABLES

A random variable X is some uncertain quantity of interest, Whose value olepends on the outcome of a random event :

$$
X: \Omega \rightarrow \mathbb{R}
$$

where (Ω, y, \mathbb{P}) is a probability space.

Examples

- Flip e coin 2 times

$$
\Omega=\{t t, t h, h t, h h\}
$$

$X=$ "Number of heads"

$$
\begin{aligned}
& \mathbb{P}(x=2)=\mathbb{P}(\{h h\})=\frac{1}{4} \\
& \mathbb{P}(x=1)=\mathbb{P}(\{h t, t h\})=\frac{1}{2}
\end{aligned}
$$

- Fair 6-sided die are rolled $x=$ "sum of the outcomes"

$$
\mathbb{P}(X=11)=\mathbb{P}(\{(5,6),(6,5)\})=\frac{2}{36}
$$

5.2.2 Discrete random Variables

A ranolom variable X is called discrete if the set of possible outcomes is finite or countable

Example
Flip a coin repeatedly (infinite times)
$x=$ "Number of tosses until the first head"

$$
x \in\{1,2,3, \ldots\}
$$

The probability mass function (p.m.f.) is a function $p: X(\Omega) \rightarrow[0,1]$:

$$
p(x)=\mathbb{P}(X=x)
$$

such that

$$
\sum_{x \in X(\Omega)} p(x)=1
$$

Note: $p(x)$ completely specify x

Example
Flip a corn trestle,
$X=$ "number of heeds"

	$x=0$	$x=1$	$x=2$
$P(x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Q
Flip a coin repeatedly (infinite time) $x=$ "Number of tosses until the first head"

Example (Bernoulli)
If E is any event, then the BERNOULLI RV. ON E is

$$
x= \begin{cases}1 & \text { if } E \text { occurs } \\ 0 & \text { if } E \text { does not occur }\end{cases}
$$

$$
\Rightarrow p(1)=\mathbb{P}(x=1)=\mathbb{P}(E) \quad p(0)=1-\mathbb{P}(E)
$$

5.2.3 Continuous Random Variable
X takes real values
Examples

- Temperature at the peak of Mount Everest
- The weight of a tennis ball

Def A continuovy probability density function $p: \mathbb{R} \rightarrow[0, \infty)$ is a function swed that

$$
\int_{-\infty}^{+\infty} p(x) d x=1
$$

Def X is a continuous ranolom variable if there exists a continuous probability density function such that for any

$$
-\infty \leq a \leq b \leq+\infty
$$

We have

$$
\mathbb{P}(a \leq x \leq b)=\int_{a}^{b} p(x) d x
$$

Remark

$$
\begin{aligned}
& p(a) \neq \mathbb{P}(x=a) \quad p(a) \gg p(c) \\
& \mathbb{P}(X=a)=0
\end{aligned}
$$

$$
\frac{1}{4}
$$

Notation

- $p(X)$ is used to duende the entire probability olistribution
- $p(x)$ is useal to denote p evaluated at x.

$$
p: \mathbb{R} \rightarrow[0, \infty)
$$

Def. The cumulative distribution of a continuous random variable X is

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} p(z) d z
$$

It satisfies
e.) $\mathbb{P}(x>x)=1-F(x)$

$$
\{x \leq x\}=\{x>x\}^{c}
$$

b.) $\mathbb{P}(e<X \leq b)=F(b)-F(e)$
c.) $\lim _{x \rightarrow \infty} F(x)=1$
d.) $\lim _{x \rightarrow-\infty} F(x)=0$
e.) $F^{\prime}(x)=p(x)$

Q (Larsen \& Marx)
3.4.10. A continuous random variable Y has a pdf given by

$$
F_{Y}(y)= \begin{cases}0 & y<0 \\ y^{2} & 0 \leq y<1 \\ 1 & y \geq 1\end{cases}
$$

Find $P\left(\frac{1}{2}<Y \leq \frac{3}{4}\right)$ two ways-first, by using the cdf and second, by using the pdf.
5.3 JOINT DISTRIBUTIONS
X and Y are discrete R.V., then they can be completely described by the Joint probability mass function

$$
p: \mathbb{R}^{2} \longrightarrow[0,1]
$$

such that

$$
\begin{aligned}
& \mathbb{P}(X=x, y=y)=p(x, y) \\
& \sum_{x, y} p(x, y)=1
\end{aligned}
$$

Example (Larsen \& MarX)

Example Suppose two fair dice are rolled. Let X be the sum of the numbers showing, and let
3.7.2 Y be the larger of the two. So, for example,

$$
\begin{aligned}
& p_{X, Y}(2,3)=P(X=2, Y=3)=P(\emptyset)=0 \\
& p_{X, Y}(4,3)=P(X=4, Y=3)=P(\{(1,3)(3,1)\})=\frac{2}{36}
\end{aligned}
$$

and

$$
p_{X, Y}(6,3)=P(X=6, Y=3)=P(\{(3,3)\})=\frac{1}{36}
$$

The entire joint pdf is given in Table 3.7.1.

| |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |

X and Y are Continuous R.V., then they con be completely described by the Joint probability mass function

$$
p: \mathbb{R}^{2} \longrightarrow[0, \infty)
$$

such that

$$
\begin{aligned}
& \mathbb{P}(e \leq x \leq b, c \leq y \leq d)=\int_{a}^{b} \int_{c}^{d} p(x, y) d x d y \\
& \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) d x d y=1
\end{aligned}
$$

Example
The joint uniform distribution

$$
p(x, y)=\frac{1}{(b-e)(c-d)} \quad \text { for } \quad\left\{\begin{array}{l}
a \leq x \leq b \\
c \leq x \leq d
\end{array}\right.
$$

If R is a region in the rectangle

$$
[a, b] \times[c, d]
$$

then

$$
\mathbb{P}((x, y) \in R)=\iint_{R} p(x, y) d x d y=\frac{\operatorname{Araa}(R)}{(b-e)(c-d)}
$$

Note this only depends on the size of the region!

Remark
All the above generalizes to

$$
x_{1}, \ldots, x_{n}
$$

random variables, olfining appropriate Joint distributions

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

5.3.1 Independent random variables

Two ranolom variables x and y are said independent of

$$
P_{x y}(x, y)=P_{x}(x) P_{y}(y)
$$

where

- Pry joint probability olistrib.
- P_{x} probability distrib. of x
- Pr probability distrib. of y

A collection of random variables

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

are (collectively) independent when

$$
P_{x_{1} \ldots x_{m}}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\prod_{i=1}^{n} p_{x_{i}}\left(x_{i}\right)=p_{x_{1}}\left(x_{1}\right) \cdot P_{x_{2}}\left(x_{2}\right) \ldots \cdot p_{m_{m}}\left(x_{m}\right)
$$

x_{1}, \ldots, x_{n} are independent and identically olistributid (i.i.d.) when

$$
P_{x_{i}}(x)=\hat{p}(x) \quad \forall x_{i}
$$

and they are independent

$$
P_{x_{1}, \ldots x_{n}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \hat{p}\left(x_{i}\right)
$$

5.3.2 Marginal distribution Given the joint probability distribution of X and Y. We can derive the probability olistribution of the sigle Variables

- $P_{x}(x)=\sum_{y} p(x, y) \quad$ (olisurate lose)
- $P_{x}(x)=\int_{\mathbb{R}} p(x, y) d y \quad$ (continuous lose) P_{x} is a "marginal distribution" of $P_{x y}$

Example (Larsen \& MarX)

Example Suppose two fair dice are rolled. Let X be the sum of the numbers showing, and let
3.7.2 Y be the larger of the two. So, for example,

$$
\begin{aligned}
& p_{X, Y}(2,3)=P(X=2, Y=3)=P(\emptyset)=0 \\
& p_{X, Y}(4,3)=P(X=4, Y=3)=P(\{(1,3)(3,1)\})=\frac{2}{36}
\end{aligned}
$$

and

$$
p_{X, Y}(6,3)=P(X=6, Y=3)=P(\{(3,3)\})=\frac{1}{36}
$$

The entire joint pdf is given in Table 3.7.1.

| |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |

Q Consioler $p(x, y)=\frac{1}{(b-e)(c-d)}$ on $\left\{\begin{array}{l}a \leq x \leq b \\ c \leq x \leq d\end{array}\right.$

- Find P_{x} and P_{y}
- Are X an Y independent?
5.4 "Expectations"

The "average value" of a random variable is described by its expected value

- $\mathbb{E}[X]=\sum_{x \in X(\Omega)} x p(x) \quad$ (olisconete care)
- $\mathbb{E}[X]=\int_{-\infty}^{+\infty} x p(x) d x \quad$ (continuous case)

Properties

- EE is a linear map on the vector space of random Variables

$$
\mathbb{E}\left[\sum_{i=1}^{n} \alpha X_{i}\right]=\sum_{i=1}^{n} \alpha_{i} \mathbb{E}\left[X_{i}\right]
$$

- For $\beta \in \mathbb{R}, X=\beta$ (constant $R V$) is a $R V$ and

$$
\mathbb{E}[\beta]=\beta
$$

- x_{1}, \ldots, x_{n} are independent

$$
\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right]=\prod_{i=1}^{n} \mathbb{E}\left[x_{i}\right]
$$

5.6 Covariance

For two variables X and Y, the Covariance measures the linear olependence between the two

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =\mathbb{E}_{x, y}[(x-\mathbb{E}[x])(y-\mathbb{E}[y])] \\
& =\mathbb{E}_{x y}[x y]-\mathbb{E}_{x}[x] \mathbb{E}_{y}[y]
\end{aligned}
$$

When $\operatorname{Cor}(x, y)=0$ we say that x and y are uncorrelated.

If x and y are independent

$$
\Rightarrow \operatorname{cov}(x, y)=0
$$

5.5 Variance

The variance of x is

$$
\begin{aligned}
\operatorname{Var}(x) & =\operatorname{Cov}(x, x)=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right] \\
& =\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}
\end{aligned}
$$

The standard deviation of X is

$$
\sqrt{\operatorname{Var}(x)}
$$

Remark X enol $\sqrt{\operatorname{Vor}(x)}$ have the same vents

Properties

- $\quad \operatorname{Var}(\alpha X)=\alpha^{2} \operatorname{Var}(X)$
- $X=\beta \in \mathbb{R}$

$$
\operatorname{Var}(x)=0
$$

- $\operatorname{Var}\left(x_{1}+x_{2}+\ldots+x_{m}\right)=\sum_{i=1}^{m} \operatorname{Var}\left(x_{i}\right)$
if X_{1}, \ldots, X_{n} are uncorrelated.

The Gaussian / Normal distribution
X has a gaussian distribution w_{i} th mean μ and variance σ^{2} if

$$
P_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \quad \text { for } x \in \mathbb{R}
$$

then
$\mathbb{E}[x]=\mu \quad$ and $\quad \operatorname{Var}[x]=\sigma^{2}$

We write $\quad X \sim N\left(\mu, \sigma^{2}\right)$

Figure 3.4.5
From Larsen \& Marx
5.8 Estimation of Parameters

Probability functions provide models of random phenomena

For example a normal distribution can be used to can be used for the height Northeastern students

How to find the parameters of these moolels (e.g. μ, σ) ?
5.8.1 Maximum likelihood estimation

- X_{1}, \ldots, X_{n} are random variables with p.d.f.

$$
P_{x_{1} \ldots x_{m}}\left(x_{1}, \ldots, x_{m} ; \theta\right)
$$

where θ is an unknown parameter

- x_{1}, \ldots, x_{n} are the corresponding observations (real numbers)

Goal Estimate the parameter θ given data $D=\left\{x_{1}, \ldots, x_{n}\right\}$

Maximum likelihood estimate

Given data $D:\left\{x_{1}, \ldots, x_{n}\right\}$ the Likelihood function is

$$
\mathcal{L}(\theta)=p\left(x_{1}, \ldots, x_{m} ; \theta\right)
$$

The Maximum Likelihood estimate $\hat{\theta}_{\text {nILE }}$ of θ is

$$
\hat{\theta}_{n \in E}=\arg _{\theta}^{\max } \mathscr{L}(\theta)
$$

Q What are possible issues with this?

When X_{1}, \ldots, X_{n} are i.i.d. then

$$
p_{x_{1}, \ldots, x_{m}}\left(x_{1}, \ldots, x_{m} ; \theta\right)=\prod_{i=1}^{n} p\left(x_{x}, \theta\right)
$$

Then

$$
\log \mathcal{L}(\theta)=\sum_{i=1}^{m} \log p_{x}\left(x_{i} ; \theta\right)
$$

is the \mathcal{L} go-likelihoo al
Then

$$
\widehat{\theta}_{\text {LE }}=\underset{\theta}{\arg \max } \log \mathcal{L}(\theta)
$$

or

$$
\hat{\theta}_{n L E}=\arg \min _{\theta}-\log \mathscr{L}(\theta)
$$

Example
x_{1}, \ldots, x_{n} are i.i.d $N\left(\mu, \sigma^{2}\right)$ variables. and x_{1}, \ldots, x_{m} their observations

Goal Estimate μ and σ

- Likelihood

$$
\mathcal{L}(\mu, \sigma)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{1}{2}\left(\frac{x_{1}-\mu}{\sigma}\right)^{2}\right)
$$

- Negative Log-likelihoorl

$$
-\log \mathscr{L}(\mu, \theta)=\frac{m}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\mu\right)^{2}
$$

The maximum likelihoool estimates are given by

$$
\hat{\mu}_{m \epsilon \varepsilon}, \hat{\theta}_{m \epsilon \varepsilon}=\underset{\mu, \theta}{\arg \min }\left[\frac{m}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right]
$$

Recall from coleulus:
If $\hat{\mu}_{m \in E}, \hat{\sigma}_{m \in E}$ are minimum of $-\log \mathcal{L}(\mu, \theta)$
then

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \mu}-\mathcal{L}(\mu, \sigma)=0 \\
\frac{\partial}{\partial \sigma}-\mathcal{L}(\mu, \sigma)=0
\end{array}\right.
$$

- $\frac{\partial}{\partial \mu}-\log \mathcal{L}(\mu, \sigma)=\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\mu\right)=0$
- $\frac{\partial}{\partial \sigma}-\log \mathcal{L}(\mu, \sigma)=\frac{m}{\sigma}-\frac{1}{\sigma^{3}} \sum_{i=1}^{m}\left(x_{i}-\mu\right)^{2}=0$
solving the 2 equations we find

$$
\begin{array}{ll}
\hat{\mu}_{n L E}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} & \text { EMPIRICAL } \\
\text { MEAN } \\
\stackrel{\sigma}{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \text { EMPIRICAl } \\
\text { VARIANCE }
\end{array}
$$

Remark One should check that these are indeed max of the Likelihood (e.g. looking at $2^{\text {nd }}$ derivatives)

- The bias of an estimator $\hat{\theta}$ of a tue parameter θ_{\sim} is

$$
\operatorname{bias}(\theta)=\mathbb{E}[\hat{\theta}]-\theta_{2}
$$

it can be shown that

$$
\begin{aligned}
& \operatorname{bias}\left(\hat{\mu}_{M L E}\right)=0 \\
& \operatorname{bios}\left(\tilde{\sigma}_{M L E}\right)=-\frac{\sigma^{2}}{n} \neq 0
\end{aligned}
$$

(biased)

In statistics the following estimator is used

$$
\begin{aligned}
& \hat{\sigma}_{V H B}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(x_{i}-\hat{\mu}_{m L E}\right)^{2} \\
& \operatorname{bies}\left(\hat{\sigma}_{V H B}^{2}\right)=0
\end{aligned}
$$

(umbasied)

