CS 6140

MATH REVIEW 1 09-13-2021

JORIO COCOLA cocola.je northeastern.edu

References

- Garrett Thomas - "Mettimatics of Machile Learning"
- Deisenroth et al. "Mathematics for Machile Learning"
- Kevin Murphy - "Probabilistic Machine Learning"

Remark Below sections refer to Garrett Thomas' notes
3.1 VECTOR SPACES

Vector spaces are the basic setting in which linear algebra happens. A vector space V is a set (the elements of which are called vectors) on which two operations are defined: vectors can be added together, and vectors can be multiplied by real numbers ${ }^{1}$ called scalars. V must satisfy

ADDITION:

$$
\begin{aligned}
+: V \times V \rightarrow V \\
(x, y) \longmapsto x+y
\end{aligned}
$$

MULTIPLICATION: $\quad: \quad(\mathbb{R}, V) \rightarrow V$

$$
(\alpha, x) \mapsto \alpha \cdot x
$$

(i) There exists an additive identity (written $\mathbf{0}$) in V such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for all $\mathbf{x} \in V$
(ii) For each $\mathbf{x} \in V$, there exists an additive inverse (written $-\mathbf{x}$) such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
(iii) There exists a multiplicative identity (written 1) in \mathbb{R} such that $1 \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$
(iv) Commutativity: $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$
(v) Associativity: $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ and $\alpha(\beta \mathbf{x})=(\alpha \beta) \mathbf{x}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{R}$
(vi) Distributivity: $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$ and $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha, \beta \in \mathbb{R}$

Remark
Prooluets between vectors $x \cdot y$ are not e priori defined.

Example: Encliolean Space \mathbb{R}^{m}
Tuples of n numbers

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { (column vector) }
$$

Then

$$
x+y=\left[\begin{array}{c}
x_{1}+x_{2} \\
\vdots \\
\vdots \\
x_{n}+y_{m}
\end{array}\right] \quad ; \quad \alpha \cdot x=\left[\begin{array}{c}
\alpha x_{1} \\
\vdots \\
\vdots \\
\alpha x_{n}
\end{array}\right]
$$

leg. \mathbb{R}^{2}

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad ; \quad 2 \cdot\left[\begin{array}{l}
\pi \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \pi \\
0
\end{array}\right]
$$

Q What are some other examples of vector spaces?

- Complex vectors: $\mathbb{1}^{2}$

$$
x=\left[\begin{array}{l}
0 \\
i
\end{array}\right] \quad y=\left[\begin{array}{l}
i \\
0
\end{array}\right] \Rightarrow x+y=\left[\begin{array}{l}
i \\
i
\end{array}\right]
$$

- Vector space of Functions

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

ADDITION $\quad f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$

$$
(f+g)(x)=f(x)+g(x)
$$

cult $(\alpha f)(x)=\alpha f(x)$

Matrices
A matrix $A \in \mathbb{R}^{m \times m}$ is a tuple of $m \cdot m$ numbers arranged as follows

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

$\mathbb{R}^{m \times n}$ is a vector space with entryarise sum an product by a scaler.

$$
\begin{aligned}
& {[A+B]_{i j}=A_{i j}+B_{i j}} \\
& {[\alpha A]_{i j}=\alpha A_{i j}}
\end{aligned}
$$

- $A \in \mathbb{R}^{m \times n}$ then A^{\top} is the transpose of A and

$$
A_{i j}=\left[A^{\top}\right]_{j i} \text { for each }(i, j)
$$

- $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times K}$ then $A B \in \mathbb{R}^{m \times K}$ such that

$$
[A B]_{i j}=\sum_{l=1}^{m} e_{i l} b_{l j} \quad \text { for each }(i, j)
$$

Matrices as column Vectors

By stacking each of the n columns of a matrix $A \in \mathbb{R}^{m \times n}$

We obtain a column vector

$$
a=\operatorname{vec}(A) \in \mathbb{R}^{m \cdot n}
$$

Note the size of the matrices.
C =
np.einsum('il, $\left.1 j^{\prime}, A, B\right)$
from the mml-book

Tensors
Generalizes matrices to more than 2 dimensions

from Murphy. Probabilistic Hachure Learning
(We con flatten tensors)

Examples pictures, viols, etc.

Examples
In ML we often work with high dimensional vectors

$$
\in \mathbb{R}^{150 \times 200}
$$

Linear Independence and Bases
Def Linear Combination
V vector spae and $x_{1}, \ldots, x_{k} \in V$
Them every $y \in V$ of the form

$$
y=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots .+\lambda_{k} x_{k}
$$

w_{i} th $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$,
is a LINEAR COMBINATION of x_{1}, \ldots, x_{x}.

Def Span
span $\left\{x_{1}, \ldots, x_{k}\right\}$

$$
\begin{aligned}
& =\left\{\text { set of linear comb. of } x_{1} \ldots, x_{k}\right\} \\
& =\left\{y \in V: \quad y=\alpha_{1} x_{1}+\ldots+\alpha_{k} x_{k} \text { for some } \alpha_{1}, \ldots, \alpha_{k} \in R\right\}
\end{aligned}
$$

Example
$A \in \mathbb{R}^{m \times m}, x \in \mathbb{R}^{m}$ then

$$
y=A x=\left[\begin{array}{cccc}
1 & 1 & & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
1 & 1 & & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right] x_{1}+\left[\begin{array}{c}
\mid \\
a_{2} \\
1
\end{array}\right] x_{2}+\ldots .+\left[\begin{array}{c}
1 \\
a_{m} \\
1
\end{array}\right] x_{n}
$$

- y is a linear combination of the columns of A
- y $\operatorname{span}\left\{a_{1}, a_{2}, \ldots, e_{n}\right\}$

Def Linear Independence

- $x_{1}, \ldots, x_{k} \in V$ are Linearly dependent if $\exists \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots .+\lambda_{k} x_{k}=0
$$

with at least one $\lambda_{i} \neq 0$
$-x_{1}, \ldots, x_{k} \in V$ are Linearly indepenolent if $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots .+\lambda_{k} x_{k}=0$ implies

$$
\lambda_{1}=\lambda_{2}=\ldots .=\lambda_{k}=0
$$

$\underline{\ell} \underline{x}$

- $V=\mathbb{R}^{2}$

$$
x=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad ; \quad y=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad ; \quad z=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Are x, y, z linearly (in) dependent?
- Is $\quad z \in \operatorname{span}\{x, y\}$
- Are x, y linearly (imfolependent?

Answers

$$
\begin{aligned}
&-x+y=z \text { or } \quad x+y-z=0 \\
& 2 x+2 y-2 z=0
\end{aligned}
$$

x, y, z are linearly olependent

- $z \in \operatorname{spon}\{x, y\}$ bc. $z=x+y$
- If they were olependent

$$
\begin{aligned}
& \lambda_{1} x+\lambda_{2} y=0 \\
& \lambda_{1} \neq 0 \text { or } \lambda_{2} \neq 0 \\
& \lambda_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

$\Rightarrow \lambda_{1}=0$ and $\lambda_{2}=0$
(Contradiction)
$\operatorname{spen}\{x, y\}=\mathbb{R}^{2}$

Def. Bases
If a set of vectors is linearly independent and its span is the whole of V, those vectors are said to be a basis for V. In fact, every linearly independent set of vectors forms a basis for its span.

If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted $\operatorname{dim} V$.
ex The standard basis in \mathbb{R}^{n} is

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad j \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] ; \cdots ; e_{m}=\left[\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Q Find a basis for

- $\mathbb{R}^{2 \times 2}$
- $P_{2}(\mathbb{R})=\{$ polynomials in $x \in \mathbb{R}$ of degree at most 2$\}$

Basis for $\mathbb{R}^{2 \times 2}$

$$
\begin{array}{ll}
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] & E_{2}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
E_{3}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]=2 \cdot E_{1}+1 \cdot E_{4}}
\end{array}
$$

$$
\operatorname{Vec}\left(E_{1}\right)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \operatorname{Vec}\left(E_{4}\right)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbb{R}^{m \times n}=m \times n \text { matzices } \\
& \Rightarrow \operatorname{dim}\left(\mathbb{R}^{m \times n}\right)=m \times m
\end{aligned}
$$

3.1.2 Subspaces

Vector spaces can contain other vector spaces. If V is a vector space, then $S \subseteq V$ is said to be a subspace of V if
(i) $\mathbf{0} \in S$
(ii) S is closed under addition: $\mathbf{x}, \mathbf{y} \in S$ implies $\mathbf{x}+\mathbf{y} \in S$
(iii) S is closed under scalar multiplication: $\mathbf{x} \in S, \alpha \in \mathbb{R}$ implies $\alpha \mathbf{x} \in S$
Q Is S e subspace:

- $S_{1}=\left\{y \in \mathbb{R}^{m}: \quad y=\left[\begin{array}{l}\alpha \\ 0 \\ \vdots \\ 0\end{array}\right]\right.$ for some $\left.\alpha \in \mathbb{R}\right\} \subseteq \mathbb{R}^{n}$
- $S_{2}=\left\{y \in \mathbb{R}^{n}: \quad y_{1} \geqslant 0\right\} \subseteq \mathbb{R}^{n}$
- $S_{3}=\{128 \times 128$ grayscale image of a cat $\} \subseteq \mathbb{R}^{128 \times 128}$
3.2 Linear Maps

A linear map is a function $T: V \rightarrow W$, where V and W are vector spaces, that satisfies
(i) $T(\mathbf{x}+\mathbf{y})=T \mathbf{x}+T \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in V$
(ii) $T(\alpha \mathbf{x})=\alpha T \mathbf{x}$ for all $\mathbf{x} \in V, \alpha \in \mathbb{R}$

Examples
Image filters, convolutional layers, etc.

GAUSSIAN BLUR

Original

StDev $=3$

StDev = 10
from wiki

Q Show that for every liner mop $T: V \rightarrow W$

$$
T(0)=0
$$

lx $A \in \mathbb{R}^{m \times m}$ thew
the map $x \mapsto A x$ is linear

$$
\begin{aligned}
& A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& x \in \mathbb{R}^{m} \quad A \times \in \mathbb{R}^{m}
\end{aligned}
$$

ex Consoler $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{2} \\
0
\end{array}\right]
$$

show that it is a linear map.

- $A \in \mathbb{R}^{m \times n}$ you can define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ linear map such that

$$
T(x)=A x \in \mathbb{R}^{m} \quad \text { for } \quad x \in \mathbb{R}^{n}
$$

3.2.1 The matrix of a linear map

Every linear map is completely oletermined by specifying its action on the basis vectors:

- v_{1}, \ldots, v_{n} is a basis for V
- $T: V \rightarrow W$ is a linear transformation
- $x \in V$ then for some $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$

$$
x=\lambda_{1} v_{1}+\ldots+\lambda_{m} v_{m}
$$

therefore

$$
T(x)=\lambda_{1} T\left(v_{1}\right)+\ldots .+\lambda_{n} T\left(v_{m}\right)
$$

3.2.2 Nullspace, range
$T: V \rightarrow W$ linear transformation

- Nullspace or Kernel is the subset of V That is mapped to zero

$$
\operatorname{ker}(T)=\operatorname{mull}(A)=\{v \in V: \quad T V=0\}
$$

- Range is the subset of W that is reachable by T.

$$
\operatorname{range}(T)=\{w \in W: \quad T V=w \text { for some } V\}
$$

if $W \in$ range $(T) \Rightarrow \exists V: T V=W$

Consider a linear transformation given by $A \in \mathbb{R}^{m \times m}$

Columnspace $=$ span $\{$ columns of $A\}=$ range (A) rowspoce $=\operatorname{span}\{$ rows of $A\}$

$$
y=A x \Rightarrow y=x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n}
$$

where A_{i} cols of A

Rank of a matrix
$\operatorname{rank}(A)=\operatorname{dim} \operatorname{range}(A)$
= dir rowspace (A)
= inolepenolent columns
= inolepenslent rows

If $A \in \mathbb{R}^{m \times n}$ then

$$
\operatorname{rank}(A) \leq \min (m, n)
$$

A is full rank if

$$
\operatorname{rank}(A)=\min (m, n)
$$

Ex Consioler $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{2} \\
0
\end{array}\right]
$$

- Find $A \in \mathbb{R}^{2 \times 2}$ that represent T with respect to the standard basis
- Find range (T) and mull (T)
- Is T full rank?

Solutions of Linear Systems
A systim of linear equations can be written as

$$
\left\{\begin{array}{l}
e_{n} x_{1}+\ldots+a_{1 m} x_{m}=b_{1} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{m}=b_{m}
\end{array}\right.
$$

That is $A x=b$ for $A \in \mathbb{R}^{m \times m}$

- A solution exists if and only if $b \in$ range (A)
- If x_{p} is a particular solution of $A x=b$ all solutions can be written as

$$
x=x_{P}+x_{N}
$$

for some $x_{N} \in \operatorname{mull}(A)$
3.4 Normed Spaces

A norm on a vector space V
is a nonlinear function $11 \cdot 11: V \rightarrow \mathbb{R}$
(i) $\|\mathbf{x}\| \geq 0$, with equality if and only if $\mathbf{x}=\mathbf{0}$
(ii) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$
(iii) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ (the triangle inequality again)
for all $\mathbf{x}, \mathbf{y} \in V$ and all $\alpha \in \mathbb{R}$. A vector space endowed with a norm is called a normed vector space, or simply a normed space.

Norms on \mathbb{R}^{n}

We will typically only be concerned with a few specific norms on \mathbb{R}^{n} :

$$
\begin{aligned}
\|\mathbf{x}\|_{1} & =\sum_{i=1}^{n}\left|x_{i}\right| \\
\|\mathbf{x}\|_{2} & =\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \\
\|\mathbf{x}\|_{p} & =\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \quad(p \geq 1) \\
\|\mathbf{x}\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}\right|^{2}
\end{aligned}
$$

Norms on $\mathbb{R}^{m \times m}$
Norms can be olefined also on $\mathbb{R}^{m \times m}$ For example the FROBENIUS NORM:

$$
\|A\|_{F}:=\left(\sum_{i=1}^{n} \sum_{j=1}^{m} A_{i j}^{2}\right)^{\frac{1}{2}}=\|\operatorname{Vec}(A)\|_{2}
$$

or the p-NORMS

$$
\|A\|_{p}:=\max _{x \neq 0} \frac{\|A \times\|_{p}}{\|\times\|_{p}}
$$

3.6 Eigenthings

For a square matrix $A \in \mathbb{R}^{n \times m}$ the eigenvectors of A are those vectors that A simply scales

$A \in \mathbb{R}^{2 \times 2}$ anal x_{1}, x_{2} eigenvectors

A nonzero $x \in \mathbb{R}^{n}$ is an eigenvector of A with eigenvalue λ if

$$
\begin{aligned}
& A x=\lambda x \\
& A(\alpha x)=\alpha A x=\alpha \lambda x=\lambda(\alpha x)
\end{aligned}
$$

Remark
If x is an ligenvector than also αx for any $\alpha \in \mathbb{R}$ is an ligent. (Why?)

When we talk about "the" eigenvector associated with λ we usually mean the eigenvector with length 1:

$$
\|x\|_{2}=1
$$

3.10 Symmetric Matrices
A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if

$$
A^{\top}=A
$$

3.11 Positive (semi-)definit matrices

Consider a symmetric matrix $A \in \mathbb{R}^{n \times m}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$.

Then A is

- positive semi-olefinite if

$$
\lambda_{i} \geqslant 0 \quad \text { for any } i=1, \ldots, n
$$

or equivalently

$$
x^{\top} A x \geqslant 0 \quad \text { for any } x \in \mathbb{R}^{n}
$$

- positive definite if

$$
\lambda_{i}>0 \quad \text { for any } i=1, \ldots, n
$$

or equivalutly

$$
x^{\top} A x>0 \quad \text { for any } x \in \mathbb{R}^{n}
$$

4. Calculus and Optimization

Derivatives

- Consider $f: \mathbb{R} \rightarrow \mathbb{R}$. The derivative of f at x is

$$
\frac{d f}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

when the limit exists.

- When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the partial derivatives are

$$
\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h}
$$

where $e_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ is the i-th standard basis vector.
4.2 Gradient

When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient of f at x is:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right]
$$

Note Sometimes this is written as a row vector.
4.3 Jacobian
when $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we define the Jacobian of f at x as the $m \times n$ matrix

$$
\mathbf{J}_{\boldsymbol{f}}(\boldsymbol{x})=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}^{\top}} \triangleq\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{1}(\boldsymbol{x})^{\top} \\
\vdots \\
\nabla f_{m}(\boldsymbol{x})^{\top}
\end{array}\right)
$$

where

$$
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right]
$$

Tangent and Approximation
If $f: \mathbb{R} \rightarrow \mathbb{R}, f^{\prime}(x)$ gives the slope of the Tangent line at x

$$
f(x+h) \approx f(x)+f^{\prime}(x) h
$$

This generalizes to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ using hyperplanes.

What about when $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$?
$J_{f}(x)$ is the linear map that approximates f locally around x

$$
f(x+h) \approx f(x)+J_{f}(x) h
$$

Useful to remember the dimensions

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- $J_{g}(x) \in \mathbb{R}^{m \times n}$
4.4 Hessian

The Hessian matrix of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a matrix of second-order partial derivatives:

$$
\nabla^{2} f=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{d} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{d}^{2}}
\end{array}\right] \quad \text { i.e. } \quad\left[\nabla^{2} f\right]_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

For \& with continuous partial derivatives

$$
\nabla^{2} f=\left(\nabla^{2} f\right)^{\top}
$$

4.6 Taylor's Theorem

We can use the Hessian for computing a quadratic approximation of f at x

$$
f(x+h) \approx f(x)+\nabla f(x)^{\top} h+\frac{1}{2} \hbar^{\top} \nabla^{2} f(x) h
$$

This can also be made exact!

Theorem 6. (Taylor's theorem) Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is continuously differentiable, and let $\mathbf{h} \in \mathbb{R}^{d}$. Then there exists $t \in(0,1)$ such that

$$
f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+\nabla f(\mathbf{x}+t \mathbf{h})^{\top} \mathbf{h}
$$

Furthermore, if f is twice continuously differentiable, then

$$
\nabla f(\mathbf{x}+\mathbf{h})=\nabla f(\mathbf{x})+\int_{0}^{1} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h} \mathrm{d} t
$$

and there exists $t \in(0,1)$ such that

$$
f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+\nabla f(\mathbf{x})^{\top} \mathbf{h}+\frac{1}{2} \mathbf{h}^{\top} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

4.1 Extrema

A large part of Machine Learning is about minimizing/ maximizing (loss) functions:

For example for

$$
\min _{x \in \mathbb{R}^{m}} f(x)
$$

We aline

- \hat{x} a local minimum of f if $\exists N \subseteq \mathbb{R}^{n}$:

$$
f(\hat{x}) \leq f(x) \quad \forall x \in N
$$

- x_{*} a global minimum of f if

$$
f\left(x_{x}\right) \leq f(x) \quad \forall x \in \mathbb{R}^{n}
$$

Similarly we can define local/glabal minima.

Remark
Maximizing f is equivalent to minimizing - f : if x is a (local) maximum of f then x is a $($ local) minimum of $-f$ and vile versa.

