Day 19-15 November - Mixtures of Gaussian and EM Algorithms

Agenda:

- Multivariate Gaussians
- Maximum Likelihood with Multivariate Gaussians
- Mixtures of Gaussians
- Expectation Maximization (EM) Algorithms

Multivariate Gaussians

A Gaussion in \mathbb{R} follows the $p d f$

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{(2 \pi)^{1 / 2}} \frac{1}{\left(\sigma^{2}\right)^{1 / 2}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Here $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& \mathbb{E}(X)=\mu \\
& \mathbb{E}\left((X-\mu)^{2}\right)=\sigma^{2}
\end{aligned}
$$

multivoriate
A Gaussion in \mathbb{R}^{d} follows the $p d f$

$$
\begin{aligned}
& f(x \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{d / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{t} \Sigma^{-1}(x-\mu)\right) \\
& \mu \in \mathbb{R}^{d} \quad \Sigma \in \mathbb{R}^{d x d}
\end{aligned}
$$

symmetric
posilive definitg

$$
\begin{aligned}
& X \sim \mathcal{N}(\mu, \Sigma) \\
& \mathbb{E}(X)=\mu \text { - mean } \\
& \mathbb{E}\left((X-\mu)(X-\mu)^{t}\right)=\Sigma \text { - covariance matrix }
\end{aligned}
$$

Note: Σ is positive semidefinite.

$$
\text { why? } \quad \begin{aligned}
z^{t} \Sigma z & =z^{t} \mathbb{E}(X-\mu)(x-\mu)^{t} z \\
& =\mathbb{E}\left[z^{t}(X-\mu)(X-\mu)^{t} z\right] \\
& =\mathbb{E}\left[\left((X-\mu)^{t} z\right)^{2}\right] \geqslant 0
\end{aligned}
$$

Eigenvectors of \sum with large eigenvalues provide directions w/ most variability

$$
\begin{aligned}
& \sum=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& N(0, \Sigma) \\
& \Sigma=\left(\begin{array}{cc}
1 / \sqrt{2} & \frac{1}{\sqrt{2}} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)(\cdots)^{t}
\end{aligned}
$$

$$
\Sigma=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)(\cdots)^{t}
$$

Maximum Likelihood Estimation for Gaussions
Suppose $\quad x_{1}, \cdots, x_{n} \sim N(\mu, \Sigma)$
Estimate $\mu \& \Sigma$.
How? Maximum Likelihood estimation

Likelihood of data X:

$$
\begin{aligned}
P(X \mid \mu, \Sigma)= & \prod_{i=1}^{n} P\left(x_{i} \mid \mu, \Sigma\right) \\
\log P(X \mid \mu, \Sigma)= & \sum_{i=1}^{n} \log P\left(x_{i} \mid \mu, \Sigma\right) \\
= & -\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{t} \Sigma^{-1}\left(x_{i}-\mu\right) \\
& + \text { other tarns }
\end{aligned}
$$

MLE Estimate of $\mu_{0} \quad \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

$$
\begin{aligned}
\nabla_{\mu} \log p(X \mid \mu, \Sigma) & =\sum_{i=1}^{n} \Sigma^{-1}\left(X_{i}-\mu\right)=0 \\
& \Rightarrow \mu=\frac{1}{n} \sum_{i=1}^{n} X_{i}
\end{aligned}
$$

MLE Estimate of \sum :

$$
\hat{\sum}=\frac{1}{N} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{t}
$$

Issug: $\mathbb{E}[\hat{\Sigma}]=\frac{N-1}{N} \Sigma$ (Estimater is biased)
Resolution:

$$
\tilde{\sum}=\frac{1}{N-1} \sum_{i=1}^{n}\left(X_{i}-\hat{\mu}\right)\left(X_{i}-\hat{\mu}\right)^{t}
$$

Mixtures of Gaussions pat oval at x

$$
P(x)=\sum_{k=1}^{K} \pi_{k} \xlongequal[N\left(x \mid \mu_{k}, \Sigma_{k}\right)]{k}
$$

where $\quad \pi_{k} \geqslant 0$ \& $\sum_{k=1}^{K} \pi_{k}=1$.
To generate a sample:
Let $\quad Z \sim \pi \quad\left(P(z=k)=\pi_{k}\right)$

$$
x \sim N\left(x \mid \mu_{z}, \Sigma_{z}\right)
$$

Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples from the joint distribution $p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$ in which the three states of \mathbf{z}, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
$p(\mathbf{x})$, which is obtained by simply ignoring the values of \mathbf{z} and just plotting the \mathbf{x} values. The data set in (a) is said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the value of the responsibilities $\gamma\left(z_{n k}\right)$ associated with data point \mathbf{x}_{n}, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by $\gamma\left(z_{n}\right)$ for $k=1,2,3$, using proportions of red, blue, and green ink given by $\gamma\left(z_{n k}\right)$ for $k=1,2,3$, respectively

Goal: USE Maximum likelihoal estimation to estimate the Gaussian mixture underlying a dataset $\left\{X_{i}\right\}_{i=1 \cdots n}$

Likelihad of data

$$
\log P(X \mid \pi, \mu, \Sigma)=\sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} N\left(X_{i} \mid \mu_{k}, \Sigma_{k}\right)
$$

Issue: a singularity could arise

Figure 9.7 Illustration of how singularities in the likelihood function arise with mixtures of Gaussians. This should be compared with the case of a single Gayssian shown in Figure 1.14 for which no singularities arise.

can put arbitrarily narrow Gaussian arad a single data point.

Expectation - Maximization for Gaussian Mixtures
What conditions shall be satisfied at on optimum $\log p(X \mid \pi, \mu, \Sigma)=\sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{k} N\left(X_{i} \mid \mu_{k}, \sum_{k}\right)$

Set $\nabla_{\mu_{k}} \cdot=0$,

$$
\begin{aligned}
& O=\nabla_{\mu_{k}} \lg P\left(X \mid \pi_{1} \mu_{1} \Sigma\right)=\sum_{i=1}^{n} \frac{\pi_{k} N\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right) \Sigma_{k}^{-1}\left(X_{i}-\mu_{k}\right)}{\sum_{j=1}^{k} \pi_{j} N\left(X_{i} \mid \mu_{j}, \Sigma_{j}\right)} \\
& \Rightarrow \mu_{k}=\frac{\sum_{i=1}^{n} \gamma\left(z_{i k}\right) x_{i}}{\sum_{i=1}^{n} \gamma\left(z_{i k}\right)} w / \gamma\left(z_{i h}\right)=\sum_{j=1}^{k} \pi_{j} N\left(X_{i} \mid \mu_{j}, \Sigma_{j}\right)
\end{aligned}
$$

Similarly, $\nabla_{\Sigma_{k}}=0 \Rightarrow \Sigma_{k}=\frac{\sum_{i=1}^{n} \gamma\left(z_{i k}\right)\left(x_{i}-\mu_{2}\right)\left(x_{i}-\mu_{k}\right)^{t}}{\sum_{i=1}^{n} \gamma\left(z_{i h}\right)}$
Finally, $\nabla_{\pi_{k}}=0 \Rightarrow \Pi_{k}=\frac{\sum_{i=1}^{n} \gamma\left(z_{i h}\right)}{n}$

Gives rise tu EM algorithm:

1) Initialize $\mu_{k}, \Sigma_{k}, \pi_{k}$
2) E step

$$
\text { update } \gamma\left(z_{i k}\right)=\frac{\pi_{k} N\left(X_{i} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} N\left(X_{i} \mid \mu_{j}, \Sigma_{j}\right)}
$$

3) M step
update

$$
\begin{aligned}
& \mu_{k}=\frac{1}{N_{k}} \sum_{i=1}^{n} \gamma\left(z_{i d}\right) x_{i} \\
& \sum_{k}=\frac{1}{N_{k}} \sum_{i=1}^{n} \gamma\left(z_{i k}\right)\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{t} \\
& \pi_{k}=N_{k} / n
\end{aligned}
$$

w/ $\quad N_{k}=\sum_{i=1}^{n} \gamma\left(z_{i k}\right)$
4) Repeat $2 \& 3$ untie, stopping condition

Visualization

Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means algorithm in Figure 9.1. See the text for details.

EM and Gaussion Mixtures more abstractly
Data $\left\{X_{i}\right\}_{i=1 \cdots n}$
Model w/ 2 Gaussian

$$
\begin{aligned}
& Z_{i}= \begin{cases}1 & w / \text { prob } \pi_{1} \\
2 & w / \\
\text { prob } \pi_{2}=1-\pi_{1}\end{cases} \\
& x_{i} \sim N\left(x_{i} \mid \mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

Given $\left\{x_{i}\right\}$ estimate $\left\{\pi, \mu_{1}, \mu_{2}, \Sigma_{1}, \Sigma_{2}\right\}=\theta$
Lihetihocd of data

$$
\begin{aligned}
L(\Theta ; X, Z)= & P(X, Z \mid \theta) \\
= & \prod_{i=1}^{n} \prod_{j=1}^{2}\left(N\left(X_{i} \mid \mu_{j}, z_{j}\right) \pi_{j}\right)^{1 z_{i}=j} \\
& P(X \mid Z, \theta) P(z \mid \theta)
\end{aligned}
$$

Issue: done know Z, so keGp distribution over all values it could take and update that distribution
(E) Estimate dist aver z given $\theta=\hat{\theta}$

Compute $P\left(z_{i}=k \mid X_{i}, \hat{\theta}\right)$

$$
\begin{aligned}
p\left(z_{i}=k \mid x_{i}, \hat{\theta}\right) & =\frac{P\left(x_{i} \mid z_{i}=k, \hat{\theta}\right) P\left(z_{i}=k \mid \hat{\theta}\right)}{P\left(x_{i} \mid \hat{\theta}\right)} \\
& =\frac{N\left(x_{i} \mid \hat{\mu}_{k} \hat{z}_{k}\right) \hat{\pi}_{k}}{\sum_{j=1}^{2} \mathcal{N}\left(x_{i} \mid \hat{\mu}_{j}, \hat{\Sigma}_{j}\right) \hat{\pi}_{j}}
\end{aligned}
$$

We can rewrite the lihelihad function

$$
\begin{aligned}
Q(\theta, \hat{\theta}) & =\mathbb{E}_{z \mid x, \hat{\theta}} \log L(\theta \mid x, z) \\
& =\sum_{i=1}^{n} \mathbb{E}_{z_{i} \mid x_{i}, \hat{\theta}} \log L\left(\theta \mid x_{i}, z_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{k=1}^{K} P\left(z_{i}=k \mid x_{i}, \hat{\theta}\right) \log L\left(\theta \mid x_{i}, z_{i}\right)
\end{aligned}
$$

(M) $\hat{\theta} \leftarrow \underset{\theta}{\operatorname{argmax}} Q(\theta, \hat{\theta})$

The General EM Algorithm

Given a joint distribution $p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$ over observed variables \mathbf{X} and latent variables \mathbf{Z}, governed by parameters $\boldsymbol{\theta}$, the goal is to maximize the likelihood function $p(\mathbf{X} \mid \boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$.

1. Choose an initial setting for the parameters $\boldsymbol{\theta}^{\text {old }}$.
2. E step Evaluate $p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$.
3. \mathbf{M} step Evaluate $\boldsymbol{\theta}^{\text {new }}$ given by

$$
\begin{equation*}
\boldsymbol{\theta}^{\text {new }}=\underset{\boldsymbol{\theta}}{\arg \max } \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right) \tag{9.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \tag{9.33}
\end{equation*}
$$

4. Check for convergence of either the log likelihood or the parameter values. If the convergence criterion is not satisfied, then let

$$
\begin{equation*}
\boldsymbol{\theta}^{\text {old }} \leftarrow \boldsymbol{\theta}^{\text {new }} \tag{9.34}
\end{equation*}
$$

and return to step 2.

