



Day 17 - Convex Optimization and Convergence of Gradient Descent
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Convex Optimization

Convergence of GD

Optimization and machine learning

Data Xinyi l n

Consider a model To Xi

main E lfjorxil.li

Optimization in general

min Fix

Gradient descent Take successive steps downhill

Hittle Lil off til
I

Tf pomiteration step size
learning rate

ts in direction
index of steepest descent
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Picture
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Small learning high learning
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Challenges of gradient descent

in machine learning minibatches

main li

iIQkH

Ok off o Q at tollyortilYi

To Evaluate Ofra one needs to loop through

all data batch gradient descent

Expensive
not possible in some contexts

Ideas use minibatches

Select a minibatch Be liz in

Gt Oh 0,8 E Tomori Yi

Yeasapproximation
of TECO



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Converoptimization

We say Foo IR't IR is convex if

fiery f ofra tri a fry

for an oso

I.É
Convex
combo

always curves up

F IR SIR
Examples fry y Dior is not convex

Fix a CER
Foo IR SIR

free Cyr
is or is not convex

If Ceo YES

Cho no



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I
f IR SIR is or is not convex

fork X

F IR SIR

fix ly
is or is not convex
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fix 11 11 pity

is or is not convex

fi IR OIR is or is not convex

fret X



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We will study the minimization of convex functions

Does Every convex function f have a minimal value

Min
fix

i

All local minima of convex functions are global minima

Suppose X is a local min of f

If take the fall free

local
m I gyp suppose fit

f
By convexity few lies

not below dotted linebetween
convex XKand F So X not a

local min



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Converityandsecondderivatives

a differentiable

Everywhere f is convex if and only if f x to

for all X

Functionsofmultiplevariablf

Let F IR J IR

f is convex if Df Hf is
positive semidefinite Everywhere Hessian

matrix
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Eto

are positive
µ positivedefinite if a

f

nonnegativeIt is positivesemidefinite if all Eigenvalues

Eigenvalue Decomposition

If Helene is symmetric HEH then

It has an orthonormal basis of Eigenvectors
with real Eigenvalues So

He UIUt where U has orthonormal
1
I columns

Nen
diagonal

hen



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We say Ui is an eigenvector of It with
eigenvalue Xi if Avis di

HIM
U A Ut

Columns are

unit length eigenvectors

that are orthogonal to

Each other

vi u
l it is

o if it

We also have

H E diVivit

Why



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem It is positive semidefinite if

and only if

ZtHz DO for all ZER

Recall because It is symmetric It Ht
It has an orthonormal basis of Eigenvectors
with real Eigenvalues So

He UIUt where U has orthonorma
columns

and
115 diagonal



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many but not all ML optimization problems are convex. 
 














 

Proof of Theorem PSD 2411 210 for all z

As It is PSD A has nonneg diagonal

Entries So ZtHZ ztUAvtz

Idiot'd
5 1

10

2kHz 10 for all Z His PSD

suppose It is not PSD At least
One Eigenvalue is negative
Suppose Ui is eigenvector w G val

Xi o Then let 2 Vi

2kHz UEHVEXYitvi.CO



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How fast does gradient descent converge

min fix Kit X affray

Suppose X sXt as i 30

How long do you need to
wait to get

a certain accuracy E

Can gain understanding in some Convex cases



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analytically show that this is the solution to the problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FE.ggIaI.gIraticfonctions
Where XelRd be Rd Qeirded is positive

definite

Let me Amin Q M Xmae Q K Am

condition number

consider Go w fixed stop sized
tht th off Xh

Note Q b is the unique global min off



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem If a Em then Go

for fix txtax btx satisfies

IIX IIE YET IN Ell

first order convergence
Error decays exponentially

To get Error E need Oflag E l iterations

Proof Note Tfrx Qe b
The global minimizer Solves QxEb XEQ

WH XE X affix X

x a fax b n't

X ofQxh ext Xt

I AQ x Xt
So

114 1 11 III AQI 11N X Il

Max am I l om



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Should we think of GD as converging “quickly”? 
 
 
 
 
 
 
 
 
 
 
 

We choose Em
so III all Mnt IFL I

UN Ins III x ell

II x Alls fig IN Ell
Da

Interpretation
If f doesnt curve up too much

and doesnt curve up too little

then GO with fixed step size

can exhibit first order convergence
to the global minimizer



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem Let f be convex and

Imax Html EM for all X If 4ft
then GO satisfies

FRY FIX I Idling
Where it is a minimizer of f

Error decays slowly

To get Error E from optimal value

need Off iterations



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary

Too large learning rate can lead to divergence

In convex case to get convergence d

should be small relative to curvature of f

Too small learning rate can lead to slow convergen

For convex quadratic functions convergence
of

GD can be first order fast

For more general convex functions convergence

can be slow

SGD W fixed stop Size is not expected

to converge

Sad with decaying stop sizes may converge


