Day 17 - Convex Optimization and Convergence of Gradient Descent

Outline? Convex Optimization Convergence of GD

Optimization and machine learning
Data
$$\xi(x_i, y_i) \Im_{i=1} \dots n$$

Consider a model $\hat{y}_{\theta}(x_i)$
min $\sum_{i=1}^{n} \chi(\hat{y}_{\theta}(x_i), y_i)$

Optimization in general
min
$$f(x)$$

 χ
Gradient descent $^{\circ}$ Take successive steps downhill
 $\chi^{(i+1)} = \chi^{(i)} - \propto \nabla f(\chi^{(i)})$
step size, $-\nabla f$ points in direction
findex learning rate of steepest descent

Picture

Small Leorniñg rate

X< 1

medium leorning rata

$$\frac{1}{L} < \alpha < \frac{2}{L}$$

hīgh leorning rate

~>2/L

Challenges of gradient descent
in mochine learning & minibatches

$$\begin{array}{l} \min_{n} \frac{1}{n} \sum_{j=1}^{n} \lambda(\hat{y}_{\theta}(x_{i}), y_{i}) \\ \overline{f(\theta)} \\ \end{array}$$

$$\begin{array}{l} \theta^{k+1} = \theta^{k} - \alpha \nabla f(\theta) = \theta^{k} - \alpha \frac{1}{n} \sum_{i=1}^{n} \nabla \lambda(\hat{y}_{\theta}(x_{i}), y_{i}) \\ \end{array}$$

$$\begin{array}{l} To \quad evaluate \quad \nabla f(\theta), \text{ one needs to loop through all data (batch gradient descent)} \\ - & expensive \\ - & not possible in some contexts \\ \end{array}$$

$$\begin{array}{l} Idea & Use \quad \min ibatches \\ Select a \quad \min ibatche \quad B \subset \Sigma 1, 2, \cdots, n \\ \theta^{k+1} = \theta^{k} - \alpha \frac{1}{|B|} \sum_{i \in B} \nabla_{\theta} \lambda(\hat{y}_{\theta}(x_{i}), y_{i}) \\ \end{array}$$

$$\begin{array}{l} Vse \quad as \quad approximation \\ 0f \quad \nabla_{\theta} f(\theta) \end{array}$$

Convex Optimization
We say
$$f_{\mathcal{S}} \mathbb{R}^{d} \to \mathbb{R}$$
 is convex if
 $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha) f(y)$
for all $o \leq \alpha \leq 1, x, y$.
Convex
Convex
Convex
 $f(\alpha x + (1-\alpha)y) = f(y)$
 $f(\alpha x + (1-\alpha)y) = f(y)$
 $f(\alpha x + (1-\alpha)y) = f(y)$
 $f(x) = \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{y} + \frac{1}{y} + \frac{1}{x} + \frac{1}{x}$

Examples
$$\stackrel{f:}{\to} \stackrel{R}{\to} \stackrel{R}{\to} \stackrel{f:}{\to} \stackrel{R}{\to} \stackrel{f:}{\to} \stackrel{r}{\to} \stackrel{r}{\to}$$

Fix a CER.

$$f_{8} \ IR \rightarrow IR$$

 $f(X) = CX^{2}$
 $If C \ge 0, \ Yes$
 $C < 0, \ no$

$$f: R \rightarrow IR$$

 $f(x) = x$ is or is not convex

$$f: \mathbb{R} \to \mathbb{R}$$

 $f(X) = |X|$ is or is not convex

$$f_{\circ}^{\circ} \mathbb{R}^{2} \rightarrow \mathbb{R} \qquad \text{is or is not convex}$$
$$f(X) = \|X\|^{2} = X_{i}^{2} + X_{2}^{2}$$

$$f: IR^2 \rightarrow IR$$
 is or is not convex
 $f(X) = X_1^2$

We will study the minimization of convex functions. Does every convex function f have a minimal value? min f(x)

All local minima of convex functions are global minima.

local globol min globol min pot convex

Suppose X_{x} is a local min of f. If $X = X_{x}$ the $f(X) \gg f(X_{x})$. Suppose $f(\hat{X}) < f(X^{*})$, $f(\hat{X})$ By convexity, f(X) lies below dotted line between X^{*} and \hat{X} . So X^{*} not a X^{*} \hat{X} local min Convexity and Second derivatives

Functions of one variable If $f_{0}^{0} |R \rightarrow |R$ is twice differentiable everywhere, f_{0}^{0} convex if and only if $f_{0}^{0}(x) \ge 0$ for all x. f(x)

Functions of multiple variables Let $f \in \mathbb{R}^n \to \mathbb{R}$ f is convex if $D^2 f = Hf$ is positive semidefinite everywhere Hessian matrix

$$D^{2}f = Hf(x) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{i}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{i}} \\ \frac{\partial^{2}f}{\partial x_{i}\partial x_{n}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{pmatrix}$$

H is positive definite if all eigenvalues
are positive
H is positive semidefinite if all eigenvalues
are nonnegative

Eigenvalue Decompositions
IF
$$H \in IR^{n \times n}$$
 is symmetric $(H^{t}=H)$, then
H has an orthonormal basis of Eigenvectors
with real Eigenvalues. So
 $H = U \wedge U^{t}$ where U has orthonormal
 $n \times n$
 $d_{iogonal}$
 $n \times n$

We say
$$V_{\tilde{i}}$$
 is an eigenvector of H with
Gigenvalue λ_i if $H U_i = \lambda_i$

$$H = \begin{pmatrix} I & I & I \\ U_1 & U_2 & \cdots & U_n \\ I & I & I \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \begin{pmatrix} - & U_1^t - \\ - & U_2^t - \\ \vdots \\ - & U_n^t - \end{pmatrix}$$

$$U \cdot \Lambda \cdot V^t$$

Columns are
Unit length Eigenvectors
that are orthogonal to
Gach other

$$V_{i} \cdot V_{j} = \begin{cases} 1 & \text{if } i=j \\ i \neq j \end{cases}$$

We also have

$$H = \sum_{i=1}^{n} \lambda_i V_i V_i^{t}.$$

Why?

Theorem & H is positive semidefinite if
and only if
$$Z^{t}HZ \ge 0$$
 for all $Z \in \mathbb{R}^{n}$
Recall, because H is Symmetric $(H=H^{t})$,
H has an orthonormal basis of Gigenvectors
with real Eigenvalues. So
 $H=U\Lambda U^{t}$ where U has orthonormal
columns
and
 Λ is diagonal

Proof of Theorem $\circ OPSD \implies Z^{t}HZ \ge O$ for all Z As H is PSD, A has nonneg. diagonal enbries. So $Z^{t}HZ = Z^{t}UAV^{t}Z$ $= \sum_{i=1}^{n} A_{ii} (V^{t}Z)_{i}^{2}$ $\ge O$

> • $Z^{t}HZ \ge 0$ for all $Z \Longrightarrow H$ is PSD Suppose H is not PSD. At least One Eigenvalue is negabive. Suppose U_{i} is Eigenvector $\sqrt{C-val}$ $\lambda_{i}(0)$. Then $let Z = U_{i}$. $Z^{t}HZ = U_{i}^{t}HU_{i} = \lambda_{i}U_{i}^{t}U_{i}(0)$

Many but not all ML optimization problems are convex.

How fast does gradient descent converge?

min f(x), $\chi^{(i+1)} = \chi^{(i)} - \propto \nabla f(\chi^{(i)})$

Suppose $\chi^{(i)} \rightarrow \chi^{*}$ as $i \rightarrow \infty$.

How long do you need to wait to get a certain accuracy E?

Con gain understanding in some convex cases.

Convergence of GD for quadratic functions
Let
$$f(x) = \frac{1}{2} \chi^{t} Q \chi - b^{t} \chi$$

where $X \in IR^{d}$, $b \in IR^{d}$, $Q \in IR^{d \times d}$ is Positive
definite
Let $m = \lambda_{min}(Q)$, $M = \lambda_{max}(Q)$, $K = \frac{M}{m}$
condition number
Consider GD W fixed step size \propto
 $\chi^{k+1} = \chi^{k} - \propto \nabla f(\chi^{k})$

Analytically show that this is the solution to the problem

Theorem: If $\alpha = \frac{2}{M+m}$, then GD for $f(X) = \frac{1}{2} \chi^{t} Q \chi - b^{t} \chi$ satisfies $\| \chi^{k} - \chi^{*} \| \leq \left(\frac{1 - \frac{1}{K}}{1 + \frac{1}{K}} \right)^{k} \| \chi^{\circ} - \chi^{*} \|$ "First-order convergence" Error decays exponentially

To get error \mathcal{E}_{i} need $O(\log(\mathcal{E}^{-1}))$ iterations

Proof ⁸ Note
$$\nabla f(x) = Qx - b$$
.
The global minimizer solves $Qx^{*}=b=)x^{*}=Q^{*}b$
 $X^{k+1}-X^{*}=X^{k}-\alpha \nabla f(x^{k})-X^{*}$
 $= x^{k}-\alpha (Qx^{k}-b)-x^{*}$
 $= (I-\alpha Q)(x^{k}-\alpha x^{*})-x^{*}$
 $= (I-\alpha Q)(x^{k}-x^{*})$
So,
 $\|X^{k+1}-X^{*}\| \leq \||I-\alpha Q\| \|\|X^{k}-x^{*}\|$
 $\max (\alpha M-1, 1-\alpha m)$

We choose
$$\propto = \frac{2}{M+m}$$
.
So $||I - \propto Q|| = \frac{M-m}{M+m} = \frac{1-\frac{1}{K}}{1+\frac{1}{K}} < 1$
 $\Rightarrow ||X^{k+1} - X^{*}|| \leq \left(\frac{1-\frac{1}{K}}{1+\frac{1}{K}}\right) ||X^{k} - X^{*}||$
 $\Rightarrow ||X^{k} - X^{*}|| \leq \left(\frac{1-\frac{1}{K}}{1+\frac{1}{K}}\right)^{k} ||X^{\circ} - X^{*}||$

Should we think of GD as converging "quickly"?

Theorem ? Let f be convex and $\lambda_{max}(HF(X)) \leq M$ for all X. If $\alpha \leq \frac{1}{M}$, then GD satisfies $f(X^{(i)}) - f(X^{*}) \leq \frac{1}{2i\alpha} ||X^{(o)} - X^{*}||^{2}$ Where X^{*} is a minimizer of f.

- Error decays <u>Slowly</u> - To get Error E from optimal value, need $O(\varepsilon^{-1})$ iterations

Summary 8 - Too lorge learning rate can lead to divergence - In convex cose, to get convergence a Should be small relative to curvature of f - Too small learning rate can lead to slow convergence - For convex quadratic functions, convergence of GD can be first order (fast) - For more general convex functions, convergence can be slow - SGD W/ fixed Step size is not expected to converge

- SGD with decaying step sizes may converge