Day 17 - Convex Optimization and Convergence of Gradient Descent

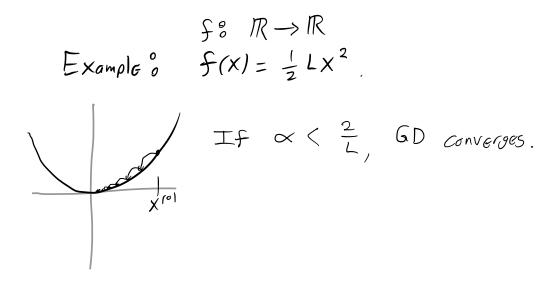
Outline? Convex Optimization Convergence of GD

Optimization and machine learning
Data
$$\xi(x_i, y_i) \Im_{i=1} \dots n$$

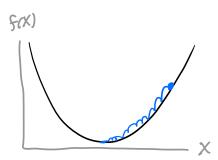
Consider a model $\hat{y}_{\theta}(x_i)$
min $\sum_{i=1}^{n} \chi(\hat{y}_{\theta}(x_i), y_i)$

Optimization in general
min
$$f(x)$$

 χ
Gradient descent $^{\circ}$ Take successive steps downhill
 $\chi^{(i+1)} = \chi^{(i)} - \propto \nabla f(\chi^{(i)})$
step size, $-\nabla f$ points in direction
findex learning rate of steepest descent

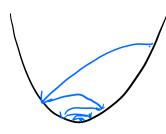


Picture



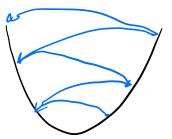
Small Leorniñg rate

X< L



medium leorning rata

$$\frac{1}{L} < \alpha < \frac{2}{L}$$



hīgh leorning rate

~>2/L

Challenges of gradient descent
in mochine learning & minibatches

$$\begin{array}{l} \min_{n} \frac{1}{n} \sum_{j=1}^{n} \lambda(\hat{y}_{\theta}(x_{i}), y_{i}) \\ \overline{f(\theta)} \\ \end{array}$$

$$\begin{array}{l} \theta^{k+1} = \theta^{k} - \alpha \nabla f(\theta) = \theta^{k} - \alpha \frac{1}{n} \sum_{i=1}^{n} \nabla \lambda(\hat{y}_{\theta}(x_{i}), y_{i}) \\ \end{array}$$

$$\begin{array}{l} To \quad evaluate \quad \nabla f(\theta), \text{ one needs to loop through all data (batch gradient descent)} \\ - & expensive \\ - & not possible in some contexts \\ \end{array}$$

$$\begin{array}{l} Idea & Use \quad \min ibatches \\ Select a \quad \min ibatche \quad B \subset \Sigma 1, 2, \cdots, n \\ \theta^{k+1} = \theta^{k} - \alpha \frac{1}{|B|} \sum_{i \in B} \nabla_{\theta} \lambda(\hat{y}_{\theta}(x_{i}), y_{i}) \\ \end{array}$$

$$\begin{array}{l} Vse \quad as \quad approximation \\ 0f \quad \nabla_{\theta} f(\theta) \end{array}$$

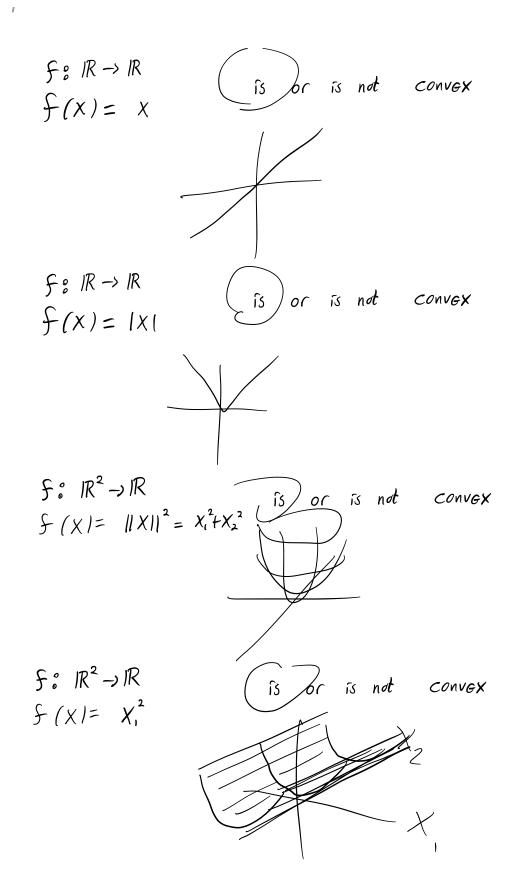
Convex Optimization
We say
$$f_{\mathcal{S}} \mathbb{R}^{d} \to \mathbb{R}$$
 is convex if
 $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha) f(y)$
for all $o \leq \alpha \leq 1, x, y$.
Convex
Convex
Convex
 $f(\alpha x + (1-\alpha)y) = f(y)$
 $f(\alpha x + (1-\alpha)y) = f(y)$
 $f(\alpha x + (1-\alpha)y) = f(y)$
 $f(x) = \frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{y} + \frac{1}{y} + \frac{1}{x} + \frac{1}{x}$

Examples
$$\stackrel{f:}{\to} \stackrel{R}{\to} \stackrel{R}{\to} \stackrel{f:}{\to} \stackrel{R}{\to} \stackrel{f:}{\to} \stackrel{r}{\to} \stackrel{r}{\to}$$

Fix a CER.

$$f_{8} \ IR \rightarrow IR$$

 $f(X) = CX^{2}$
 $If C \ge 0, \ Yes$
 $C < 0, \ no$

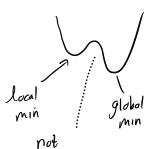


We will study the minimization of convex functions.
Does every convex function f have a minimal value?
min
$$f(x)$$

 $N = \frac{2}{5} \quad f(X) = X$
 $= e^{X}$

All local minima of convex functions are global minima.

~



CONVEX

Suppose X_{x} is a local min of f. If $X \approx X_{x}$ the $f(X) \gg f(X_{x})$. Suppose X_{x} is not a global min $f(\widehat{x})$ $\int f(\widehat{x}) = f(\widehat{x})$ _____ X* Suppose $f(\hat{\chi}) < f(\chi^*)$, + Ŷ By conversity, f(X) lies below dotted line between X^{κ} and R. So X^{κ} not a local min. Contraliction X

Convexity and Second derivatives

Functions of one variable If $f \otimes |R \rightarrow |R$ is twice differentiable everywhere, f is convex if and only if $f''(x) \ge 0$ for all x.

Functions of multiple variables Let $f \in \mathbb{R}^n \to \mathbb{R}$ be twice differentiable f is convex if $D^2 f = Hf$ is positive semidefinite everywhere Hessian matrix

$$D^{2}f = Hf(x) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{pmatrix}$$

H is positive definite if all eigenvalues
are positive
H is positive Semidefinite if all eigenvalues
are nonnegative

Eigenvalue Decomposition³
IF
$$H \in IR^{n\times n}$$
 is symmetric $(H^{t}=H)$, then
H has an orthonormal basis of Eigenvectors
with real Eigenvalues. So
 $H = U \land U^{t}$ where U has orthonormal
 $n \times n \begin{pmatrix} 1 \\ diagonal \\ n \times n \end{pmatrix}$
 $Could have
 $N \in Gabries$$

We say
$$V_{\tilde{i}}$$
 is an eigenvector of H with
Gigenvalue λ_{i} if $H U_{\tilde{i}} = \lambda_{\tilde{i}} V_{\tilde{i}}$

$$H = \begin{pmatrix} I & I & I \\ U_{1} & U_{2} & \cdots & U_{n} \\ I & I & I \end{pmatrix} \begin{pmatrix} \lambda_{i} & O \\ O & \lambda_{n} \end{pmatrix} \begin{pmatrix} - & U_{1}^{t} - \\ - & U_{2}^{t} - \\ \vdots \\ - & U_{n}^{t} - \end{pmatrix}$$

$$U \quad \cdot \quad \Lambda \quad \cdot \quad V^{t}$$

Columns are
Unit length Eigenvectors
that are orthogonal to
Gach other

$$V_{i} \cdot V_{j} = \begin{cases} 1 & \text{if } \tilde{v}=\tilde{j} \\ 0 & \text{if } \tilde{v}\neq\tilde{j} \end{cases}$$

We also have

$$H = \sum_{i=1}^{n} \lambda_i V_i V_i^{t}.$$
Why?

$$H = \left(\begin{array}{c} v_1' & \cdots & v_n' \\ 1 & \cdots & 1 \end{array} \right) \left(\begin{array}{c} \lambda_i & \cdots & \lambda_i \\ \ddots & \lambda_n \end{array} \right) \left(\begin{array}{c} - & v_i^{t} & - \\ \vdots & \vdots \\ - & v_n^{t} & - \end{array} \right)$$

$$= \left(\begin{array}{c} v_1' & \cdots & v_n' \\ \vdots & \vdots \end{array} \right) \left(\begin{array}{c} -\lambda_i & v_i^{t} - \\ \vdots & \ddots & \lambda_n \end{array} \right) = \sum_{i=1}^{n} V_i \left(\begin{array}{c} \lambda_i & v_i^{t} \end{array} \right)$$

Theorem & H is positive semidefinite if
and only if
$$Z^{t}HZ \ge 0$$
 for all $Z \in \mathbb{R}^{n}$
Recall, because H is Symmetric $(H=H^{t})$,
H has an orthonormal basis of Gigenvectors
with real Eigenvalues. So
 $H=U\Lambda U^{t}$ where U has orthonormal
columns
and
 Λ is diagonal

Proof of Theorem $\circ PSD \implies Z^{t}HZ \ge 0$ for all Z As H is PSD, Λ has nonneg. diagonal enbries. So $Z^{t}HZ = Z^{t}U\Lambda U^{t}Z$ $= \sum_{i=1}^{n} \Lambda_{ii} (U^{t}Z)_{i}^{2}$ $\geqslant O$

> • $Z^{t}HZ \ge 0$ for all $Z \Longrightarrow H$ is PSD Suppose H is not PSD. At least One Eigenvalue is negabive. Suppose U_{i} is Eigenvector $\sqrt{C-val}$ $\lambda_{i}(0)$. Then $let Z = U_{i}$. $Z^{t}HZ = U_{i}^{t}HU_{i} = \lambda_{i}U_{i}^{t}V_{i}(0)$

Many but not all ML optimization problems are convex.

Convex Problems: least squares regression, logistic regression,

Not convex: neural networks

CONVE

How fast does gradient descent converge?

min f(x), $\chi^{(i+1)} = \chi^{(i)} - \propto \nabla f(\chi^{(i)})$

Suppose $\chi^{(i)} \rightarrow \chi^{*}$ as $i \rightarrow \infty$.

How long do you need to wait to get a certain accuracy E?

Con gain understanding in some convex cases.

Convergence of GD for quadratic functions
Let
$$f(x) = \frac{1}{2} \chi^{t} Q \chi - b^{t} \chi$$

where $X \in IR^{d}$, $b \in IR^{d}$, $Q \in R^{d \times d}$ is positive
definite
Let $m = \lambda_{min}(Q)$, $M = \lambda_{max}(Q)$, $K = \frac{M}{m}$
condition number
Consider GD W fixed step size \propto
 $\chi^{k+1} = \chi^{k} - \propto \nabla f(\chi^{k})$

Note: X = Q b is the unique global min of f

Analytically show that this is the solution to the problem

$$\nabla f(x) = Qx - b = c$$

 $Qx = b = x = Q'b$

Theorem? If $\alpha = \frac{2}{M+m}$, then GD for $f(X) = \frac{1}{2} \chi^{t} Q \chi - b^{t} \chi$ satisfies $\| \chi^{k} - \chi^{*} \| \leq \left(\frac{1 - \frac{1}{K}}{1 + \frac{1}{K}} \right)^{k} \| \chi^{\circ} - \chi^{*} \|$ "First-order convergence" Error decays exponentially

To get error \mathcal{E}_{i} need $O(\log(\mathcal{E}^{-1}))$ iterations

Proof & Note
$$\nabla f(x) = Qx - b$$
.
The global minimizer solves $Qx^* = b = x^* = Qb$
 $X^{k+1} - X^* = X^k - \alpha \nabla f(x^k) - X^*$
 $= x^k - \alpha (Qx^k - b) - X^*$
 $= X^k - \alpha (Qx^k - ax^*) - X^*$
 $= (I - \alpha Q) (X^k - X^*)$
So,
 $\|X^{k+1} - X^*\| \leq \||I - \alpha Q\|\| \|X^k - X^*\|$
 $\int_{C_1 \leq \alpha \leq 0} \int_{C_1 \leq \alpha \leq 0} \int_{C_2 \leq \alpha \leq 0} \int_$

We choose
$$\propto = \frac{2}{M+m}$$
.
So $||I - \propto Q|| = \frac{M-m}{M+m} = \frac{1-\frac{1}{K}}{1+\frac{1}{K}} < 1$
 $\Rightarrow ||X^{k+1} - X^{*}|| \leq \left(\frac{1-\frac{1}{K}}{1+\frac{1}{K}}\right) ||X^{k} - X^{*}||$
 $\Rightarrow ||X^{k} - X^{*}|| \leq \left(\frac{1-\frac{1}{K}}{1+\frac{1}{K}}\right)^{k} ||X^{o} - X^{*}||$

Interpretation? If f doesn't corve up too much and doesn't curve up too little, then GD with fixed step size can Exhibit first order convergence to the global minimizer

Should we think of GD as converging "quickly"?

If the function is quadratic, then GD (with the right step size) can converge very quickly.

If the function is not quadratic, then GD may converge slowly

Theorem ? Let f be convex and $\lambda_{max}(H_{F(X)}) \leq M$ for all X. If $\alpha \leq \frac{1}{M}$, then GD satisfies $f(X^{(i)}) - f(X^{*}) \leq \frac{1}{2i\alpha} ||X^{(o)} - X^{*}||^{2}$ Where X^{*} is a minimizer of f.

- Error decays <u>Slowly</u> - To get Error E from optimal value, need $O(\varepsilon^{-1})$ iterations

Summary 8 - Too lorge learning rate can lead to divergence - In convex cose, to get convergence a Should be small relative to curvature of f - Too small learning rate can lead to slow convergence - For convex quadratic functions, convergence of GD can be first order (fast) - For more general convex functions, convergence can be slow - SGD W/ fixed Step size is not expected to converge

- SGD with decaying step sizes may converge