Day 12 - Ridge Regression and Model Validation

Agenda:

- Ridge Regression
- Bayesian Statistics
- Maximum A Posteriori Estimation vs Maximum Likelihood Estimation
- Ridge Regression from a Bayesian Perspective
- Model Validation

Ridge Regression

Idea 8 Penalize Predictors that have large
Values at Unknown parameters
Ridge formulation for least Squares:
Given data
$$\{(X_{i}, y_{i})\}_{i=1-n}$$
 w $X_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$
where $y = X \theta + E$ w $E \in \mathbb{R}^{n}$ has $N(0, 0^{2})$ entries
Estimate θ by solving *pridge regression problem*
min $\| y - X \theta \|^{2} + \lambda \| \theta \|^{2}$
 θ
Solution is given by
 $\hat{\theta}_{ridge} = (X^{t}X + \lambda I_{dxd})^{-1} X^{t}y$
w $I_{dxd} = dxd$ Identity matrix $= \begin{pmatrix} 1, 0 \\ 0 & 1 \end{pmatrix}$

$$\lambda$$
 brades off between bias & vorionce
Small $\lambda = low$ bias, high variance
large $\lambda = high$ bias, low variance

Bayesian Statistics

We have been doing parameter estimation without any prior information about our parameters

Examples

Frequentist Perspective Bayesian Perspective There are 2 vins. One with fair coins, one information with double tailed coins. Flip a coin 4 times. You get H Each time. Choose a coin from a random Uri What is your estimate of bias of the coin? Flip a coin 4 times. $\hat{P}_{heads} = 1$ You get H Each time. by maximum likelihad What is your estimate of bias of the coin? Estimation $p_{\rm here} = 0.5$ prion information Canty There are 2 Urns. Urn 1 has a coin w P(H) = 0.75Urn 2 - - - - = 0.25 Examples You flip a coin bing once. You get H. What is MLE estimate You flip a coin from a random urn OF Phends once. You get H. What is your estimate of P(H) Phoends = 1 of the coin you drew?

Bayes Theorem
Let X,Y have a joint disbribution

$$P(X|Y) = \frac{P(Y|X) P(X)}{P(Y)}$$
works for discrete or continuous r.v.s

$$I$$
in this case P is likelihood

Maximum Likelihood Estimation vs Maximum A Posteriori Estimation Given $S = \{ y_i \}_{i=1\cdots n}$ Given parametric model of Y~ f(y;0) pdf of Y for given 0 MAP. Further Given a price distribution $\Theta \sim P(\Theta)$ $P_{off}^{df} \Theta$ $argmax P(5|\theta)$ $= \underset{\theta}{\operatorname{arg}} \max \left(\begin{array}{c} \hat{T} \\ \hat{v} \\ \hat{v$ arg max P(0|S) $= \arg \max_{\theta} \frac{P(5|\theta) P(\theta)}{P(5)}$ likelihood of datu F(5) = arg^{max} P(510) P(0) Θ "find paramaters = arg mux loy P(510) + loy P(0) 0 b com from regularization that make data as likely as possible by the prior MLE

"find most likely povametors given the data"

Caveats you need a prior

MLE is the special case of MAP for an Uninformative prior

MLE

MAP

orgmox lyp(510)

arg max & P(0|5)

 $= \arg \max \log P(5|6) + \log P(6)$

These are the equivalent it
$$\log P(\theta)$$

is constant in θ . (no value of θ
is more or less likely than any other
volve of θ) Eq Uniform disbribution

Example 3
Suppose
$$\theta \sim N(0, \tilde{r}^{2})$$
 for known \tilde{r}, σ .
 $X \sim N(\theta, \sigma^{2})$
 Y_{ou} have a dataset $S = \{ X_{1} \}$ all from some parameter θ .
What is MAP estimate $\sigma + \theta$?
 $\hat{\theta}_{map} = \alpha_{rgmax} \log P(S1\theta) + \log P(\theta)$
 $= \alpha_{rgmax} \log P(S1\theta) + \log P(\theta)$
 $= \alpha_{rgmax} \log \frac{1}{\sqrt{2\pi}} e^{-(X_{1}-\theta)^{2}/2\sigma^{2}} + \log \frac{1}{\sqrt{2\pi}} e^{-\theta^{2}/2\delta^{2}}$
 $= \alpha_{rgmax} - \frac{(X-\theta)^{2}}{2\sigma^{2}} - \frac{\theta^{2}}{2\sqrt{2}}$
 $= \alpha_{rgmin} (X_{1}-\theta)^{2} + (\frac{\sigma^{2}}{\sqrt{2}})\theta^{2}$
Solutran given by $-2(X_{1}-\theta) + 2\frac{\sigma^{2}}{\sqrt{2}}\theta = 0$
 $X_{1}-\theta = \frac{\sigma^{2}}{\sqrt{2}}\theta =)$
 $\hat{\theta}_{rad} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$

Ridge Regression from a Bayesian Perspective

Estimate
$$\Theta$$
 by solving ridge regression problem
min $\|\|y - X\Theta\|^2 + \lambda \|\theta\|^2$
 Θ
 $\int_2^2 \rho enalization / L_2$ regularization
/ weight decay

Viewing this problem from a Boyesian perspective, we see it as MAP estimation w/ a Goussian Pricr on G

Suppose
$$\Theta \sim \mathcal{N}(O, Y^2 \mathbf{I}_d) \in \mathbb{R}^d$$

 $Y \sim \mathcal{N}(X^t \Theta, \sigma^2 \mathbf{I}_d) \in \mathbb{R}^n$, $X \in \mathbb{R}^d$

$$\begin{array}{l} MAP \quad \textit{Estimote} \quad \textit{given by} \\ argmax \quad \textit{log} \ P(S|\Theta) + \textit{log} \ P(\Theta) \\ \Theta \\ = \quad argmax \quad \textit{log} \left(\frac{1}{\sqrt{2\pi} \sigma}\right)^{2} - \frac{11}{2} \frac{y - X^{\dagger} \Theta}{2\sigma^{2}} H^{2} + \frac{109(\sqrt{2\pi} \sigma)}{2\sigma^{2}} - \frac{110|1^{2}}{2\sigma^{2}} \\ = \quad argmin \quad \frac{11y - X^{\dagger} \Theta H^{2}}{2\sigma^{2}} + \frac{110H^{2}}{2\sigma^{2}} \\ = \quad argmin \quad \frac{11y - X^{\dagger} \Theta H^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} H^{2} \\ \Theta \\ = \quad \frac{\pi^{2}}{2\sigma^{2}} + \frac{11y - X^{\dagger} \Theta H^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} \\ = \frac{\pi^{2}}{2\sigma^{2}} + \frac{11y - X^{\dagger} \Theta H^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} \\ = \frac{\pi^{2}}{2\sigma^{2}} + \frac{11y - X^{\dagger} \Theta H^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} \\ = \frac{\pi^{2}}{2\sigma^{2}} + \frac{11y - X^{\dagger} \Theta H^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} \\ = \frac{\pi^{2}}{2\sigma^{2}} + \frac{\pi^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} \\ = \frac{\pi^{2}}{2\sigma^{2}} + \frac{\pi^{2}}{2\sigma^{2}} + \frac{\sigma^{2}}{2\sigma^{2}} H^{2} \\ = \frac{\pi^{2}}{2\sigma^{2}} + \frac{\pi^{2}}{2\sigma^{2}} + \frac{\pi^{2}}{2\sigma^{2}} \frac{\pi^{2}}{2\sigma^{2}}$$

So, rid*ge regression* is MtP estimation under a Gaussian Arian puts a bios toward Small velves of O (higher likelihoods in prior) **Model Validation** trained Suppose you have multiple predictors you are choosing between. How do you select the best one? Porameter / Eg Ridge regression min $|| y - X \theta ||^2 + \lambda || \theta ||^2$ Which value of & Shall you choose? Ideally, Use Validation data Dobu sel Trainin y validotin test ١ VSE be brain use to bone use to evaluate final method hyperparameters min $\frac{1}{m} \sum_{i=1}^{m} \mathcal{X}(y_i^{val}, f_{\chi}(X_c^{val}))$ λ predictor w/ hyperparameter λ Challonges & Neal Jaba for Validation, Neal independent data for test data is often expensive

Chap 7 of Hostie

K-fold Cross Validation

7.10.1 K-Fold Cross-Validation

Ideally, if we had enough data, we would set aside a validation set and use it to assess the performance of our prediction model. Since data are often scarce, this is usually not possible. To finesse the problem, K-fold crossvalidation uses part of the available data to fit the model, and a different part to test it. We split the data into K roughly equal-sized parts; for example, when K = 5, the scenario looks like this:

"falds"

242 7. Model Assessment and Selection

1	2	3	4	5
Train	Train	Validation	Train	Train

For the kth part (third above), we fit the model to the other K-1 parts of the data, and calculate the prediction error of the fitted model when predicting the kth part of the data. We do this for k = 1, 2, ..., K and combine the K estimates of prediction error.

Here are more details. Let $\kappa : \{1, \ldots, N\} \mapsto \{1, \ldots, K\}$ be an indexing function that indicates the partition to which observation *i* is allocated by the randomization. Denote by $\hat{f}^{-k}(x)$ the fitted function, computed with the *k*th part of the data removed. Then the cross-validation estimate of prediction error is

$\operatorname{CV}(\hat{f}) = \frac{1}{\hat{f}}$	$\frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(x_i)).$	(7.48)
	train on all	
avg over Each	date not in the feld conterning	
daba point	i th data point	

Equivalently? average over K folds of the average loss on each fold when brained on all other folds Typical choices of K are 5 or 10 (see below). The case K = N is known as *leave-one-out* cross-validation. In this case $\kappa(i) = i$, and for the *i*th observation the fit is computed using all the data except the *i*th.

Given a set of models $f(x, \alpha)$ indexed by a tuning parameter α , denote by $\hat{f}^{-k}(x, \alpha)$ the α th model fit with the kth part of the data removed. Then for this set of models we define

ltypgr porametor buning

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(x_i,\alpha)).$$
(7.49)

The function $CV(\hat{f}, \alpha)$ provides an estimate of the test error curve, and we find the tuning parameter $\hat{\alpha}$ that minimizes it. Our final chosen model is $f(x, \hat{\alpha})$, which we then fit to all the data.

7.10.2 The Wrong and Right Way to Do Cross-validation

Consider a classification problem with a large number of predictors, as may arise, for example, in genomic or proteomic applications. A typical strategy for analysis might be as follows:

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Is this a correct application of cross-validation?

Here is the correct way to carry out cross-validation in this example:

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold k = 1, 2, ..., K
 - (a) Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
 - (b) Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
 - (c) Use the classifier to predict the class labels for the samples in fold k.

The error estimates from step 2(c) are then accumulated over all K folds, to produce the cross-validation estimate of prediction error. The lower panel

In general, with a multistep modeling procedure, cross-validation must be applied to the entire sequence of modeling steps. In particular, samples must be "left out" before any selection or filtering steps are applied. There is one qualification: initial *unsupervised* screening steps can be done before samples are left out. For example, we could select the 1000 predictors with highest variance across all 50 samples, before starting cross-validation. Since this filtering does not involve the class labels, it does not give the predictors an unfair advantage.