Day 11 - Ridge Regression

Agenda:

- Review Bias Variance Tradeoff
- Ridge Regression
- Analytical Formula for Solution to Ridge Regression
 Background Singular Value Decompositions
 Ridge Regression and Bias Variance Tradeoff

Bias-Voriance Tradeoff

higher complexity models have lower bias but higher variance

If complexity is boo high, it overfits dota, vorionce term dominates test Error

after a certain threshold, "lorger models are worse"

Modern Story based on Neural Nets:

Test error can decrease as model complexity continues increasing,

And it can be lower than in underparameterized regime

Phenomenon: double descent

Ridge Regression

Figure 1.4 Plots of polynomials having various orders *M*, shown as red curves, fitted to the data set shown in Figure 1.2.

One way to reduce overfitting, Use a hypothesis class with lower complexity (fewer unknown parameters) Another way,

add regularization

Table 1.2 Table of the coefficients \mathbf{w}^* for M = 9 polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.

Idea 8 penalize predictors that have large Values of Unknown porometers New formulation for least Squares: Given data $\{(X_{i_1}y_i)\}_{i \ge 1-n}$ w $X_i \in \mathbb{R}^d$, $Y_i \in \mathbb{R}^d$ where $y = X \Theta + E$ w/ $E \in \mathbb{R}^n$ has $N(O, O^2)$ entries ridge regression problem Estimate O by Solving $\|y - X\theta\|^2 + \lambda \|\theta\|^2$ min θ l2 penalization / l2 regularization /weight decay Solution is given by $\widehat{\Theta}_{iidge} = \left(X^{t}X + \lambda I_{dxd}\right)^{-1} X^{t} Y$ w/ $I_{dx1} = dxd$ Identity mobils = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Solution to ridge regression problem

Let
$$y \in \mathbb{R}^{n}$$
, $X \in \mathbb{R}^{n \times d}$
The unique solution to
min $\| y - X \Theta \|^{2} + \lambda \| \Theta \|^{2}$
 $\Theta \in \mathbb{R}^{d}$
is $\widehat{\Theta}_{ridge} = (X^{t}X + \lambda I_{d \times d})^{-1} X^{t} y$

Proof: Let
$$f(\theta) = \|(X\theta - y)\|^2 + \lambda \|\theta\|^2$$

 $\nabla f(\theta) = 2 X^t (X\theta - y) + 2\lambda \theta$
Set $\nabla f(\theta) = 0$
 $\Rightarrow 2 X^t (X\theta - y) + 2\lambda \theta = 0$
 $\Rightarrow X^t X \theta - X^t y + \lambda \theta = 0$
 $\Rightarrow (X^t X + \lambda I_{dXd}) \theta = X^t y$
 $\Rightarrow \theta = (X^t X + \lambda I_{dXd})^T X^t y$.
Note: this matrix is always invertible if $\lambda > 0$
why?

Background in Linear Algebra - Singular Value Decomposition

SVD of a Square matrix:
Suppose
$$A \in IR^{n \times n}$$
. An svo of A is given by
 $A = U \sum V^{t}$

The columns of U are the Left singular vectors of A - V - right singular vectors -The diagonal embries of Σ are the singular values of A

$$A = \begin{pmatrix} 1 & 1 & 1 \\ V_{1} & V_{2} & \cdots & V_{n} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \sigma_{1} & 0 \\ \sigma_{2} & 0 \\ 0 & \ddots & \sigma_{n} \end{pmatrix} \begin{pmatrix} -V_{1}^{t} - V_{2}^{t} - V_{2}^{t}$$

Note: A set $\{U_1 \dots U_n\}$ is orthonormal if $\cdot ||V_i||^2 = 1$ for all i $\cdot V_i \cdot v_5 = 0$ if $i \neq 5$

The
$$\hat{u}$$
 endry of $U^{t}U = U_{i}^{t}U_{j} = \begin{cases} 2 & i \neq i \neq j \\ 0 & i \neq j \end{cases}$
So U has orthonormal columns if $U^{t}U = Inxn$

Linear operators map the unit circle to an ellipsoid The left singular vectors provide the principal axes of the ellipsoid.

Alternatively, any A is a diagonal matrix it the domain & range spaces use the right bases. Given a basis $\xi v_1 \cdots v_d 3$ of IR^d , it $V = \begin{pmatrix} v_1 & v_2 & \cdots & v_d \\ v_1 & v_2 & \cdots & v_d \end{pmatrix}$ then the coefficients of X in the basis $\xi v_1 \cdots v_d \}$ is given by $V^{\dagger} X$. So, SVD can be interpreted as

Example

You can use SVD to manipulate matrices easily
Show that if
$$A \in \mathbb{R}^{n \times n}$$
 is invertible,
and $A = U \ge Vt$ is sVD of A, then
 $A^{-1} = V \ge^{-1} U^{t}$

Prof & If
$$\Sigma$$
 is invertible, $\sigma_{a} > 0$.
Otherwise V_{a} would be in null space of
 A , and hence A isn't invertible.
We will show $A(V\Sigma^{-1}U^{t}) = I_{n}$.
 $AV\Sigma^{-1}U^{t} = U\Sigma V^{t}V\Sigma^{-1}U^{t}$
 $= U\Sigma \Sigma^{-1}U^{t}$
 $= U\Sigma \Sigma^{-1}U^{t}$

SVD of a tall rectongular matrix Let $A \in IR^{n \times d}$ wr $n \ge d$. An SVD of A is given by

$$A = \begin{pmatrix} | \\ a_{l} \\ \sigma_{d} \\ | \\ \rangle \end{pmatrix} = \begin{pmatrix} | \\ U_{1} \\ U_{2} \\ | \\ | \\ \rangle \end{pmatrix} \begin{pmatrix} \sigma_{1} \\ \sigma_{d} \\ \sigma_{d} \\ \sigma_{d} \\ - \\ V_{d} \\ V_{d} \\ - \\ V_{d} \\$$

Note $U^{t}U = I_{d}$ by $UU^{t} \neq I_{n}$ (it dsn) $V^{t}V = I_{d}$ & $VV^{t} = I_{d}$ **Ridge Regression and the Bias Variance Tradeoff**

Suppose data
$$\{(X_i, Y_i)\}_{i \ge 1 - n}$$
 follows the distribution
 $Y_i = \chi_i^t \Theta^* + \varepsilon_i \quad w \quad \varepsilon_i \sim \mathcal{N}(O_i \sigma^2)$

That is,

$$y = X \Theta^* + \varepsilon$$

Let
$$X = U \Sigma V^t$$
 be the SVD of X , where $\Sigma = diag(\sigma_1 - \sigma_d)$

$$\hat{\Theta}_{ridge} = \bigvee \operatorname{diag}\left(\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda}, \cdots, \frac{\sigma_{d}^{2}}{\sigma_{d}^{2}+\lambda}\right) \bigvee \overset{\mathsf{t}}{\Theta}^{*} + \bigvee \operatorname{diag}\left(\frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}, \cdots, \frac{\sigma_{d}}{\sigma_{d}^{2}+\lambda}\right) \bigcup \overset{\mathsf{t}}{\varepsilon}_{\varepsilon}.$$

$$\underbrace{\operatorname{Signal}}_{\operatorname{Signal}} \quad \widehat{\Theta}_{ridge}^{\operatorname{Signal}} \quad \operatorname{noise} \quad \widehat{\Theta}_{ridge}^{\operatorname{noise}}$$

Let's analyze bias and voriance of ôridge.

- Note \circ IE $\hat{\Theta}_{ridge}^{noise} = 0$. So first term controls bios - first term doesn't depend on ε . So second term controls variance
- Analyze $\hat{\Theta}_{ridge}^{sighal} if \lambda = 0$ $\hat{\Theta}_{ridge}^{sighal} = VV^{b}\Theta^{*} = \Theta^{*}$ Unbiased $if \lambda = \infty$ $\hat{\Theta}_{ridge}^{sighal} = 0$ biased

Bias increases with
$$\lambda$$
.

Analyze
$$\hat{\Theta}_{ridge}^{noise} - if \lambda = \infty$$
 $\hat{\Theta}_{ridge}^{noise} = 0$ low vorience
 $if \lambda = 0$ $\hat{\Theta}_{ridge}^{noise} = V \operatorname{dig}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}\right) V^{t} \varepsilon$
high voriance
 $\mathbb{E}_{\varepsilon} \|\hat{\Theta}_{ridge}^{noise}\|^{2} = \sum_{j=1}^{d} \left(\frac{\sigma_{j}}{\sigma_{j}^{2}+\lambda}\right)^{2} \sigma^{2}$
Variance decreases with λ .
Observes λ trades off between bias ξ variance

Justification of ridge regression estimate $\hat{\theta}_{ridge}$:

Let
$$X \in \mathbb{R}^{n \times d}$$
, $y \in \mathbb{R}^{n}$.
By formula above
 $\widehat{\Theta}_{ridge} = (X^{t}X + \lambda I_{d})^{-1} X^{t} y = (X^{t}X + \lambda I_{d})^{-1} X^{t} (X \Theta^{*} + \varepsilon)$
Let $X = U \sum V^{t}$ be the SVD of X, where
 $U - n \times d$ matrix with Orthonormal columns
 $V - d \times d$ matrix with orthonormal columns
 $\Sigma - d \times d$ diagonal matrix = diag $(\sigma_{1}, ..., \sigma_{d})$ w/ $\sigma_{i} \ge \sigma_{i+1} \ge 0$
Note $X^{t}X = V \sum^{t} \bigcup^{t} \bigcup \sum V^{t} = V \sum^{t} I_{d} \ge V^{t} = V \sum^{2} V^{t}$
 $U^{t}U = I_{d}$

So

$$\hat{\Theta}_{ridge} = \left(\bigvee \Xi^{2} \bigvee^{b} + \lambda I \right)^{-1} \left[X^{b} X \; \theta^{*} + X^{t} \varepsilon \right] \\
= \left(\bigvee (\Xi^{2} \bigvee^{t} + \lambda I)^{-1} \left[\bigvee \Xi^{2} \bigvee^{t} \theta^{*} + \bigvee \Xi^{t} \bigcup^{t} \varepsilon \right] \\
= \left(\bigvee (\Xi^{2} + \lambda I) \bigvee^{t} \right)^{-1} \left[\bigvee \Xi^{2} \bigvee^{t} \theta^{*} + \bigvee \Xi^{t} \bigcup^{t} \varepsilon \right] \\
= \bigvee (\Xi^{2} + \lambda I)^{-1} \bigvee^{t} \left[\bigvee \Xi^{2} \bigvee^{b} \theta^{*} + \bigvee \Xi^{t} \bigcup^{t} \varepsilon \right] \\
= \bigvee (\Xi^{2} + \lambda I)^{-1} \left[\Xi^{2} \bigvee^{t} \theta^{*} + \Xi \bigcup^{t} \varepsilon \right] \\
= \bigvee (\Xi^{2} + \lambda I)^{-1} \sum^{2} \bigvee^{t} \theta^{*} \\
+ \bigvee (\Xi^{2} + \lambda I)^{-1} \sum^{1} \bigcup^{t} \xi \\
Nobe \quad (\Sigma^{2} + \lambda I)^{-1} = d^{i} \sigma g \left(\frac{1}{\sigma_{1}^{2} + \lambda}, \cdots, \frac{\sigma_{d}^{2}}{\sigma_{d}^{2} + \lambda} \right) \bigvee^{t} \theta^{*} \\
+ \bigvee d^{i} \sigma g \left(\frac{\sigma_{1}}{\sigma_{1}^{2} + \lambda}, \cdots, \frac{\sigma_{d}}{\sigma_{d}^{2} + \lambda} \right) \bigcup^{t} \varepsilon$$