Day 11 - Ridge Regression

Agenda:

- Review - Bias Variance Tradeoff
- Ridge Regression
- Analytical Formula for Solution to Ridge Regression
- Background - Singular Value Decompositions
- Ridge Regression and Bias Variance Tradeoff

Bias-Variance Trade off

Standard Statistical ML story:

higher complexity models have lower bias but higher variance
If complexity is too high, it overfits data, variance term dominates test Error
after a certain threshold, "larger models are worse"

Modern Story based on Neural Nets:

Test error can decrease as model complexity continues increasing.

And it can be low or than in underparameterized regime

Phenomenon: double descent
"larger models are better" regime regime

So for, we have used MLE to estimate model parameters from data

Concern: OVErfitting
Example: Fitting data w/ a degree M polynomial
 underfitting

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in Figure 1.2.

One way to reduce overfitting,
USE a hypothesis class with lower complexity (fewer unknown parometas)

Another way, add regularization

A possible indication of overfitting is having very large learned parameters.

This often happens when features are highly correlated

Idea: penalize predictors that hove large values of unknown parameters

New formulation for least squares:
Given data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1-n}$ w/ $x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$
where $y=X \theta+\varepsilon$ w/ $\varepsilon \in \mathbb{R}^{n}$ has $N\left(0, \sigma^{2}\right)$ entries
Estimate θ by solving ridge regression problem

$$
\min _{\theta}\|y-X \theta\|^{2}+\underbrace{}_{0=n\|\theta\|^{2}}
$$

l_{2} penalization / l_{2} regularization $/$ weight decay
Solution is given by

$$
\hat{\theta}_{\text {ridge }}=\left(X^{t} X+\lambda I_{d \times d}\right)^{-1} X^{t} y
$$

w/ $I_{d x 1}=$ dad $I_{d \text { entity }}$ matrix $=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

What do solutions look like?
λ is toul low

λ is about right

$$
\min _{\theta}\|y-X \theta\|^{2}+\lambda\|\theta\|^{2}
$$

degree 9 plynomisi)

Solution to ridge regression problem

Let $y \in \mathbb{R}^{n}, \quad X \in \mathbb{R}^{n \times d}$
The unique solution to

$$
\min _{\theta \in \mathbb{R}^{d}}\|y-X \theta\|^{2}+\lambda\|\theta\|^{2}
$$

is $\quad \hat{\theta}_{\text {ridge }}=\left(X^{t} X+\lambda I_{d \times d}\right)^{-1} X^{t} y$

Proof: Let $f(\theta)=\|X \theta-y\|^{2}+\lambda\|\theta\|^{2}$

$$
\nabla f(\theta)=2 X^{t}(X \theta-y)+2 \lambda \theta
$$

set $\nabla f(\theta)=0$

$$
\begin{aligned}
& \Rightarrow 2 x^{t}(x \theta-y)+2 \lambda \theta=0 \\
& \Rightarrow x^{t} x \theta-x^{t} y+\lambda \theta=0 \\
& \Rightarrow\left(x^{t} x+\lambda I_{d x a}\right) \theta=x^{t} y \\
& \Rightarrow \quad \theta=(\underbrace{\left(x^{t} x+\lambda I_{d x d}\right.})^{-1} x^{t} y .
\end{aligned}
$$

Note: this matrix is always invertible if $\lambda>0$ why?

SVD of a square matrix:
Suppose $A \in \mathbb{R}^{d \times d}$. A_{n} sud of A is given by

$$
A=U \Sigma V^{t}
$$

where U is $d \times d$ matrix worthonoral columns
V is dud matrix w orthonormal columns
Σ is diagonal $w /$ nonnegative entries $\sigma_{1}, \sigma_{2}, \cdots \sigma_{d}$ where $\sigma_{i} \geqslant \sigma_{i, 1} \geqslant 0$

The columns of U are the lett singular vectors of A The - \quad - right singular Vectors - The diagonal entries of Σ are the singular values of A

$$
A=\left(\begin{array}{cccc}
1 & 1 & & 1 \\
u_{1} & u_{2} & \cdots & u_{2} \\
1 & 1 & & 1
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & 0 \\
& \sigma_{2} & \\
0 & \ddots & \\
& & \\
\sigma_{2}
\end{array}\right)\left(\begin{array}{c}
-v_{1}^{t}- \\
-v_{2}^{t}- \\
\vdots \\
-v_{2}^{t}-
\end{array}\right)
$$

Note o A set $\left\{U_{1} \cdots U_{n}\right\}$ is orthonormal if $\cdot\left\|U_{i}\right\|^{2}=1$ for all i

$$
\text { - } v_{i} \cdot v_{j}=0 \text { it } i \neq j
$$

The io Enl ry of $U^{t} U=U_{i}^{t} U_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { it } i \neq j\end{cases}$
So U has orthonormal colons it $\underbrace{U^{t} U}_{d \times d}=I_{d \times d}$

Geometric picture of SUD:
A

Linear operators map the unit circle to an ellipscid The lett singular vectors provide the principal axes of the ellipsoid.

Alternatively, any A is a diagonal matrix it the domain \& range spaces USE the right bases. Given $a^{n} \xlongequal{\text { arthanomeses }}\left\{\begin{array}{llll} \\ \text { basis }\end{array} v_{1} \cdots v_{d}\right\}$ of \mathbb{R}^{d}, it $V=\left(\begin{array}{cccc}1 & 1 & v_{2} \\ 1 & v_{2} & \cdots & v_{\alpha} \\ 1 & & 1\end{array}\right)$ then the coetficionls of X in the basis $\left\{v_{1} \cdots v_{d}\right\}$ is given by

$$
v^{t} x . \quad V\left(v^{t} x\right)=x
$$

So, SVD can be interpreted as

$$
A=\sum_{\substack{\text { convert } \\ \text { from basis } \\ \text { given by } U}}^{U} \underbrace{V^{t}}_{\substack{\text { diagonal } \\ \text { opgater in in basis veter given by }}}
$$

Example
You can USE SVD to manipulate matrices easily Show that it $A \in \mathbb{R}^{n \times n}$ is invertible, and $A=U \Sigma V^{t}$ is sUD of A, then

$$
A^{-1}=V \Sigma^{-1} U^{t}
$$

Prat: If \sum is invertible, $\sigma_{d}>0$. Otherwise V_{d} wald be in null space of A, and hence A isn't invertible.
We will show $A\left(V \Sigma^{-1} U^{t}\right)=I_{\text {n }}$.

$$
\begin{aligned}
& A V \Sigma^{-1} U^{t}=U \Sigma \underbrace{V^{t} V}_{I_{n}} \Sigma^{-1} U^{t} \\
& \sum=\left(\begin{array}{llll}
\sigma_{1} & & \\
& & & \\
& & & \\
& & & \\
& & & \sigma_{d}
\end{array}\right) \\
& \Sigma^{-1}=\left(\begin{array}{llll}
\frac{1}{\sigma_{1}} & & & \\
& \frac{1}{\sigma_{2}} & & \\
& & \ddots & \\
& & & \frac{1}{\sigma_{\lambda}}
\end{array}\right) \\
& \begin{array}{l}
=U \underbrace{\sum^{-1}}_{I_{n}} V^{t} \\
=
\end{array} \\
& =U u^{t} \\
& =I_{n}
\end{aligned}
$$

SVD of a tall rectangular matrix
$L \in E \quad A \in \mathbb{R}^{n \times d}$ we $n \geqslant d$.
An SVD of A is given by

$$
A=U \Sigma V^{t}
$$

w/ $U-n \times d$ matrix w/ orthonormal columns
$\Sigma-d x d$ diagonal nonnegative matrix w/ decreasing values along diagonal
V - dud matrix w/ orthonormal columns

$$
A=\left(\begin{array}{cc}
1 & 1 \\
a_{1} & a_{d} \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
v_{1} \cdots & v_{2} \\
1 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & 0 \\
\sigma_{0} & \sigma_{d} \\
& & 1
\end{array}\right)\left(\begin{array}{c}
-v_{1}^{t}- \\
-v_{2}^{t}- \\
\vdots \\
-v_{d}^{t}-
\end{array}\right)
$$

Note $U^{t} U=I_{d}$ bet $U U^{t} \neq I_{n}($ it $d>n)$

$$
V^{t} V=I_{d} \quad \& \quad V V^{t}=I_{d}
$$

Questions about SVD:

(a) From an SVD, how can you find the range of a matrix?
(b) From an SVD, how can you find the null space of a matrix?
(c) From an SVD, how can you find the rank of a matrix?
(d) What happens to an SVD if you negate a matrix?
(e) Is the SVD of a matrix unique?
(f) From an SVD of the matrix A, what is an SVD of the matrix A - lambda I?

(g) What is the relationship of the SVD of a (nonsquare) matrix A with the eigenvector

$$
\begin{aligned}
& \text { decomposition of } A A^{\wedge t} \text { and } A^{\wedge t A} \\
& A
\end{aligned} \quad \begin{aligned}
A^{t} A & =V \Sigma U^{t} U \Sigma V \\
& =V \Sigma^{t} V^{t}
\end{aligned}
$$

Ridge Regression and the Bias Variance Tradeoff
Suppose data $\left\{\left(x_{i} y_{i}\right)\right\}_{i=1 \ldots n}$ follows the distribution

$$
y_{i}=x_{i}^{t} \theta^{*}+\varepsilon_{i} \quad w / \quad \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

That is,

$$
y=X \theta^{*}+\varepsilon
$$

Let $X=U \Sigma V^{t}$ be the so of \mathbb{X}, where $\sum=\operatorname{diag}\left(\sigma_{1} \cdots \sigma_{d}\right)$

The ridge regression estimate of θ^{*} is

Let's analyze bias and variance of $\hat{\theta}_{\text {ridge }}$.
Note: - $\mathbb{E} \hat{\theta}_{\text {ridge }}^{\text {noise }}=0$. So first term controls bios

- First term doosnt despond on ε. So second term controls variance

$$
\begin{aligned}
& \text { Analyze } \hat{\theta}_{\text {ridge }}^{\text {signal }} \text { - it } \lambda=0 \quad \hat{\theta}_{\text {ring. }}^{\text {sight }}=V V^{t} \theta^{*}=\theta^{*} \\
& \text { Unbiased } \\
& \text { if } \lambda=\infty \quad \hat{\theta}_{\text {rifle }}^{s i / k c \mid}=0 \quad \text { biased }
\end{aligned}
$$

Bias increases with λ.

Analyze $\hat{\theta}_{\text {ridge }}^{\text {noise }}$ - if $\lambda=\infty \quad \hat{\theta}_{\text {ridge }}^{\text {nos }}=0$ low variance

highvoriance

$$
\mathbb{E}_{\varepsilon}\left\|\hat{\theta}_{r i b j E}^{\text {nos }}\right\|^{2}=\sum_{j=1}^{d}\left(\frac{\sigma_{i}}{\sigma_{j}^{2}+\lambda}\right)^{2} \sigma^{2}
$$

variance decreases with λ.
Obscrug: λ trades off between bias \& variance Justification of ridge regression estimate $\hat{\theta}_{\text {ridge }}$:

Let $X \in \mathbb{R}^{n \times d}, \quad y \in \mathbb{R}^{n}$.
By formula above

$$
\hat{\theta}_{\text {ridge }}=\left(x^{t} x+\lambda I_{d}\right)^{-1} X^{t} y=\left(x^{t} x+\lambda I_{d}\right)^{-1} x^{t}\left(x \theta^{*}+\varepsilon\right)
$$

Let $X=U \Sigma V^{t}$ be the SUD of X, whore
U - $n \times d$ matrix with orthonormal columns
V - $d \times d$ matrix with orthonormal columns
$\Sigma-d \times d$ diagonal matrix $=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{d}\right) w / \sigma_{i} \geqslant \sigma_{i+1} \geqslant 0$
Note $\quad x^{t} x=V \Sigma^{t} \underbrace{U^{t} U \Sigma V^{t}}_{U^{t} U=I_{d}}=V \underbrace{\Sigma^{t} I_{d} \Sigma V^{t}}_{\Sigma^{2}}=V \Sigma^{2} V^{t}$

So

$$
I=V v^{t}
$$

$$
\begin{aligned}
\hat{\theta}_{\text {ridgt }}= & \left(V \Sigma^{2} V^{t}+\lambda I\right)^{-1}\left[x^{t} x \theta^{*}+x^{t} \varepsilon\right] \\
= & \left(V \Sigma^{2} V^{t}+\lambda I\right)^{-1}\left[V \Sigma^{2} V^{t} \theta^{*}+V \Sigma^{t} U^{t} \varepsilon\right] \\
= & \left(V\left(\Sigma^{2}+\lambda I\right) V^{t}\right)^{-1}\left[V \Sigma^{2} v^{t} \theta^{*}+V \Sigma^{t} U^{t} \varepsilon\right] \\
= & V\left(\Sigma^{2}+\lambda I\right)^{-1} V^{t}\left[V \Sigma^{2} V^{t} \theta^{*}+V \Sigma^{t} U^{t} \varepsilon\right] \\
= & V\left(\Sigma^{2}+\lambda I\right)^{-1}\left[\Sigma^{2} V^{t} \theta^{*}+\Sigma U^{t} \varepsilon\right] \\
= & V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma^{2} V^{t} \theta^{*} \\
& +V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{t} \varepsilon
\end{aligned}
$$

$\operatorname{Note}\left(\Sigma^{2}+\lambda I\right)^{-1}=\operatorname{diag}\left(\frac{1}{\sigma_{1}^{2}+\lambda}, \cdots, \frac{1}{\sigma_{2}^{2}+\lambda}\right)$
So

$$
\begin{aligned}
\hat{\theta}_{\text {ridgt }}= & V \operatorname{dicg}\left(\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\lambda}, \cdots, \frac{\sigma_{d}^{2}}{\sigma_{\alpha}^{2}+\lambda}\right) V^{t} \theta^{*} \\
& +V \operatorname{di\sigma g}\left(\frac{\sigma_{1}}{\sigma_{1}^{2}+\lambda}, \cdots, \frac{\sigma_{\alpha}}{\sigma_{d}^{2}+\lambda}\right) U^{t} \varepsilon
\end{aligned}
$$

