
CS3000: Algorithms & Data — Spring 2019 — Paul Hand

Homework 2
Due Wednesday 1/30/2019 at 2:50pm via Gradescope

Name:
Collaborators:

• Make sure to put your name on the first page. If you are using the LATEX template we
provided, then you can make sure it appears by filling in the yourname command.

• This assignment is due Wednesday 1/30/2019 at 2:50pm via Gradescope. No late assign-
ments will be accepted. Make sure to submit something before the deadline.

• Solutions must be typeset in LATEX. If you need to draw any diagrams, you may draw them
by hand as long as they are embedded in the PDF. I recommend using the source file for
this assignment to get started.

• I encourage you to work with your classmates on the homework problems. If you do
collaborate, you must write all solutions by yourself, in your own words. Do not submit anything
you cannot explain. Please list all your collaborators in your solution for each problem by
filling in the yourcollaborators command.

• Finding solutions to homework problems on the web, or by asking students not enrolled
in the class is strictly forbidden. You may use the internet for general research and learning
pertaining to class material.

1

http://www.ccs.neu.edu/home/hand/teaching/cs3000-spring-2018/index.html
https://www.gradescope.com/courses/36055
https://www.gradescope.com/courses/36055


Problem 1. Asymptotic Order of Growth

(a) Rank the following functions in increasing order of asymptotic growth rate. That is, find
an ordering f1, f2, . . . , f10 of the functions so that fi =O(fi+1). No justification is required.

n3 7log2 n n! 12n log2(n!)
24n 100n3/2 10n 2log3 n log32n

Solution:

(b) Suppose f (n), g(n),h(n) are non-decreasing, non-negative functions and that f (n) =O(h(n))
and g(n) =O(h(n)). Prove that the f (n)g(n) =O(h(n)2).

Solution:

2



Problem 2. Improve the MBTA

You have been commissioned to design a new bus system that will run along Huntington
Avenue. The bus system must provide service to n stops on the eastbound route. Commuters
may begin their trip at any stop i and end at any other stop j > i. Here are some naı̈ve ways to
design the system:

1. You can have a bus run from the western-most point to the eastern-most point making all
n stops. The system would be cheap because it only requires n− 1 route segments for the
entire system. However, a person traveling from stop i = 1 to stop j = n has to wait while
the bus makes n− 1 stops.

2. You can have a special express bus from i to j for every stop i to every other stop j > i. No
person will ever have to make more than one stop. However, this system requires Θ(n2)
route segments and will thus be expensive.

Using divide-and-conquer, we will find a compromise solution that uses only Θ(n logn)
route segments, but with the property that a user can get from any stop i to any stop j > i with
at most 2 segments. That is, it should be possible to get from any i to any j > i either by taking a
direct route i→ j or by taking a two-segment route i→m and m→ j.

(a) For the base cases n = 1,2, design a system using at most 1 route segment.

Solution:

(b) For n > 2 we will use divide-and-conquer. Assume that we already put in place routes
connecting the first n/2 stops and routes connecting the last n/2 stops so that if i and j
both belong to the same half, we can get from i to j in at most 2 segments. Show how to
add O(n) additional route segments so that if i is in the first half and j is in the second half
we can get from i to j with at most two segments.

Solution:

(c) Using part (b), write (in pseudocode) a divide-and-conquer algorithm that takes as input
the number of stops n and outputs the list of all the route segments used by your bus
system.

Solution:

(d) Write the recurrence for the number of route segments your solution uses and solve it. You
may use any method for solving the recurrence that we have discussed in class.

Solution:

(e) (Extra Credit Challenge Question! You are not required to submit an answer. A com-
plete answer is worth a quarter of a HW assignment. ) Suppose the MBTA is willing to
compromise even further by designing a solution where users may need three segments
to get from i to j. Design a solution that uses asymptotically fewer route segments as
the previous divide and conquer solution. That is, it should use o(n logn) route segments.
Clearly show asymptotically how many route segments your algorithm uses.

3



Problem 3. MergeSort

(a) Suppose you implement a variant of MergeSort. Instead of breaking the given list into 2
sublists, you break the given list into 3 sublists. Write the complete resulting algorithm
here in pseudocode.

Solution:

Algorithm 1: MergeSort with a 2 piece recursion (model your answer on this)

Function MERGESORT(A):
If LEN(A) = 1 :

Return A

Let m←
⌈

LEN(A)
2

⌉
Let L← A[1 :m], R← A[m+1 : n]
Let L←MERGESORT(L)
Let R←MERGESORT(R)
Let A←MERGE(L,R)
Return A

Function MERGE(L,R):
Let n← LEN(L) + LEN(R)
Let A← []
Let j← 1, k← 1
For i = 1 . . .n

If j > LEN(L) :
A[i]← R[k]
k← k +1

ElseIf k > LEN(R) :
A[i]← L[j]
j← j +1

ElseIf L[j] ≤ R[k] :
A[i]← L[j]
j← j +1

Else
A[i]← R[k]
k← k +1

Return A

(b) Is this algorithm more efficient, less efficient, or equally efficient as the standard MergeSort
algorithm in terms of asymptotic time complexity? Justify your answer.

Solution:

4



Problem 4. Recurrences

There are many divide-and-conquer algorithms for multiplying together two integers. In
one algorithm, called Karatsuba’s algorithm, the product of two n-digit numbers can be solved
by recursively computing 3 different products of n

2 -digit numbers. There are algorithms that can
multiply n-digit numbers recursively by solving:

1. 3 multiplications each of n
2 -digit numbers (Karatsuba’s Algorithm),

2. 5 multiplications each of n
3 -digit numbers,

3. 7 multiplications each of n
4 -digit numbers, or

4. 9 multiplications each of n
5 -digit numbers,

and then doing O(n) work to combine the solutions.
Determine the asymptotic running time of each of these four algorithms and rank them in

ascending order of their asymptotic running time. You do not need to justify your answers.

Solution:

5


