CS3000: Algorithms \& Data Paul Hand

Lecture 8:

- Path Counting
- Dynamic Programming
- Fibonacci Numbers
- Interval Scheduling

Feb 4, 2019

Warmup: Path Counting

Activity:

Agent can only move right or down. How many ways can it get to the finish?

Start			

Activity:

Agent can only move right or down. How many ways can it get to the finish?

Start			

Activity:

Agent can only move right or down.
How many ways can it get to the finish? Write an algorithm. Nrite analgorinm

Activity:

Agent can only move right or down.
How many ways can it get to the finish? Write an algorithm. Nrite analgorinm

Dynamic Programming

Dynamic Programming

Dynamic programming is careful recursion

- Break the problem up into small pieces
- Recursively solve the smaller pieces
- Store outcomes of smaller pieces that get called multiple times
- Key Challenge: identifying the pieces

Warmup: Fibonacci Numbers

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- $F(n) \rightarrow \phi^{n} \approx 1.62^{n}$
- $\phi=\left(\frac{1+\sqrt{5}}{2}\right)$ is the golden ratio

Fibonacci Numbers: Take I

```
FibI(n):
    If (n = 0): return 0
    ElseIf (n = 1): return 1
    Else: return FibI(n-1) + FibI(n-2)
```

- How many recursive calls does FibI (n) make?

Fibonacci Numbers: Take II

```
M}\leftarrow\mathrm{ empty array, M[0]}\leftarrow0, M[1]\leftarrow
FibII(n):
    If (M[n] is not empty): return M[n]
    ElseIf (M[n] is empty):
        M[n] \leftarrowFibII(n-1) + FibII (n-2)
        return M[n]
```

- How many recursive calls does FibII (n) make?

Fibonacci Numbers: Take III

```
FibIII(n):
    M[0] \leftarrow 0, M[1] \leftarrow 1
    For i = 2,\ldots,n:
        M[i]}\leftarrowM[i-1] + M[i-2]
    return M[n]
```

- What is the running time of FibIII (n) ?

Fibonacci Numbers

- $0,1,1,2,3,5,8,13,21,34,55, \ldots$
- $F(n)=F(n-1)+F(n-2)$
- Solving the recurrence recursively takes $\approx 1.62^{n}$ time
- Problem: Recompute the same values $F(i)$ many times
- Two ways to improve the running time
- Remember values you've already computed ("top down")
- Iterate over all values $F(i)$ ("bottom up")
- Fact: Can solve even faster using Karatsuba's algorithm!

What is the tradeoff?

"When you gain something, you usually lose something too"

```
FibI(n):
    If (n = 0): return 0
    ElseIf (n = 1): return 1
    Else: return FibI(n-1) + FibI(n-2)
```

```
FibIII(n):
    M[0] \leftarrow 0, M[1] \leftarrow 1
    For i = 2,\ldots,n:
        M[i]}\leftarrowM[i-1] + M[i-2]
    return M[n]
```

Dynamic Programming: Interval Scheduling

Interval Scheduling

- How can we optimally schedule a resource?
- This classroom, a computing cluster, ...
- Input: n intervals $\left(s_{i}, f_{i}\right)$ each with value v_{i}
- Assume intervals are sorted so $f_{1}<f_{2}<\cdots<f_{n}$
- Output: a compatible schedule S maximizing the total value of all intervals
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$

Interval Scheduling

Index

$1 \longmapsto v_{1}=2$

5

$$
\begin{gathered}
v_{5}=2 \\
v_{6}=1
\end{gathered}
$$

Possible Algorithms

- Choose intervals in decreasing order of v_{i}

Index

$$
\begin{gathered}
v_{5}=2 \\
v_{6}=1
\end{gathered}
$$

Possible Algorithms

- Choose intervals in increasing order of s_{i}

Index

$$
v_{2}=4
$$

$$
\begin{gathered}
v_{5}=2 \\
\longmapsto v_{6}=1 \\
\longmapsto
\end{gathered}
$$

Possible Algorithms

- Choose intervals in increasing order of $f_{i}-s_{i}$

A Recursive Formulation

- Let O be the optimal schedule
- Case 1: Final interval is not in O (i.e. $6 \notin O$)
- Then O must be the optimal solution for $\{1, \ldots, 5\}$

A Recursive Formulation

- Let O be the optimal schedule
- Case 2: Final interval is in O (i.e. $6 \in O$)
- Then O must be $6+$ the optimal solution for $\{1, \ldots, 3\}$

A Recursive Formulation

- Let O_{i} be the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$

A Recursive Formulation

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- $\operatorname{OPT}(i)=\max \left\{O P T(i-1), v_{n}+O P T(p(i))\right\}$
- $\operatorname{OPT}(0)=0, \operatorname{OPT}(1)=v_{1}$

Interval Scheduling: Take I

```
// All inputs are global vars
FindOPT(n):
    if (n = 0): return 0
    elseif (n = 1): return vi
    else:
    return max{FindOPT(n-1), vin + FindOPT(p(n))}
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Take II

```
// All inputs are global vars
M \leftarrow empty array, M[0] \leftarrow0, M[1] \leftarrow1
FindOPT(n):
    if (M[n] is not empty): return M[n]
    else:
        M[n] \leftarrow max{FindOPT(n-1), vn}+\mp@code{FindOPT(p(n))}
        return M[n]
```

- What is the running time of FindOPT (n) ?

Interval Scheduling: Take II

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$

Interval Scheduling: Take III

```
// All inputs are global vars
FindOPT(n):
    M[0]}\leftarrow0, M[1]\leftarrow
    for (i = 2,..,n):
        M[i] \leftarrow max{FindOPT(n-1), von + FindOPT (p(n))}
    return M[n]
```

- What is the running time of FindOPT (n) ?

Finding the Optimal Solution

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Case 2: Final interval is in $O(i \in O)$
- $O P T(i)=\max \left\{O P T(i-1), v_{n}+O P T(p(i))\right\}$

Interval Scheduling: Take II

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$

Interval Scheduling: Take III

```
// All inputs are global vars
FindSched (M,n):
    if (n = 0): return \emptyset
    elseif (n = 1): return {1}
    elseif (v
        return {n} + FindSched(M,p(n))
    else:
        return FindSched(M,n-1)
```

- What is the running time of FindSched (n) ?

Now You Try

$M[0]$	$M[1]$	$M[2]$	$M[3]$	$M[4]$	$M[5]$	$M[6]$

Dynamic Programming Recap

- Express the optimal solution as a recurrence
- Identify a small number of subproblems
- Relate the optimal solution on subproblems
- Efficiently solve for the value of the optimum
- Simple implementation is exponential time
- Top-Down: store solution to subproblems
- Bottom-Up: iterate through subproblems in order
- Find the solution using the table of values

