
CS3000: Algorithms & Data
Paul Hand

Lecture 3:

• Asymptotic Analysis
• Divide and Conquer: Mergesort

Jan 16, 2019

Asymptotic Analysis

• “Big-Oh” Notation: ! " = $ % " if there exists
& ∈ 0,∞ and "+ ∈ ℕ such that ! " ≤ & ⋅ % "
for every " ≥ "+.
• Asymptotic version of ! " ≤ % "
• Roughly equivalent to lim3→5

6 3
7 3 < ∞

Asymptotic Order Of Growth

• “Big-Oh” Notation: ! " = $ % " if there exists
& ∈ 0,∞ and "+ ∈ ℕ such that ! " ≤ & ⋅ % "
for every " ≥ "+.
• Asymptotic version of ! " ≤ % "
• Roughly equivalent to lim3→5

6 3
7 3 < ∞

Asymptotic Order Of Growth

• Activity: Which of these statements are true?
• 3": + " = $ ":
• "< = $ ":
• 10"> = $ "?
• log: " = $ logBC "
• " log:(":) = $ " log: "

• Constant factors can be ignored
• ∀" > 0 "% = ' %

• Smaller exponents are Big-Oh of larger exponents
• ∀(>) %* = ' %+

• Any logarithm is Big-Oh of any polynomial
• ∀(, - > 0 log1+ % = ' %2

• Any polynomial is Big-Oh of any exponential
• ∀ (> 0,) > 1 %+ = ')4

• Lower order terms can be dropped
• %1 + %6/1 + % = ' %1

Big-Oh Rules

• “Big-Omega” Notation: ! " = Ω % " if there
exists & ∈ 0,∞ and "+ ∈ ℕ s.t. ! " ≥ & ⋅ % "
for every " ≥ "+.
• Asymptotic version of ! " ≥ % "
• Roughly equivalent to lim2→4

5 2
6 2 > 0

• “Big-Theta” Notation: ! " = Θ % " if there
exists &9 ≤ &; ∈ 0,∞ and "+ ∈ ℕ such that
c; ⋅ % " ≥ ! " ≥ &9 ⋅ % " for every " ≥ "+.
• Asymptotic version of ! " = % "
• Roughly equivalent to lim2→4

5 2
6 2 ∈ 0,∞

Asymptotic Order Of Growth

• We usually write running time as a Big-Theta
• Exact time per operation doesn’t appear
• Constant factors do not appear
• Lower order terms do not appear

• Examples:
• 30 log& ' + 45 = Θ log '
• -' log& 2' = Θ ' log '
• ∑0123 4 = Θ '&

Asymptotic Running Times

• “Little-Oh” Notation: ! " = $ % " if for every
& > 0 there exists ") ∈ ℕ s.t. ! " < & ⋅ % " for
every " ≥ ").
• Asymptotic version of ! " < % "
• Roughly equivalent to lim2→4

5 2
6 2 = 0

• “Little-Omega” Notation: ! " = 7 % " if for
every & > 0 there exists ") ∈ ℕ such that
! " > & ⋅ % " for every " ≥ ").
• Asymptotic version of ! " > % "
• Roughly equivalent to lim2→4

5 2
6 2 = ∞

Asymptotic Order Of Growth

• Fill in the blank with the strongest statement that
applies (!,Ω, Θ, %, &) :
• 15 * log. * = ____ (log. *)
• *. =	______	(5 *.+*)
• 100* = ______ (5 *.+*)
• 36789 :=2678< :

Activity

Sorting – Insertion Sort and Mergesort

Divide and Conquer Algorithms

• Split your problem into smaller subproblems
• Recursively solve each subproblem
• Combine the solutions to the subprobelms

• Examples:
• Mergesort: sorting a list
• Binary Search: search in a sorted list
• Karatsuba’s Algorithm: integer multiplication
• Closest pair of points
• Fast Fourier Transform
• …

• Key Tools:
• Correctness: proof by induction
• Running Time Analysis: recurrences
• Asymptotic Analysis

Divide and Conquer Algorithms

Sorting

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

Given a list of ! numbers,
put them in ascending order

"[1] "[!]

A Simple Algorithm

11 3 42 28 17 8 2 15

A Simple Algorithm: Insertion Sort

11 3 42 28 17 8 2 15

2 3 8 11 15 17 28 42

11 3 15 28 17 8 2 42

Repeat
! − 1 times.

Find the
maximum

Swap it into
place, repeat
on the rest

11 3 15 2 17 8 28 42

A Simple Algorithm: Insertion Sort

11 3 42 28 17 8 2 15

11 3 15 28 17 8 2 42

Find the
maximum

Swap it into
place, repeat
on the rest

Running Time:

Divide and Conquer: Mergesort

11 3 42 28 17 8 2 15Split

11 3 42 28 17 8 2 15

3 11 28 42 2 8 15 17

2 3 8 11 15 17 28 42

Recursively
Sort

Merge

Recursively
Sort

• Key Idea: If !, # are sorted lists of length $, then we can
merge them into a sorted list % of length 2$ in time '$
• Merging two sorted lists is faster than sorting from scratch

3 11 28 42

2 8 15 17

!

#

Divide and Conquer: Mergesort

%

Merging two sorted lists

Merge(L,R):
Let n ← len(L) + len(R)
Let A be an array of length n
j ← 1, k ← 1,

For i = 1,…,n:
If (j > len(L)): // L is empty
A[i] ← R[k], k ← k+1

ElseIf (k > len(R)): // R is empty
A[i] ← L[j], j ← j+1

ElseIf (L[j] <= R[k]): // L is smallest
A[i] ← L[j], j ← j+1

Else: // R is smallest
A[i] ← R[k], k ← k+1

Return A

Merging two sorted lists

Merge(L,R):
Let n ← len(L) + len(R)
Let A be an array of length n
j ← 1, k ← 1,

For i = 1,…,n:
If (j > len(L)): // L is empty
A[i] ← R[k], k ← k+1

ElseIf (k > len(R)): // R is empty
A[i] ← L[j], j ← j+1

ElseIf (L[j] <= R[k]): // L is smallest
A[i] ← L[j], j ← j+1

Else: // R is smallest
A[i] ← R[k], k ← k+1

Return A

• Prove: If L and R are sorted from
smallest to largest, then A is sorted
from smallest to largest.

MergeSort Algorithm

MergeSort(A):
If (len(A) = 1): Return A // Base Case

Let ! ← ⌈ ⁄len()) 2⌉ // Split
Let L ← A[1:m], R ← A[m+1:n]

Let L ← MergeSort(L) // Recurse
Let R ← MergeSort(R)

Let A ← Merge(L,R) // Merge

Return A

Youtube Videos of MergeSort that may be
useful

• https://www.youtube.com/watch?v=XaqR3G_NVoo
• [with folk dance]

• https://youtu.be/kPRA0W1kECg?t=66
• [demonstration of multiple methods]

https://www.youtube.com/watch?v=XaqR3G_NVoo
https://youtu.be/kPRA0W1kECg?t=66

• Claim: The algorithm Mergesort is
correct

Correctness of Mergesort

• Claim:	The	algorithm	Mergesort is	correct

Correctness	of	Mergesort

H n E IN A list A with n numbers Megesort

returns A in sorted order

Inductive Hypothesis H n tf Aof size n MergeSo1,3 covert

Base Case Hh is true obviously
Inductive Step Assume HIM Hh are all true We'll

prove HInti

MergeSort(A):
If (len(A) = 1): Return A // Base Case

Let ! ← ⌈ ⁄len()) 2⌉ // Split
Let L ← A[1:m], R ← A[m+1:n]

Let L ← MergeSort(L) // Recurse
Let R ← MergeSort(R)

Let A ← Merge(L,R) // Merge

Return A

• Claim: The algorithm Mergesort is
correct

Correctness of Mergesort
MergeSort(A):
If (len(A) = 1): Return A // Base Case

Let ! ← ⌈ ⁄len()) 2⌉ // Split
Let L ← A[1:m], R ← A[m+1:n]

Let L ← MergeSort(L) // Recurse
Let R ← MergeSort(R)

Let A ← Merge(L,R) // Merge

Return A

Running Time of Mergesort
MergeSort(A):
If (n = 1): Return A

Let ! ← ⌈ ⁄% &⌉
Let L ← A[1:m]

R ← A[m+1:n]

Let L ← MergeSort(L)
Let R ← MergeSort(R)
Let A ← Merge(L,R)

Return A

Recursion Trees ! " = 2 ⋅ ! ⁄" 2 + ("
! 1 = (

"

"/2 "/2

"/4 "/4 "/4 "/4

…

1 1

Level

0

1

2

log/ "

0

Work at this Level

("

2 ⋅ ("
2 = ("

4 ⋅ ("
4 = ("

21 ⋅ ("
21 = ("

22345 6 ⋅ (= ("

…

Input Size at this Level

• Claim: ! " = $" log(2"

Proof by Induction ! " = 2 ⋅ ! ⁄" 2 + $"
! 1 = $

• Sort a list of ! numbers in Θ(! log' !) time
• Can actually sort anything that allows comparisons
• No comparison based algorithm can be (much) faster

• Divide-and-conquer
• Break the list into two halves, sort each one and merge
• Key Fact: Merging sorted lists is easier than sorting

• Proof of correctness
• Proof by induction

• Analysis of running time
• Recurrences

Mergesort Summary

