CS3000: Algorithms & Data Paul Hand

Lecture 3:

- •
- Asymptotic Analysis Divide and Conquer: Mergesort

Jan 16, 2019

Asymptotic Analysis

Asymptotic Order Of Growth

- "Big-Oh" Notation: f(n) = O(g(n)) if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$.
 - Asymptotic version of $f(n) \leq g(n)$
 - Roughly equivalent to $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$ if this linit exists, f = O(g)

Smaller than or compurable to (up to a constant)

Asymptotic Order Of Growth

- "Big-Oh" Notation: f(n) = O(g(n)) if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$.
 - Asymptotic version of $f(n) \leq g(n)$
 - Roughly equivalent to $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

 $\lim_{n \to \infty} \frac{3n^2 + n}{n^2} = \lim_{n \to \infty} \frac{3t + n}{n} = 30$

$$\lim_{n \to \infty} \frac{n^3}{n^2} = \lim_{n \to \infty} n = \infty$$

- Activity: Which of these statements are true?
 - $3n^2 + n = O(n^2)$
 - $n^3 = O(n^2)$
 - $10n^4 = O(n^5)$
 - $\log_2 n = O(\log_{16} n)$ \top
 - $n \log_2(n^2) = O(n \log_2 n)$ \top

4 log_n = log_n

 $log(n^2)=2log(n)$

Big-Oh Rules

- Constant factors can be ignored
 - $\forall C > 0$ Cn = O(n)
- Smaller exponents are Big-Oh of larger exponents
 - $\forall a > b$ $n^b = O(n^a)$
- Any logarithm is Big-Oh of any polynomial
 - $\forall a, \varepsilon > 0 \quad \log_2^a n = O(n^{\varepsilon})$
- Any polynomial is Big-Oh of any exponential
 - $\forall a > 0, b > 1$ $n^a = O(b^n)$
- Lower order terms can be dropped

•
$$n^2 + n^{3/2} + n = O(n^2)$$

$$l_{0_{2}}^{2_{00}} n = O(n^{0.00001})$$

$$n'' = O(1,0000)^n$$

Asymptotic Order Of Growth

- "Big-Omega" Notation: $f(n) = \Omega(g(n))$ if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ s.t. $f(n) \ge c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of $f(n) \ge g(n)$
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$
- "Big-Theta" Notation: $f(n) = \Theta(g(n))$ if there exists $c_1 \le c_2 \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $c_2 \cdot g(n) \ge f(n) \ge c_1 \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) = g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} \in (0,\infty)$

greater than or Comparable bo (up to Sconstand)

Comparable to (up to constant)

Asymptotic Running Times

• We usually write running time as a Big-Theta

- Exact time per operation doesn't appear
- Constant factors do not appear
- Lower order terms do not appear

• Examples:

- $30 \log_2 n + 45 = \Theta(\log n)$
- $Cn \log_2 2n = \Theta(n \log n)$

•
$$\sum_{i=1}^{n} i = \Theta(n^2)$$

 $\sum_{i=1}^{n} i = \frac{\Theta(n^2)}{2}$
 $\sum_{i=1}^{n} i = \frac{\Omega(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2} = \Theta(n^2)$

Asymptotic Order Of Growth

- "Little-Oh" Notation: f(n) = o(g(n)) if for every c > 0 there exists $n_0 \in \mathbb{N}$ s.t. $f(n) < c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) < g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
- "Little-Omega" Notation: $f(n) = \omega(g(n))$ if for every c > 0 there exists $n_0 \in \mathbb{N}$ such that $f(n) > c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) > g(n)
 - Roughly equivalent to $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

	lim fig n-sm
f = O(q)	$<\infty$
$\int = O(g)$	> o
$f = \Delta L(J)$	$< \infty \& > 0$
f= G(9)	= 0
f = o(g)	
f = w(g)	

Activity

- all that apply Fill in the blank with the strongest statement that applies $(O, \Omega, \Theta, o, \omega)$:
 - $15 n \log_2 n = \mathcal{A}, \forall (\log_2 \sqrt{n})$
 - $n^2 = \frac{O_n Q}{(5 n^2 + n)}$

log_In= 1/2 logn but constants don't matter • $100n = \underline{o}, 0$ $(5n^2 + n)$ • $3\log_2 n = 2\log_3 n$ $(2^{\log_3 n})$ $(2^$

Sorting – Insertion Sort and Mergesort

Divide and Conquer Algorithms

- Split your problem into smaller subproblems
- Recursively solve each subproblem
- Combine the solutions to the subprobelms

Divide and Conquer Algorithms

• Examples:

- Mergesort: sorting a list
- Binary Search: search in a sorted list
- Karatsuba's Algorithm: integer multiplication
- Closest pair of points
- Fast Fourier Transform

• ...

• Key Tools:

- Correctness: proof by induction
- Running Time Analysis: recurrences
- Asymptotic Analysis

Sorting

A Simple Algorithm

11	3	42	28	17	8	2	15

A Simple Algorithm: Insertion Sort

A Simple Algorithm: Insertion Sort

Running Time:

ſΙ $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = G(n^2)$ + N-1 ر ر ا + n - 2e n 1 + 2

Divide and Conquer: Mergesort

Divide and Conquer: Mergesort

- Key Idea: If *L*, *R* are sorted lists of length *n*, then we can merge them into a sorted list *A* of length 2*n* in time *Cn*
 - Merging two sorted lists is faster than sorting from scratch

· · · · · ·

Merging two sorted lists

```
Merge(L,R):
  Let n \leftarrow len(L) + len(R)
  Let A be an array of length n
                                           -Same for R
  j \leftarrow 1, k \leftarrow 1,
  painter for where you are in L
  For i = 1, ..., n:
    If (j > len(L)): // L is empty
      A[i] \leftarrow R[k], k \leftarrow k+1
    ElseIf (k > len(R)): // R is empty
      A[i] \leftarrow L[j], j \leftarrow j+1
    ElseIf (L[j] <= R[k]): // L is smallest</pre>
      A[i] \leftarrow L[j], j \leftarrow j+1
                                   // R is smallest
    Else:
      A[i] \leftarrow R[k], k \leftarrow k+1
```

Return A

Merging two sorted lists

```
Merge(L,R):
  Let n \leftarrow len(L) + len(R)
  Let A be an array of length n
  j \leftarrow 1, k \leftarrow 1,
  For i = 1, ..., n:
    If (j > len(L)): // L is empty
      A[i] \leftarrow R[k], k \leftarrow k+1
    ElseIf (k > len(R)): // R is empty
      A[i] \leftarrow L[j], j \leftarrow j+1
    ElseIf (L[j] <= R[k]): // L is smallest</pre>
      A[i] \leftarrow L[j], j \leftarrow j+1
                                    // R is smallest
    Else:
      A[i] \leftarrow R[k], k \leftarrow k+1
```

 Prove: If L and R are sorted from smallest to largest, then A is sorted from smallest to largest.

Return A

MergeSort Algorithm

```
MergeSort(A):
  If (len(A) = 1): Return A // Base Case
 Let m \leftarrow [len(A)/2] // Split
 Let L \leftarrow A[1:m], R \leftarrow A[m+1:n]
 Let L 

MergeSort(L) // Recurse
 Let R \leftarrow MergeSort(R)
 Let A \leftarrow Merge(L,R)
                                  // Merge
 Return A
```

Youtube Videos of MergeSort that may be useful

- <u>https://www.youtube.com/watch?v=XaqR3G_NVoo</u>
- [with folk dance]
- https://youtu.be/kPRA0W1kECg?t=66
- [demonstration of multiple methods]

Correctness of Mergesort

• Claim: The algorithm Mergesort is correct

MergeSort(A): If (len(A) = 1): Return A // Base Case Let $m \leftarrow [len(A)/2]$ // Split Let L \leftarrow A[1:m], R \leftarrow A[m+1:n] Let L \leftarrow MergeSort(L) // Recurse Let R \leftarrow MergeSort(R) // Merge

Return A

Inductive Hypothesis:
$$H(n) = H A \text{ of size } n \text{ MergeSot is convert}$$

Base (ase: $H(1)$ is true, obviously
Inductive Step: Assume $H(1)_{,--,} H(n)$ are all true. We'll
prove $H(n+1)$.

Correctness of Mergesort

• Claim: The algorithm Mergesort is correct

Inductive Steps Assume: Merge Sort is correct for all A of size $\leq n$. Want to show: Merge Sort is correct for all A of size n+1Consider on A of size n+1. $\mathbb{O} \left[\frac{n+1}{2}\right] \leq n - \left[\frac{n+1}{2}\right] \leq n$

- Q L, R both correctly sorted by inductive hypothesis (
- (3) L_1R sorted \Rightarrow A sorted.

MergeSort(A): If (len(A) = 1): Return A // Base Case Let $m \leftarrow [len(A)/2]$ // Split Let L \leftarrow A[1:m], R \leftarrow A[m+1:n] Let L \leftarrow MergeSort(L) // Recurse Let R \leftarrow MergeSort(R) Let A \leftarrow Merge(L,R) // Merge

Return A

Running Time of Mergesort

```
MergeSort(A):
  If (n = 1): Return A
  Let m \leftarrow \lfloor n/2 \rfloor
  Let L \leftarrow A[1:m]
          R \leftarrow A[m+1:n]
  Let L \leftarrow MergeSort(L)
  Let R \leftarrow MergeSort(R)
  Let A \leftarrow Merge(L, R)
  Return A
```

```
T(n) = Eime \ bo \ sort \ list \\ of \ size \ n \\T(1) = C \\ T(n) = 2 \ T(\frac{n}{2}) + C \ n \\So what is T(n) ?
```


Proof by Induction

$$T(n) = 2 \cdot T(n/2) + Cn$$
$$T(1) = C$$

• Claim: $T(n) = Cn \log_2 2n$

Mergesort Summary

- Sort a list of n numbers in $\Theta(n \log_2 n)$ time
 - Can actually sort anything that allows comparisons
 - No comparison based algorithm can be (much) faster
- Divide-and-conquer
 - Break the list into two halves, sort each one and merge
 - Key Fact: Merging sorted lists is easier than sorting
- Proof of correctness
 - Proof by induction
- Analysis of running time
 - Recurrences