CS3000: Algorithms \& Data Paul Hand

Lecture 3 :

- Asymptotic Analysis
- Divide and Conquer: Mergesort

Jan 16, 2019

Asymptotic Analysis

Asymptotic Order Of Growth

- "Big-Oh" Notation: $f(n)=O(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \leq g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$

Asymptotic Order Of Growth

- "Big-Oh" Notation: $f(n)=O(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \leq g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$
- Activity: Which of these statements are true?
- $3 n^{2}+n=O\left(n^{2}\right)$
- $n^{3}=O\left(n^{2}\right)$
- $10 n^{4}=O\left(n^{5}\right)$
- $\log _{2} n=O\left(\log _{16} n\right)$
- $n \log _{2}\left(n^{2}\right)=O\left(n \log _{2} n\right)$

Big-Oh Rules

- Constant factors can be ignored
- $\forall C>0 \quad C n=O(n)$
- Smaller exponents are Big-Oh of larger exponents
- $\forall a>b \quad n^{b}=O\left(n^{a}\right)$
- Any logarithm is Big-Oh of any polynomial
- $\forall a, \varepsilon>0 \quad \log _{2}^{a} n=O\left(n^{\varepsilon}\right)$
- Any polynomial is Big-Oh of any exponential
- $\forall a>0, b>1 \quad n^{a}=O\left(b^{n}\right)$
- Lower order terms can be dropped
- $n^{2}+n^{3 / 2}+n=O\left(n^{2}\right)$

Asymptotic Order Of Growth

- "Big-Omega" Notation: $f(n)=\Omega(g(n))$ if there exists $c \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ s.t. $f(n) \geq c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n) \geq g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0$
- "Big-Theta" Notation: $f(n)=\Theta(g(n))$ if there exists $c_{1} \leq c_{2} \in(0, \infty)$ and $n_{0} \in \mathbb{N}$ such that $\mathrm{c}_{2} \cdot g(n) \geq f(n) \geq c_{1} \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)=g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \in(0, \infty)$

Asymptotic Running Times

- We usually write running time as a Big-Theta
- Exact time per operation doesn't appear
- Constant factors do not appear
- Lower order terms do not appear
- Examples:
- $30 \log _{2} n+45=\Theta(\log n)$
- $C n \log _{2} 2 n=\Theta(n \log n)$
- $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

Asymptotic Order Of Growth

- "Little-Oh" Notation: $f(n)=o(g(n))$ if for every $c>0$ there exists $n_{0} \in \mathbb{N}$ s.t. $f(n)<c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)<g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- "Little-Omega" Notation: $f(n)=\omega(g(n))$ if for every $c>0$ there exists $n_{0} \in \mathbb{N}$ such that $f(n)>c \cdot g(n)$ for every $n \geq n_{0}$.
- Asymptotic version of $f(n)>g(n)$
- Roughly equivalent to $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

Activity

- Fill in the blank with the strongest statement that applies $(O, \Omega, \Theta, o, \omega)$:
- $15 n \log _{2} n=\ldots\left(\log _{2} \sqrt{n}\right)$
- $n^{2}=\quad\left(5 n^{2}+n\right)$
- $100 n=$ $\left(5 n^{2}+n\right)$
- $3^{\log _{2} n}=2^{\log _{3} n}$

Sorting - Insertion Sort and Mergesort

Divide and Conquer Algorithms

- Split your problem into smaller subproblems
- Recursively solve each subproblem
- Combine the solutions to the subprobelms

Divide and Conquer Algorithms

- Examples:
- Mergesort: sorting a list
- Binary Search: search in a sorted list
- Karatsuba's Algorithm: integer multiplication
- Closest pair of points
- Fast Fourier Transform
- ...
- Key Tools:
- Correctness: proof by induction
- Running Time Analysis: recurrences
- Asymptotic Analysis

Sorting

11	3	42	28	17	8	2	15
$A[1]$							$A[n]$

Given a list of n numbers, put them in ascending order

2	3	8	11	15	17	28	42

A Simple Algorithm

11	3	42	28	17	8	2	15

A Simple Algorithm: Insertion Sort

Find the maximum

$$
\begin{array}{|llllllll|}
\hline 11 & 3 & 42 & 28 & 17 & 8 & 2 & 15 \\
\hline
\end{array}
$$

Swap it into place, repeat on the rest

11	3	15	28	17	8	2	42

11	3	15	2	17	8	28	42

$\sqrt{\square} \begin{gathered}\text { Repeat } \\ n-1 \text { times. }\end{gathered}$

2	3	8	11	15	17	28	42

A Simple Algorithm: Insertion Sort

Find the maximum

11	3	42	28	17	8	2	15

Swap it into
place, repeat
on the rest

11	3	15	28	17	8	2	42

Running Time:

Divide and Conquer: Mergesort

Divide and Conquer: Mergesort

- Key Idea: If $\boldsymbol{L}, \boldsymbol{R}$ are sorted lists of length n, then we can merge them into a sorted list \boldsymbol{A} of length $2 n$ in time $C n$
- Merging two sorted lists is faster than sorting from scratch

\square

Merging two sorted lists

```
Merge (L,R) :
    Let n}\leftarrow\operatorname{len(L) + len(R)
    Let A be an array of length n
    j}\leftarrow1, k \leftarrow 1,
    For i = 1,\ldots,n:
    If (j > len(L)): // L is empty
        A[i]}\leftarrow\textrm{R}[\textrm{k}],\textrm{k}\leftarrow\textrm{k}+
        ElseIf (k > len(R)): // R is empty
        A[i] }\leftarrowL[j], j \leftarrow j+1
        ElseIf (L[j] <= R[k]): // L is smallest
        A[i] }\leftarrowL[j], j \leftarrow j+1
        Else: // R is smallest
        A[i]}\leftarrow\textrm{R}[\textrm{k}],\textrm{k}\leftarrow\textrm{k}+
Return A
```


Merging two sorted lists

```
Merge (L,R) :
    Let n}\leftarrow\operatorname{len(L) + len(R)
    Let A be an array of length n
    j}\leftarrow1, k \leftarrow 1,
    For i = 1,\ldots,n:
        If (j > len(L)): // L is empty
        A[i]}\leftarrow\textrm{R}[\textrm{k}],\textrm{k}\leftarrow\textrm{k}+
        ElseIf (k > len(R)): // R is empty
        A[i] }\leftarrowL[j], j \leftarrow j+1
        ElseIf (L[j] <= R[k]): // L is smallest
        A[i] }\leftarrow L[j], j \leftarrow j+1
        Else: // R is smallest
        A[i]}\leftarrow\textrm{R}[\textrm{k}],\textrm{k}\leftarrow\textrm{k}+
    Return A
```

- Prove: If L and R are sorted from smallest to largest, then A is sorted from smallest to largest.

MergeSort Algorithm

```
MergeSort(A):
    If (len(A) = 1): Return A // Base Case
    Let }m\leftarrow\lceillen(A)/2\rceil // Spli
    Let L}\leftarrowA[1:m], R \leftarrowA[m+1:n]
    Let L }\leftarrow\mathrm{ MergeSort(L) // Recurse
    Let R}\leftarrow\mathrm{ MergeSort(R)
    Let A }\leftarrow\mathrm{ Merge(L,R) // Merge
    Return A
```

MergeSort (A) :
Correctness of Mergesort

- Claim: The algorithm Mergesort is correct

If (len $(A)=1):$ Return A // Base Case
Let $m \leftarrow\lceil\operatorname{len}(A) / 2\rceil \quad / /$ Split
Let $\mathrm{L} \leftarrow \mathrm{A}[1: \mathrm{m}], \mathrm{R} \leftarrow \mathrm{A}[\mathrm{m}+1: \mathrm{n}]$
Let $L \leftarrow$ MergeSort (L) // Recurs
Let $R \leftarrow$ MergeSort (R)
Let $A \leftarrow$ Merge $(L, R) \quad / /$ Merge
Return A
$\forall n \in \mathbb{N} \quad \forall$ list A with n numbers Mergesort returns A in sorted order

Inductive Hypothesis: $\quad H(n)=\forall A$ of size n Merge Sot is correct
Base Case: $H(1)$ is true, obviously
Inductive Step: Assume $H(1), \ldots, H(n)$ are all true. Weill prove $H(n+1)$.

MergeSort (A) :
If (len $(A)=1):$ Return A // Base Case
Let $m \leftarrow\lceil\operatorname{len}(A) / 2\rceil \quad / /$ Split
Let $L \leftarrow A[1: m], R \leftarrow A[m+1: n]$
Let $L \leftarrow$ MergeSort(L)
// Recurse
Let $R \leftarrow$ MergeSort(R)

Let $A \leftarrow$ Merge (L, R)
// Merge

Return A

Consider on A of size $n+1$.
(1) $\left\lceil\frac{n+1}{2}\right\rceil$ \& $n-\left\lceil\frac{n+1}{2}\right\rceil \leqslant n$
(2) L, R bath corrcetly sorted
by inductive hypothesis
(3) $L_{1} R$ sortal $\Rightarrow A$ sarted.

Running Time of Mergesort

```
MergeSort(A):
    If (n = 1): Return A
    Let m}\leftarrow\lceiln/2
    Let L}\leftarrowA[1:m
        R}\leftarrow\textrm{A}[\textrm{m}+1:\textrm{n}
    Let L }\leftarrow\mathrm{ MergeSort(L)
    Let R \leftarrow MergeSort(R)
    Let A}\leftarrow Merge(L,R
    Return A
```


Recursion Trees

$$
\begin{aligned}
& T(n)=2 \cdot T(n / 2)+C n \\
& T(1)=C
\end{aligned}
$$

Level

Work at this Level

$$
\begin{gathered}
C n \\
2 \cdot\left(\frac{C n}{2}\right)=C n \\
4 \cdot\left(\frac{C n}{4}\right)=C n \\
2^{i} \cdot\left(\frac{C n}{2^{i}}\right)=C n
\end{gathered}
$$

$$
2^{\log _{2} n} \cdot C=C n
$$

Proof by Induction

$$
\begin{aligned}
& T(n)=2 \cdot T(n / 2)+C n \\
& T(1)=C
\end{aligned}
$$

- Claim: $T(n)=C n \log _{2} 2 n$

Mergesort Summary

- Sort a list of n numbers in $\Theta\left(n \log _{2} n\right)$ time
- Can actually sort anything that allows comparisons
- No comparison based algorithm can be (much) faster
- Divide-and-conquer
- Break the list into two halves, sort each one and merge
- Key Fact: Merging sorted lists is easier than sorting
- Proof of correctness
- Proof by induction
- Analysis of running time
- Recurrences

