CS3000: Algorithms & Data Paul Hand

Lecture 3:

- Stable Matching: Gale-Shapley Algorithm
- Asymptotic Analysis

Jan 14, 2019

Stable Matching Problem

 Many job candidates (eg. doctors). Many jobs (eg. residency programs). You are to assign candidates to jobs. How should you do it?

Stable Matching Problem

Many job candidates (eg. doctors). Many jobs (eg. residency programs). You are to assign candidates to jobs. How should you do it?

A matching is stable if it has no instabilities
An instability is

$$(c, j) \in M$$
, j'unmatched, and $(j' > j' > j)$
 $(c, j) \in M$, c'unmatched, and $j \approx c' > c$
 $(c, j) \in M$, but $(c = j' > j)$
 $(c, j) \in M$ but $(c = j' > j)$
 $(c, j) \in M$ but $(c = j' > j)$
 $(c, j) \in M$ but $(c = j' > j)$

Stable Matching - Questions · For any set of preferences, does a stable matching exist? · Can there be more than one stable matching? · How can you find one if it exists?

Gale-Shapley Algorithm

```
Let M be empty
While (some job j is unmatched):

If (j has offered a job to everyone): break
Else: let c be the highest-ranked candidate to which j has not yet offered a job
j makes an offer to c:

If (c is unmatched):
c accepts, add (c,j) to M
ElseIf (c is matched to j' & c: j' > j):
c rejects, do nothing
ElseIf (c is matched to j' & c: j > j'):
c accepts, remove (c,j') from M and add (c,j) to M
```

```
• Output M
```

Gale-Shapley Algorithm

```
Let M be empty
While (some job j is unmatched):

If (j has offered a job to everyone): break
Else: let c be the highest-ranked candidate to which j has not yet offered a job
j makes an offer to c:

If (c is unmatched):
c accepts, add (c,j) to M
ElseIf (c is matched to j' & c: j' > j):
c rejects, do nothing
ElseIf (c is matched to j' & c: j > j'):
c accepts, remove (c,j') from M and add (c,j) to M
```

What matching does the algorithm give this data for jobs (j1 and j2) and candidates (c1 and c2)?

	1st	2nd
j1	c1	c2
j2	c2	c1

	1st	2nd
c1	j2	j1
c2	j1	j2

• Output M

Gale-Shapley Algorithm

- Questions about the Gale-Shapley Algorithm:
 - Will this algorithm terminate? After how long?
 - Does it output a perfect matching?
 - Does it output a stable matching?
 - How do we implement this algorithm efficiently?

Observations about GS

```
Let M be empty
While (some job j is unmatched):

If (j has offered a job to everyone): break
Else: let c be the highest-ranked candidate to which j has not yet offered a job
j makes an offer to c:

If (c is unmatched):
c accepts, add (c,j) to M
ElseIf (c is matched to j' & c: j' > j):
c rejects, do nothing
ElseIf (c is matched to j' & c: j > j'):
c accepts, remove (c,j') from M and add (c,j) to M
```

• At all steps, the state of the algorithm is matching.

 Jobs make offers in descending order

 Candidates that get a job never become unemployed

• Candidates accept offers in ascending order

Does the GS algorithm terminate?

```
Let M be empty
While (some job j is unmatched):

If (j has offered a job to everyone): break
Else: let c be the highest-ranked candidate to which j has not yet offered a job
j makes an offer to c:

If (c is unmatched):
c accepts, add (c,j) to M
ElseIf (c is matched to j' & c: j' > j):
c rejects, do nothing
ElseIf (c is matched to j' & c: j > j'):
c accepts, remove (c,j') from M and add (c,j) to M

Output M
```

 Claim: The GS algorithm terminates after n² iterations of the main loop

Is the output a perfect matching?

```
Let M be empty
While (some job j is unmatched):

If (j has offered a job to everyone): break
Else: let c be the highest-ranked candidate to which j has not yet offered a job
j makes an offer to c:

If (c is unmatched):
c accepts, add (c,j) to M
ElseIf (c is matched to j' & c: j' > j):
c rejects, do nothing
ElseIf (c is matched to j' & c: j > j'):
c accepts, remove (c,j') from M and add (c,j) to M

Output M
```

 Claim: The GS algorithm outputs a perfect matching (all jobs are matched and all candidates are matched).

Is the output a stable matching?

```
Let M be empty
While (some job j is unmatched):

If (j has offered a job to everyone): break
Else: let c be the highest-ranked candidate to which j has not yet offered a job
j makes an offer to c:

If (c is unmatched):
c accepts, add (c,j) to M

ElseIf (c is matched to j' & c: j' > j):

c rejects, do nothing
ElseIf (c is matched to j' & c: j > j'):
c accepts, remove (c,j') from M and add (c,j) to M
```

An instability is

$$(C, j) \in M$$
, j'unmatched, and $C: j' \neq j$.
 $(C, j) \in M$, C'unmatched, and $j \circ C' \neq C$
 $(C, j) \in M$ but $C \circ j' \neq j$
 $\binom{c}{(C', j') \in M}$ but $\int c \neq C'$

- Claim: The GS algorithm outputs a stable matching.
- Proof by contradiction:
 Suppose there is an instability

Running time of GS?

```
• Let M be empty
```

```
• While (some job j is unmatched):
```

- If (j has offered a job to everyone): break
- Else: let c be the highest-ranked candidate to which j has not yet offered a job
- j makes an offer to c:
 - If (c is unmatched):
 - c accepts, add (c,j) to M
 - ElseIf (c is matched to j' & c: j' > j):
 - c rejects, do nothing
 - ElseIf (c is matched to j' & c: j > j'):
 - c accepts, remove (c,j') from M and add (c,j) to M
- Output M

• Running Time:

• A straightforward implementation requires $\approx n^3$ operations, $\approx n^2$ space

Better data structure

• Let M be empty

• While (some job j is unmatched):

- If (j has offered a job to everyone): break
- Else: let c be the highest-ranked candidate to which j has not yet offered a job

• j makes an offer to c:

• If (c is unmatched):

- c accepts, add (c,j) to M
- ElseIf (c is matched to j' & c: j' > j):
 c rejects, do nothing
- ElseIf (c is matched to j' & c: j > j'):
 - c accepts, remove (c,j') from M and add (c,j) to M

• Output M

	1st	2nd	3rd	4th	5th		MGH	BW	BID	МТА	СН
Alice	СН	MGH	BW	MTA	BID	Alice	2 nd	3 rd	5 th	4 th	1 st
Bob	BID	BW	MTA	MGH	СН	Bob	4 th	2 nd	1 st	3 rd	5 th
Clara	BW	BID	MTA	СН	MGH	Clara	5 th	1 st	2 nd	3 rd	4 th
Dorit	MGH	СН	MTA	BID	BW	Dorit	1 st	5 th	4 th	3 rd	2 nd
Ernie	MTA	BW	СН	BID	MGH	Ernie	5 th	2 nd	4 th	1 st	3 rd

• Running Time:

• A careful implementation requires $\approx n^2$ operations, $\approx n^2$ space

Notes for instructo Students may ignor because they are re elsewhere

Perfect Matching
$${}^{\circ}_{0}$$

Suppose a job is unmatched.
. Job offer was made to all candidates
. All condidates have a job
. So some candidate is matched with this job
. So some candidate is unmatched.
Suppose a candidate is unmatched.
. Some job is unmatched.
. Controdiction

Asymptotic Analysis

Analyzing run time of algorithms

- Predicting the wall-clock time of an algorithm is basically impossible.
 - What machine will actually run the algorithm?
 - Impossible to exactly count "operations"?
 - Which data will it be applied to?

• What do we do instead?

• We compare how the algorithm scales with lots of data.

Common computational complexity rates (and what they mean in time)

	п	$n \log_2 n$	n^2	n ³	1.5^{n}	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Common computational complexity rates Additional complexity rates (and what they mean in time)

	п	$n \log_2 n$	<i>n</i> ²	n^3	1.5^{n}	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Activity:

Suppose 1 million write an essay for a standardized test each year. You have code that takes two essays as input and outputs if there is plagiarism. You want to determine if there is any plagiarism by comparing all possible pairs of essays. Roughly how long will it take?

Common computational complexity rates (and what they mean in time)

	п	$n \log_2 n$	<i>n</i> ²	<i>n</i> ³	1.5^{n}	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Activity:

Suppose someone's password was an arbitrary sequence of 50 bits. Someone wants to hack it by trying all possible passwords. Roughly how long will this take?

Asymptotic Order Of Growth

- "Big-Oh" Notation: f(n) = O(g(n)) if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$.
 - Asymptotic version of $f(n) \leq g(n)$
 - Roughly equivalent to $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

Asymptotic Order Of Growth

- "Big-Oh" Notation: f(n) = O(g(n)) if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for every $n \geq n_0$.
 - Asymptotic version of $f(n) \leq g(n)$
 - Roughly equivalent to $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$
 - Activity: Which of these statements are true?
 - $3n^2 + n = O(n^2)$
 - $n^3 = O(n^2)$
 - $10n^4 = O(n^5)$
 - $\log_2 n = O(\log_{16} n)$
 - $n\log_2(n^2) = O(n\log_2 n)$

Big-Oh Rules

- Constant factors can be ignored
 - $\forall C > 0$ Cn = O(n)
- Smaller exponents are Big-Oh of larger exponents
 - $\forall a > b$ $n^b = O(n^a)$
- Any logarithm is Big-Oh of any polynomial
 - $\forall a, \varepsilon > 0 \quad \log_2^a n = O(n^{\varepsilon})$
- Any polynomial is Big-Oh of any exponential
 - $\forall a > 0, b > 1$ $n^a = O(b^n)$
- Lower order terms can be dropped
 - $n^2 + n^{3/2} + n = O(n^2)$

Asymptotic Order Of Growth

- "Big-Omega" Notation: $f(n) = \Omega(g(n))$ if there exists $c \in (0, \infty)$ and $n_0 \in \mathbb{N}$ s.t. $f(n) \ge c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of $f(n) \ge g(n)$
 - Roughly equivalent to $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$
- "Big-Theta" Notation: $f(n) = \Theta(g(n))$ if there exists $c_1 \le c_2 \in (0, \infty)$ and $n_0 \in \mathbb{N}$ such that $c_2 \cdot g(n) \ge f(n) \ge c_1 \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) = g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} \in (0,\infty)$

Asymptotic Running Times

• We usually write running time as a Big-Theta

- Exact time per operation doesn't appear
- Constant factors do not appear
- Lower order terms do not appear

• Examples:

- $30 \log_2 n + 45 = \Theta(\log n)$
- $Cn \log_2 2n = \Theta(n \log n)$
- $\sum_{i=1}^{n} i = \Theta(n^2)$

Asymptotic Order Of Growth

- "Little-Oh" Notation: f(n) = o(g(n)) if for every c > 0 there exists $n_0 \in \mathbb{N}$ s.t. $f(n) < c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) < g(n)
 - Roughly equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
- "Little-Omega" Notation: $f(n) = \omega(g(n))$ if for every c > 0 there exists $n_0 \in \mathbb{N}$ such that $f(n) > c \cdot g(n)$ for every $n \ge n_0$.
 - Asymptotic version of f(n) > g(n)

• Roughly equivalent to
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$

Activity

- Fill in the blank with the strongest statement that applies $(O, \Omega, \Theta, o, \omega)$:
 - $15 n \log_2 n = (\log_2 \sqrt{n})$
 - $n^2 = (5 n^2 + n)$
 - $100n = ___(5 n^2 + n)$
 - $3^{\log_2 n} = 2^{\log_3 n}$