CS3000: Algorithms & Data
Paul Hand

Lecture 3:
e Stable Matching: Gale-Shapley Algorithm

 Asymptotic Analysis

Jan 14, 2019

Stable Matching Problem

* Many job candidates (eg. doctors). Many jobs (eg.
residency programs). You are to assign candidates
to jobs. How should you do it?

Stable M“£MMZM‘6 makes_an okt goord ¥

“ob paic prefas cach obher
No ((JHOI(J’“&@"JCZB pait /7167%”5 ac

over what Hm@j have.

Stable Matching Problem

* Many job candidates (eg. doctors). Many jobs (eg.
residency programs). You are to assign candidates
to jobs. How should you do it?

/& has no inskbilities

/AY i’VW(,’Cl'\Hy i 560‘\}316 /T

stubility 15 , '

AY\ n _.__.} - .ﬁ,bé‘;p‘ nd C: J1>J_
0 (C‘,J)6/V\ y J Unmalc p K

| Jeo ¢ >C

]
and

, ((,J)C’/Vl} Ci unmaic%éfﬁ/

, (CO)EM e CB 9

et em J

Sto«blé /\/\akc}w’y — Questions

or an set of Pféféfénccfsj docs @ stable /haéd@o exist’
. Can Lhere he mere Lhen one stuble rnatcwy?
o How con Yo Sind one 1§ it exists T

Gale-Shapley Algorithm

e Let M be empty
+ While (some job j is unmatched) :
« If (j has offered a job to everyone): break
e Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e J makes an offer to c:
e If (c is unmatched):
« c accepts, add (c,j) to M
+ ElseIf (c is matched to j’ & c: j’' > j):
e ¢ rejects, do nothing
* ElseIf (c is matched to j’ & c: jJ > 3'):
e c accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

Gale-Shapley Algorithm

e Let M be

+ While (some job j is unmatched) :
« If (j has offered a job to everyone): break
let c be the highest-ranked candidate

e Else:

empty

to which j has not yet offered a job

e J makes an offer to c:
e If (c is unmatched):

« c accepts, add (c,j) to M

o ElseIf (c is matched to j’
* ¢ rejects, do nothing
e ElseIf (c is matched to j’

& C:

& C:

" > 3J):

j>3'):

e c accepts, remove (c,j’) from M and

e Output M

add (c,j) to M

What matching does the
algorithm give this data for
jobs (j1 and j2) and candidates
(c1andc2)?

| st | 2nd |
IIE!II cl c2
IIE’II c2 cl

Gale-Shapley Algorithm

* Questions about the Gale-Shapley Algorithm:
e Will this algorithm terminate? After how long?
* Does it output a perfect matching?
* Does it output a stable matching?
 How do we implement this algorithm efficiently?

* At all steps, the state of the

Observations about GS algorithm is matching.

 Let M be empty . .
- While (some job j is unmatched) : * Jobs make offers in descending

« If (j has offered a job to everyone): break order
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M . .
. ElseIf (c is matched to j’ & c: j’ > j): * Candidates that get a job never
« ¢ rejects, do nothing become unemp|oyed

e ElseIf (c is matched to j’ & c: j > j’):
e c accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

* Candidates accept offers in
ascending order

* Claim: The GS algorithm
terminates after n?
iterations of the main loop

Does the GS algorithm terminate?

 Let M be empty
e While (some job j is unmatched):
« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: 3’ > j):
e ¢ rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j’):
e c accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

* Claim: The GS algorithm
outputs a perfect matching
(all jobs are matched and all

e candidates are matched).

e While (some job j is unmatched):
« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched):
e c accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: 3’ > j):
e ¢ rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j’):
e c accepts, remove (c,j’) from M and
add (c,j) to M
e Output M

s the output a perfect matching?

* Claim: The GS algorithm outputs a

s the output a stable matching? ., matching.

» Let M be empty HPaS o .
» While (some job j is unmatched): * PrOOf by Contrad|Ct|0n.
e If (j has offered a job to everyone): break SUppose there is an |n5tab|llty

* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched) :
e c accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: 3’ > j):
* c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j'):
e c accepts, remove (c,]j’) from M and
add (c,j) to M

» Output M
nstability 15 L
An 15 ad CP 02

3, 1)
0 ,(Cl J)C’ M y J U(\f“lﬂ[«(/J/'C'bQ ,

f
and

' Jo c'>e
((,J)C/V\/ Cl unmialﬁgﬂ,
s (CH)eM e Co Y jJ
8(C|Jj\)c/\/\ J A C C

_ _ * Running Time:
Running time of GS? * A straightforward implementation

requires = n> operations, = n? space
» Let M be empty

» While (some job j is unmatched) :
e« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
e j makes an offer to c:
e If (c is unmatched) :
e c accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: j’ > j):
* c rejects, do nothing
e ElseIf (c is matched to j’ & c: j > j'):
e c accepts, remove (c,j’) from M and
add (c,j) to M
» Output M

* Running Time:
Better data structure e A careful implementation requires =~ n?

» Let M be empty operations, = nz Space
» While (some job j is unmatched):
« If (j has offered a job to everyone): break
* Else: let c be the highest-ranked candidate
to which j has not yet offered a job
* j makes an offer to c:
e If (c is unmatched):
e Cc accepts, add (c,j) to M
e ElseIf (c is matched to j’ & c: 3’ > j):
* ¢ rejects, do nothing
* ElseIf (c is matched to j’ & c: j > j'):
e c accepts, remove (c,j’) from M and
add (c,j) to M

Bob 1t 3d g

MTA MGH
MTA MGH l 2nd - 3rd - gth

MGH CH MTA BID BW

MTA BW CH BID MGH

Notes for instructor
Students may ignore
because they are repeated
elsewhere

Praa%%

u’laélC)r’\ |
o Foch 00{3 makey & MR one new offer.
l sible offers
(I:U&L' lOoSﬁ/b ot
OHj ﬂ
Péf)cécé Maéchmj%
ob s ynma tched. "

Seppose @

é’b a’ [{(;’l(/l&
mae
TJob a(fcr was

de

" | Al codidates have job o e
¥ o;/ te is maéchf C”hm'd,,,)
_ S0 Some can
atct/'C'L o
Nule 18ounm - b
Sbﬂpﬂ’ﬁf 43 Cﬂml"fl(;i” wma}dﬂ(" Conbrodic
. Some ¢
Stability® R
/A(5 maéc lry 5 P({féa J
o J f‘)
s (CJ)(M o G5
(<l J‘)CM Je) b
dod ke C C hat ©)¢
At o oY J' ot N al lesst
Lo [east @ j&m as 3.
’ CO/\(:(&W’!C(’N'\

as jac/‘ as J'

Asymptotic Analysis

Analyzing run time of algorithms

* Predicting the wall-clock time of an
algorithm is basically impossible.
* What machine will actually run the algorithm?
* Impossible to exactly count “operations”?
e Which data will it be applied to?

e What do we do instead?

* We compare how the algorithm scales with lots
of data.

Common computational complexity rates
(and what they mean in time)

2

3

n nlog,n n n 1.5" e n!
n=10 < 1sec < 1 sec < 1sec < 1 sec < 1sec < 1 sec 4 sec
n=30 <lsec <lsec <1sec <1 sec <1 sec 18 min 10%° years
n=>50 < 1sec < 1 sec < 1sec < 1 sec 11 min 36 years very long
n =100 < 1sec < 1sec < 1sec 1 sec 12,892 years 107 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n =1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Common computational complexity rates
(and what they mean in time)

n nlog,n n? n3 1.5" 2n n!
n=10 < 1sec < 1 sec < 1sec < 1 sec < 1sec < 1 sec 4 sec
n=30 <lsec <lsec <1sec <1 sec <1 sec 18 min 10%° years
n=>50 < 1sec < 1 sec < 1sec < 1 sec 11 min 36 years very long
n =100 < 1sec < 1sec < 1sec 1 sec 12,892 years 107 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Activity:

Suppose 1 million write an
essay for a standardized test
each year. You have code
that takes two essays as
input and outputs if there is
plagiarism. You want to
determine if there is any
plagiarism by comparing all
possible pairs of essays.
Roughly how long will it
take?

Common computational complexity rates
(and what they mean in time)

2

3

n nlog,n n n 1.5" e n!
n=10 < 1sec < 1 sec < 1sec < 1 sec < 1sec < 1 sec 4 sec
n=30 <lsec <lsec <1sec <1 sec <1 sec 18 min 10%° years
n=>50 < 1sec < 1 sec < 1sec < 1 sec 11 min 36 years very long
n =100 < 1sec < 1sec < 1sec 1 sec 12,892 years 107 years very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Activity:

Suppose someone’s
password was an arbitrary
sequence of 50 bits.
Someone wants to hack it
by trying all possible
passwords. Roughly how
long will this take?

Asymptotic Order Of Growth

* “Big-Oh” Notation: f(n) = O(g(n)) if there exists
c € (0,00)andny € Nsuchthat f(n) <c-g(n)
for everyn = n,.

» Asymptotic version of f(n) < g(n)

Roughly equivalent to 711_r>£1<)g(n) < 00

Asymptotic Order Of Growth

* “Big-Oh” Notation: f(n) = O(g(n)) if there exists
c € (0,0)andny € Nsuchthat f(n) <c-g(n)
for everyn = n,.

» Asymptotic version of f(n) < g(n)

Roughly equivalent to Al_r)glog(n) < 00

 Activity: Which of these statements are true?
* 3n°+n=0n?%
e n3 =0(n?
« 10n* = 0(n®)
* log, n = 0(log16 1)
* nlog,(n?) = 0(nlog, n)

Big-Oh Rules

e Constant factors can be ignored
VC>0 Cn=0(mn)

* Smaller exponents are Big-Oh of larger exponents
*Va>b nP=0n%

* Any logarithm is Big-Oh of any polynomial
* Va,e >0 logf n=0(n®

* Any polynomial is Big-Oh of any exponential
Va>0,b>1 n=0(")

* Lower order terms can be dropped
e n? + 132 +n=0(7n?

Asymptotic Order Of Growth

* “Big-Omega” Notation: f(n) = Q(g(n)) if there
exists c € (0,0) andny € Ns.t. f(n) =c-g(n)
for everyn = n,.

« Asymptotic version of f(n) = g(n)
* Roughly equivalent to lim @> 0

n—oo g(n)
* “Big-Theta” Notation: f(n) = @(g(n)) if there
exists ¢c; < ¢, € (0,o) and ny € N such that

c,-gn) =fn) =c, - gn) foreveryn > n,.
» Asymptotic version of f(n) = g(n)
* Roughly equivalent to lim I o (0, 00)

n—oo g(n)

Asymptotic Running Times

 We usually write running time as a Big-Theta
* Exact time per operation doesn’t appear
e Constant factors do not appear
* Lower order terms do not appear

 Examples:
* 30log, n + 45 = 0(logn)
* Cnlog, 2n = O(nlogn)
« YT i=0(n?

Asymptotic Order Of Growth

e “Little-Oh” Notation: f(n) = o(g(n)) if for every
c > 0 thereexistsnyg € Ns.it. f(n) <c-g(n) for
everyn = ng.

» Asymptotic version of f(n) < g(n)

. . f(n)
* Roughl lentto lim —==10
oughly equivalent to lim ~=

* “Little-Omega” Notation: f(n) = a)(g (n)) if for
every ¢ > 0 there exists ny € N such that
f(n) >c-g(n)foreveryn = n,.
» Asymptotic version of f(n) > g(n)

° i 1 @_
Roughly equivalent to 711_{210 s, 00

Activity

* Fill in the blank with the strongest statement that
applies (0,Q,0, 0, w) :

*« 15nlogyn = (log, v/n)
*n? = (5 n%+n)
« 100n = (5 n%+n)

° 310g2 n :210g3 n

