
CS3000: Algorithms & Data
Paul Hand

Lecture 3:
• Stable Matching: Gale-Shapley Algorithm
• Asymptotic Analysis

Jan 14, 2019

Stable	Matching	Problem

• Many	job	candidates	(eg.	doctors).		Many	jobs	(eg.	
residency	programs).		You	are	to	assign	candidates	
to	jobs.		How	should	you	do	it?

Stable	Matching	Problem

• Many	job	candidates	(eg.	doctors).		Many	jobs	(eg.	
residency	programs).		You	are	to	assign	candidates	
to	jobs.		How	should	you	do	it?

Gale-Shapley AlgorithmGale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

Gale-Shapley Algorithm

1st 2nd
j1 c1 c2
j2 c2 c1

1st 2nd
c1 j2 j1
c2 j1 j2

What matching does the
algorithm give this data for
jobs (j1 and j2) and candidates
(c1 and c2)?

Gale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

Gale-Shapley	Algorithm

• Questions	about	the	Gale-Shapley	Algorithm:	
• Will	this	algorithm	terminate?		After	how	long?	
• Does	it	output	a	perfect	matching?	
• Does	it	output	a	stable	matching?	
• How	do	we	implement	this	algorithm	efficiently?

Observations about GSGale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

• At all steps, the state of the
algorithm is matching.

• Jobs make offers in descending
order

• Candidates that get a job never
become unemployed

• Candidates accept offers in
ascending order

Does the GS algorithm terminate?Gale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

• Claim: The GS algorithm
terminates after !"
iterations of the main loop

Is the output a perfect matching?Gale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

• Claim: The GS algorithm
outputs a perfect matching
(all jobs are matched and all
candidates are matched).

Is the output a stable matching?Gale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

• Claim: The GS algorithm outputs a
stable matching.
• Proof by contradiction:

Suppose there is an instability

Running time of GS?Gale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

• Running Time:
• A straightforward implementation

requires ≈ "# operations, ≈ "$ space

Better data structureGale-Shapley	Algorithm

• Let M be empty
• While (some job j is unmatched):

• If (j has offered a job to everyone): break
• Else: let c be the highest-ranked candidate
to which j has not yet offered a job

• j makes an offer to c:
• If (c is unmatched):

• c accepts, add (c,j) to M
• ElseIf (c is matched to j’ & c: j’ > j):

• c rejects, do nothing
• ElseIf (c is matched to j’ & c: j > j’):

• c accepts, remove (c,j’) from M and
add (c,j) to M

• Output M

• Running Time:
• A careful implementation requires ≈ "#

operations, ≈ "# space

1st 2nd 3rd 4th 5th

Alice CH MGH BW MTA BID

Bob BID BW MTA MGH CH

Clara BW BID MTA CH MGH

Dorit MGH CH MTA BID BW

Ernie MTA BW CH BID MGH

MGH BW BID MTA CH

Alice 2nd 3rd 5th 4th 1st

Bob 4th 2nd 1st 3rd 5th

Clara 5th 1st 2nd 3rd 4th

Dorit 1st 5th 4th 3rd 2nd

Ernie 5th 2nd 4th 1st 3rd

Notes	for	instructor	
Students	may	ignore	
because	they	are	repeated	
elsewhere

Asymptotic Analysis

• Predicting the wall-clock time of an
algorithm is basically impossible.
• What machine will actually run the algorithm?
• Impossible to exactly count “operations”?
• Which data will it be applied to?

• What do we do instead?
• We compare how the algorithm scales with lots

of data.

Analyzing run time of algorithms

Common computational complexity rates
(and what they mean in time)

Common computational complexity rates
(and what they mean in time)

Activity:

Suppose 1 million write an
essay for a standardized test
each year. You have code
that takes two essays as
input and outputs if there is
plagiarism. You want to
determine if there is any
plagiarism by comparing all
possible pairs of essays.
Roughly how long will it
take?

Common computational complexity rates
(and what they mean in time)

Activity:

Suppose someone’s
password was an arbitrary
sequence of 50 bits.
Someone wants to hack it
by trying all possible
passwords. Roughly how
long will this take?

• “Big-Oh” Notation: ! " = $ % " if there exists
& ∈ 0,∞ and "+ ∈ ℕ such that ! " ≤ & ⋅ % "
for every " ≥ "+.
• Asymptotic version of ! " ≤ % "
• Roughly equivalent to lim3→5

6 3
7 3 < ∞

Asymptotic Order Of Growth

• “Big-Oh” Notation: ! " = $ % " if there exists
& ∈ 0,∞ and "+ ∈ ℕ such that ! " ≤ & ⋅ % "
for every " ≥ "+.
• Asymptotic version of ! " ≤ % "
• Roughly equivalent to lim3→5

6 3
7 3 < ∞

Asymptotic Order Of Growth

• Activity: Which of these statements are true?
• 3": + " = $ ":
• "< = $ ":
• 10"> = $ "?
• log: " = $ logBC "
• " log:(":) = $ " log: "

• Constant factors can be ignored
• ∀" > 0 "% = ' %

• Smaller exponents are Big-Oh of larger exponents
• ∀(>) %* = ' %+

• Any logarithm is Big-Oh of any polynomial
• ∀(, - > 0 log1+ % = ' %2

• Any polynomial is Big-Oh of any exponential
• ∀ (> 0,) > 1 %+ = ')4

• Lower order terms can be dropped
• %1 + %6/1 + % = ' %1

Big-Oh Rules

• “Big-Omega” Notation: ! " = Ω % " if there
exists & ∈ 0,∞ and "+ ∈ ℕ s.t. ! " ≥ & ⋅ % "
for every " ≥ "+.
• Asymptotic version of ! " ≥ % "
• Roughly equivalent to lim2→4

5 2
6 2 > 0

• “Big-Theta” Notation: ! " = Θ % " if there
exists &9 ≤ &; ∈ 0,∞ and "+ ∈ ℕ such that
c; ⋅ % " ≥ ! " ≥ &9 ⋅ % " for every " ≥ "+.
• Asymptotic version of ! " = % "
• Roughly equivalent to lim2→4

5 2
6 2 ∈ 0,∞

Asymptotic Order Of Growth

• We usually write running time as a Big-Theta
• Exact time per operation doesn’t appear
• Constant factors do not appear
• Lower order terms do not appear

• Examples:
• 30 log& ' + 45 = Θ log '
• -' log& 2' = Θ ' log '
• ∑0123 4 = Θ '&

Asymptotic Running Times

• “Little-Oh” Notation: ! " = $ % " if for every
& > 0 there exists ") ∈ ℕ s.t. ! " < & ⋅ % " for
every " ≥ ").
• Asymptotic version of ! " < % "
• Roughly equivalent to lim2→4

5 2
6 2 = 0

• “Little-Omega” Notation: ! " = 7 % " if for
every & > 0 there exists ") ∈ ℕ such that
! " > & ⋅ % " for every " ≥ ").
• Asymptotic version of ! " > % "
• Roughly equivalent to lim2→4

5 2
6 2 = ∞

Asymptotic Order Of Growth

• Fill in the blank with the strongest statement that
applies (!, Ω, Θ, %, &) :
• 15 * log. * = ____ (log. *)
• *. =	______	(5 *.+*)
• 100* = ______ (5 *.+*)
• 36789 :=2678< :

Activity

