
CS3000: Algorithms & Data
Paul Hand

Lecture 22:

• Review

Apr 18, 2019

• Examples:
• Mergesort: sorting a list
• Binary Search: search in a sorted list
• Karatsuba’s Algorithm: integer multiplication
• Closest pair of points
• Fast Fourier Transform
• …

• Key Tools:
• Correctness: proof by induction
• Running Time Analysis: recurrences
• Asymptotic Analysis

Divide and Conquer Algorithms

Divide and Conquer: Mergesort

11 3 42 28 17 8 2 15Split

11 3 42 28 17 8 2 15

3 11 28 42 2 8 15 17

2 3 8 11 15 17 28 42

Recursively
Sort

Merge

Recursively
Sort

Merging two sorted lists

Merge(L,R):
Let n ← len(L) + len(R)
Let A be an array of length n
j ← 1, k ← 1,

For i = 1,…,n:
If (j > len(L)): // L is empty
A[i] ← R[k], k ← k+1

ElseIf (k > len(R)): // R is empty
A[i] ← L[j], j ← j+1

ElseIf (L[j] <= R[k]): // L is smallest
A[i] ← L[j], j ← j+1

Else: // R is smallest
A[i] ← R[k], k ← k+1

Return A

• Prove: If L and R are sorted from
smallest to largest, then A is sorted
from smallest to largest.

MergeSort Algorithm

MergeSort(A):
If (len(A) = 1): Return A // Base Case

Let ! ← ⌈ ⁄len()) 2⌉ // Split
Let L ← A[1:m], R ← A[m+1:n]

Let L ← MergeSort(L) // Recurse
Let R ← MergeSort(R)

Let A ← Merge(L,R) // Merge

Return A

• Sort a list of ! numbers in Θ(! log' !) time
• Can actually sort anything that allows comparisons
• No comparison based algorithm can be (much) faster

• Divide-and-conquer
• Break the list into two halves, sort each one and merge
• Key Fact: Merging sorted lists is easier than sorting

• Proof of correctness
• Proof by induction

• Analysis of running time
• Recurrences

Mergesort Summary

Recursion Tree • ! " = $! ⁄" & + "(Recursion&Tree • () = B() C⁄ +)E
• B

CE > 1

Level size Werk
nd

II l

tea TO ax F
d
Fa nd

Il I Il l
Z

az
a'x E D

Ea nd

i 1 F
i
ndn ai calls

Gbh DID alogyn
qtogbn.bahYbn.nd

The “Master Theorem”

• Recipe for recurrences of the form:
• ! " = $ ⋅ ! ⁄" ' +)"*

• Three cases:
• $

'* > 1 : ! " = Θ "./0' $

• $
'* = 1 : ! " = Θ "* log "

• $
'* < 1 : ! " = Θ "*

• Input: Array A[1:n] of integers
• Problem: Find a subarray A[i:j] with

the largest possible sum
• Example: A = [3, -4, 5, -2, -2, 6, -3, 5, -3, 2]

• Task: Devise a divide and conquer algorithm to
solve this problem. Consider an algorithm that
divides A into two halves.

Maximum Sum Subarray Problem

Binary Search

2 3 8 11 15 17 28 42 !
Is 28 in this list?

Binary Search

Search(A,t):
// A[1:n] sorted in ascending order
Return BS(A,1,n,t)

BS(A,ℓ,r,t):
If(ℓ > r): return FALSE

m ← ℓ + $%ℓ
&

If(A[m] = t): Return m
ElseIf(A[m] > t): Return BS(A,ℓ,m-1,t)
Else: Return BS(A,m+1,r,t)

• Search a sorted array in time !(log &)
• Divide-and-conquer approach
• Find the middle of the list, recursively search half the list
• Key Fact: eliminate half the list each time

• Prove correctness via induction
• Analyze running time via recurrence
• (& = (⁄& 2 + -

Binary Search Wrapup

Dynamic Programming

Dynamic programming is careful recursion
• Break the problem up into small pieces
• Recursively solve the smaller pieces
• Store outcomes of smaller pieces that get called multiple times
• Key Challenge: identifying the pieces

Interval Scheduling

• How can we optimally schedule a resource?
• This classroom, a computing cluster, …

• Input: ! intervals "#, %# each with value &#
• Assume intervals are sorted so %' < %) < ⋯ < %+

• Output: a compatible schedule , maximizing the
total value of all intervals
• A schedule is a subset of intervals , ⊆ {1,… , !}
• A schedule , is compatible if no 2, 3 ∈ , overlap
• The total value of , is ∑#∈6 &#

A Recursive Formulation

• Let !"#(%) be the value of the optimal schedule
using only the intervals 1,… , %
• Case 1: Final interval is not in ! (% ∉ !)
• Then ! must be the optimal solution for 1,… , % − 1

• Case 2: Final interval is in ! (% ∈ !)
• Assume intervals are sorted so that -. < -0 < ⋯ < -2
• Let 3 % be the largest 4 such that -5 < 67
• Then ! must be % + the optimal solution for 1,… , 3 %

• !"# % = max !"# % − 1 , <2 + !"# 3 %
• !"# 0 = 0, !"# 1 = <.

Dynamic Programming Recap

• Express the optimal solution as a recurrence
• Identify a small number of subproblems
• Relate the optimal solution on subproblems

• Efficiently solve for the value of the optimum
• Simple implementation is exponential time
• Top-Down: store solution to subproblems
• Bottom-Up: iterate through subproblems in order

• Find the solution using the table of values

The Knapsack Problem

• Input: ! items for your knapsack
• value "# and a weight $# ∈ ℕ for ! items
• capacity of your knapsack ' ∈ ℕ

• Output: the most valuable subset of items that fits
in the knapsack
• Subset (⊆ 1,… , !
• Value -. = ∑#∈. "# as large as possible
• Weight 1. = ∑#∈.$# at most '

• SubsetSum: "# = $#

Dynamic Programming

• Let !"#(%, ') be the value of the optimal subset of
items 1,… , + in a knapsack of size ,
• Case 1: - ∉ /0,1
• Use opt. solution for items 1 to j-1 and size S

• Case 2: - ∈ /0,1
• Use - + opt. solution for items 1 to j-1 and size , − 40

Recurrence:

OPT +, , = 9max /=> + − 1, , , ?0 + /=>(+ − 1, , − 40 if 40 ≤ ,
/=> + − 1, , if 40 > ,

Base Cases:
OPT +, 0 = OPT 0, , = 0

Knapsack (“Bottom-Up”)

// All inputs are global vars
FindOPT(n,T):
M[0,S]← 0, M[j,0]← 0

for (j = 1,…,n):
for (s = 1,…,T):
if (wj > S): M[j,S]← M[j-1,S]
else: M[j]← max{M[j-1,S],vj + M[j-1,S-wj]}

return M[n,T]

Activity: What is the
runtime of this
algorithm?

How much memory
does it take?

Filling the Knapsack

// All inputs are global vars
// M[0:n,0:T] contains solutions to subproblems
FindSol(M,n,T):
if (n = 0 or T = 0): return ∅
else:

if (wn > T): return FindSol(M,n-1,T)
else:
if (M[n-1,T] > vn + M[n-1,T-wn]):
return FindSol(M,n-1,T)

else:
return {n} + FindSol(M,n-1,T-wn)

Graphs: Key Definitions

• Definition: A directed graph ! = #, %
• # is the set of nodes/vertices
• % ⊆ #×# is the set of edges
• An edge is an ordered (=), * “from) to *”

• Definition: An undirected graph ! = #, %
• Edges are unordered (=), * “between) and *”

• Simple Graph:
• No duplicate edges
• No self-loops (=),)

Paths/Connectivity

• A path is a sequence of consecutive edges in !
• " = $,&' , &', &(, &(, &) ,… , &+,', -
• " = $ − &' − &(− &) −⋯−&+,' − -
• The length of the path is the # of edges

• An undirected graph is connected if for every two
vertices $, - ∈ 1, there is a path from $ to -
• A directed graph is strongly connected if for every

two vertices $, - ∈ 1, there are paths from $ to -
and from - to $

Cycles

• A cycle is a path !" − !$ −⋯− !& − !" where
' ≥ 3 and !", … , !& are distinct

Activity: how many cycles are there in this graph?

2-Coloring

• Problem: Team Forming
• Need to form two teams !,#
• Some people don’t want to be on the same team as

certain other people
• Input: Undirected graph $ = &, '
• (,) ∈ ' means (,) wont be on the same team

• Output: Split & into two sets !,# so that no pair in
either set is connected by an edge

Designing the Algorithm

• Claim: If BFS fails, then G contains an odd cycle
• If G contains an odd cycle then G can’t be 2-colored!

Depth-First Search

u b

a c

• Fact: The parent-child edges form a (directed) tree
• Each edge has a type:
• Tree edges: (", $), (", &), (&, ')

• These are the edges that explore new nodes
• Forward edges: (", ')

• Ancestor to descendant
• Backward edges: $, "

• Descendant to ancestor
• Cross edges: (&, $)

• No ancestral relation

Pre-Ordering
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

pre-visit(u)

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u b

a c

• Maintain a counter clock, initially set clock = 1
• pre-visit(u):

set preorder[u]=clock, clock=clock+1

Vertex Pre-Order

• Order the vertices by when
they were first visited by DFS

Post-Ordering
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u b

a c

• Maintain a counter clock, initially set clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order

• Order the vertices by when
they were last visited by DFS

Topological Ordering (TO)

• DAG: A directed graph with no directed cycles
• Any DAG can be toplogically ordered
• Label nodes !",… , !% so that !&, !' ∈) ⟹ + > -

• Can compute a TO in . / +1 time using DFS
• Reverse of post-order is a topological order

Algorithm for Topological Ordering

• Claim: ordering nodes by decreasing postorder
gives a topological ordering
• Proof:
• A DAG has no backward edges
• Suppose this is not a topological ordering
• That means there exists an edge (u,v) such that

postorder[u] < postorder[v]
• We showed that any such (u,v) is a backward edge
• But there are no backward edges, contradiction!

u c

a b

Shortest Paths

• The length of a path ! = #$ − #& −⋯− #(is the
sum of the edge lengths

• The distance) *, , is the length of the shortest
path from * to ,
• Shortest Path: given nodes *, , ∈ ., find the

shortest path from * to ,
• Single-Source Shortest Paths: given a node * ∈ .,

find the shortest paths from * to every , ∈ .

Structure of Shortest Paths

• If !, # ∈ %, then & ', # ≤ & ', ! + ℓ !, # for
every node ' ∈ +

• If !, # ∈ %, and & ', # = & ', ! + ℓ(!, #) then
there is a shortest ' ↝ #-path ending with (!, #)

Weighted Graphs

• Definition: A weighted graph ! = #, %, {'())}
• # is the set of vertices
• % ⊆ #×# is the set of edges
• '. ∈ ℝ are edge weights/lengths/capacities
• Can be directed or undirected

• Today:
• Directed graphs (one-way streets)
• Strongly connected (there is always some path)
• Non-negative edge lengths (ℓ()) ≥ 0)

Shortest Paths

• The length of a path ! = #$ − #& −⋯− #(is the
sum of the edge lengths

• The distance) *, , is the length of the shortest
path from * to ,
• Shortest Path: given nodes *, , ∈ ., find the

shortest path from * to ,
• Single-Source Shortest Paths: given a node * ∈ .,

find the shortest paths from * to every , ∈ .

Implementing Dijkstra
Dijkstra(G = (V,E,{ℓ(e)}, s):
d[s] ← 0, d[u] ← ∞ for every u != s
parent[u]←⊥ for every u
Q ← V // Q holds the unexplored nodes

While (Q is not empty):
$ ← argmin

+∈-
. / //Find closest unexplored

Remove $ from Q

// Update the neighbors of u
For ((u,v) in E):
If (d[v] > d[u] + ℓ(u,v)):
d[v] ← d[u] + ℓ(u,v)
parent[v]← u

Return (d, parent)

Dijkstra’s Algorithm: Demo

A B C D E
d0(u) 0 ∞ ∞ ∞ ∞
d1(u) 0 10 3 ∞ ∞
d2(u) 0 7 3 11 5
d3(u) 0 7 3 11 5
d4(u) 0 7 3 9 5

" = {%, ', (,), *}

A

B D

C E

10

3

1 4 7 98

2

2

0

7

3 5

9
Don’t need to
explore D

Implementing Dijkstra Naively

• Need to explore all ! nodes
• Each exploration requires:
• Finding the unexplored node " with smallest distance
• Updating the distance for each neighbor of "
• Lookup current distance
• Possibly decrease distance

Priority Queues

• Need a data structure Q to hold key-value pairs

• Need to support the following operations
• Insert(Q,k,v): add a new key-value pair
• Lookup(Q,k): return the value of some key
• ExtractMin(Q): identify the key with the smallest value
• DecreaseKey(Q,k,v): reduce the value of some key

Heaps

• Organize key-value pairs as a binary tree
• Later we’ll see how to store pairs in an array

• Heap Order: If a is the parent of b, then v(a) ≤ v(b)

(a,1)

(c,2) (f,5)

(h,15) (r,17) (o,20) (e,9) (b,15) (y,8) (x,16)

(g,10) (z,3) (q,7) (p,11)

Each node represents a
key-value pair

Fails to be
a heap

Implementing Insert

(a,1)

(c,2) (f,5)

(h,15) (r,17) (o,20) (e,9) (b,15) (y,8) (x,16)

(g,10) (z,3) (q,7) (p,11)

(a,1)

(c,2) (f,5)

(h,15) (r,17) (o,20) (e,9) (b,15) (y,8) (x,16)

(g,10) (z,3) (q,7) (p,11)

(w,4)

Implementation of Priority Queue Using Arrays

• Maintain an array ! holding the (key,value) at
each node the binary tree
• Maintain an array " mapping keys index
• Can find the value for a given key in # 1 time

Array V

Array K

Binary Heaps

• Heapify:
• O(1) time to fix a single triple
• With n keys, might have to fix O(log n) triples
• Total time to heapify is O(log n)

• Lookup takes O(1) time
• ExtractMin takes O(log n) time
• DecreaseKey takes O(log n) time
• Insert takes O(log n) time

Implementing Dijkstra with Heaps
Dijkstra(G = (V,E,{ℓ(e)}, s):
Let Q be a new heap
Let parent[u]←⊥ for every u
Insert(Q,s,0), Insert(Q,u,∞) for every u != s

While (Q is not empty):
(u,d[u]) ← ExtractMin(Q)

For ((u,v) in E):
d[v] ← Lookup(Q,v)
If (d[v] > d[u] + ℓ(u,v)):
DecreaseKey(Q,v,d[u] + ℓ(u,v))
parent[v]← u

Return (d, parent)

Lookup takes O(1) time
ExtractMin takes O(log n) time
DecreaseKey takes O(log n) time
Insert takes O(log n) time

How much time does Dijkstra take?

Dijkstra Summary:

• Dijkstra’s Algorithm solves single-source shortest
paths in non-negatively weighted graphs
• Algorithm can fail if edge weights are negative!

• Implementation:
• A priority queue supports all necessary operations
• Implement priority queues using binary heaps
• Overall running time of Dijkstra: ! " log &

• Compare to BFS

Recurrence

• Subproblems: Let OPT $, & be the length of the shortest
path from ' to $ with at most & hops
• Case (: (*, $) is final edge on the shortest &-hop ' ↝ $ path

OPT $, & = min OPT $, 1 − 1 , min(4,5)∈7 OPT *, 1 − 1 + ℓ4,5

OPT $, 0 = ∞ for every $
OPT ', & = 0 for every &

Recurrence:

Implementation (Bottom Up DP)
Shortest-Path(G, s)

foreach node v Î V
D[v,0] ¬ ¥
P[v,0] ¬ ⊥

D[s,0] ¬ 0

for i = 1 to n-1
foreach node v Î V
D[v,i] ¬ D[v,i-1]
P[v,i] ¬ P[v,i-1]
foreach edge (u,v) Î E

if (D[u,i-1] + ℓuv < D[v,i])
D[v,i] ¬ D[u,i-1] + ℓuv
P[v,i] ¬ u

Running time:
Space:

