CS3000: Algorithms \& Data Paul Hand

Lecture 22:

- Review

Apr 18, 2019

$\lim _{n \rightarrow \infty} f / g$	
$f=O(g)$	$<\infty$
$f=\Omega(g)$	>0
$f=\theta(g)$	$<\infty \&>0$
$f=o(g)$	$=0$
$f=w(g)$	$=\infty$

Divide and Conquer Algorithms

- Examples:
- Mergesort: sorting a list
- Binary Search: search in a sorted list
- Karatsuba's Algorithm: integer multiplication
- Closest pair of points
- Fast Fourier Transform
- ...
- Key Tools:
- Correctness: proof by induction
- Running Time Analysis: recurrences
- Asymptotic Analysis

Divide and Conquer: Mergesort

Merging two sorted lists

```
Merge (L,R) :
    Let n}\leftarrow\operatorname{len(L) + len(R)
    Let A be an array of length n
    j}\leftarrow1, k \leftarrow 1,
    For i = 1,\ldots,n:
        If (j > len(L)): // L is empty
        A[i]}\leftarrow\textrm{R}[\textrm{k}],\textrm{k}\leftarrow\textrm{k}+
        ElseIf (k > len(R)): // R is empty
        A[i] }\leftarrowL[j], j \leftarrow j+1
        ElseIf (L[j] <= R[k]): // L is smallest
        A[i] }\leftarrow L[j], j \leftarrow j+1
        Else: // R is smallest
        A[i]}\leftarrow\textrm{R}[\textrm{k}],\textrm{k}\leftarrow\textrm{k}+
    Return A
```

- Prove: If L and R are sorted from smallest to largest, then A is sorted from smallest to largest.

MergeSort Algorithm

```
MergeSort(A):
    If (len(A) = 1): Return A // Base Case
    Let }m\leftarrow\lceillen(A)/2\rceil // Spli
    Let L}\leftarrowA[1:m], R \leftarrowA[m+1:n]
    Let L }\leftarrow\mathrm{ MergeSort(L) // Recurse
    Let R}\leftarrow\mathrm{ MergeSort(R)
    Let A }\leftarrow\mathrm{ Merge(L,R) // Merge
    Return A
```


Mergesort Summary

- Sort a list of n numbers in $\Theta\left(n \log _{2} n\right)$ time
- Can actually sort anything that allows comparisons
- No comparison based algorithm can be (much) faster
- Divide-and-conquer
- Break the list into two halves, sort each one and merge
- Key Fact: Merging sorted lists is easier than sorting
- Proof of correctness
- Proof by induction
- Analysis of running time
- Recurrences

Recursion Tree

$$
\text { - } T(n)=\boldsymbol{a} T(n / \boldsymbol{b})+n^{\boldsymbol{d}}
$$

Atctinkty ${ }_{9}^{9}$ which - which Where the mast work happening?

$$
\log _{b} n \sqrt{1} a^{\log _{b} n}
$$

$\left(\frac{a}{b^{d}}\right)^{i} \cdot n^{d}$ If $\frac{a}{b^{d}}<1$, legal 0 ! $\begin{array}{ll}\text { If } a b j>1, & l \text { feal } \log _{5} n \\ \text { If ad }=1 \text { all comparable }\end{array}$ If a abd $=1$, all comparable

The "Master Theorem"

- Recipe for recurrences of the form:
- $T(n)=\boldsymbol{a} \cdot T(n / \boldsymbol{b})+C n^{\boldsymbol{d}}$
- Three cases:
- $\left(\frac{a}{b^{d}}\right)>1: T(n)=\Theta\left(n^{\log _{b} a}\right)$
- $\left(\frac{a}{b^{d}}\right)=1: T(n)=\Theta\left(n^{d} \log n\right)$
- $\left(\frac{a}{b^{d}}\right)<1: T(n)=\Theta\left(n^{d}\right)$

Maximum Sum Subarray Problem

- Input: Array A[1:n] of integers
- Problem: Find a subarray A[i:j] with the largest possible sum
- Example: $\mathrm{A}=[3,-4,5,-2,-2,6,-3,5,-3,2]$

Discuss w/ neighborso What is a reasonable place to start attacking this problem.
Find 3 things

- Finding an approach yer neal to beat
- Study a smaller instance and try to solve it in your had
- consider special cases (Eg pos/ney)

Do yew understand preteen Gocabung

Binary Search anything lat is 2 28. Dent lakh ate Is 28 in this list?

| 2 | 3 | 8 | 11 | 15 | 17 | 28 | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Nave alga linear search. check fin] for ǐ=c<compat>...n. $O(n)$ time. Bod did not Exploit Structure
(17) $|28| 42$
(28) 42
get 28 . in lest.

Binary Search

Search (A, t) :
// A[1:n] sorted in ascending order
Return BS ($\mathrm{A}, 1, \mathrm{n}, \mathrm{t}$)

- left and of "active" regin
$\mathrm{BS}(\mathrm{A}, \boldsymbol{\ell}, \mathrm{r}, \mathrm{t})$: right Gad of "actucc" PCylcn
If $(\ell>r)$: return FALSE
width
$\mathrm{m} \leftarrow \ell+\left[\frac{r-\ell}{2}\right]$ midpoint. ct list \& found down
If $(A[m]=t):$ Return m nothing to right of m matters
ElseIf (A $[\mathrm{m}]>\mathrm{t}$): Return BS (A, $, \mathrm{m}, \mathrm{l}, \mathrm{t}$)
Else: Return BS (A, m+1,r,t)

Binary Search Wrapup

- Search a sorted array in time $O(\log n)!!!$
- Divide-and-conquer approach
- Find the middle of the list, recursively search half the list
- Key Fact: eliminate half the list each time

If we want
to Starch

- Prove correctness via induction many Emma,
- Analyze running time via recurrence worth it to
- $T(n)=T(n / 2)+C$ serb in advance
α \& If \pm wank to shack it $t \in l_{136} A$, is it wroth it $\frac{1}{2}$ sot A annul do bray Śeroch??
Sorta $n \log n \quad S \operatorname{serchi} \operatorname{lag} n \quad n \lg n+\operatorname{lag} n=\theta(n \log n)$

Dynamic Programming

Dynamic programming is careful recursion

- Break the problem up into small pieces
- Recursively solve the smaller pieces
- Store outcomes of smaller pieces that get called multiple times
- Key Challenge: identifying the pieces

Interval Scheduling

- How can we optimally schedule a resource?
- This classroom, a computing cluster, ...
- Input: n intervals $\left(s_{i}, f_{i}\right)$ each with value v_{i}
- Assume intervals are sorted so $f_{1}<f_{2}<\cdots<f_{n}$
- Output: a compatible schedule S maximizing the total value of all intervals
- A schedule is a subset of intervals $S \subseteq\{1, \ldots, n\}$
- A schedule S is compatible if no $i, j \in S$ overlap
- The total value of S is $\sum_{i \in S} v_{i}$

A Recursive Formulation

- Let $O P T(i)$ be the value of the optimal schedule using only the intervals $\{1, \ldots, i\}$
- Case 1: Final interval is not in $O(i \notin O)$
- Then O must be the optimal solution for $\{1, \ldots, i-1\}$
- Case 2: Final interval is in $O(i \in O)$
- Assume intervals are sorted so that $f_{1}<f_{2}<\cdots<f_{n}$
- Let $p(i)$ be the largest j such that $f_{j}<s_{i}$
- Then O must be $i+$ the optimal solution for $\{1, \ldots, p(i)\}$
- $\operatorname{OPT}(i)=\max \left\{O P T(i-1), v_{n}+O P T(p(i))\right\}$
- $\operatorname{OPT}(0)=0, \operatorname{OPT}(1)=v_{1}$

Dynamic Programming Recap

- Express the optimal solution as a recurrence
- Identify a small number of subproblems
- Relate the optimal solution on subproblems
- Efficiently solve for the value of the optimum
- Simple implementation is exponential time
- Top-Down: store solution to subproblems
- Bottom-Up: iterate through subproblems in order
- Find the solution using the table of values

The Knapsack Problem

- Input: n items for your knapsack assuming these are
- value v_{i} and a weight $w_{i} \in \mathbb{N}$ for n items natural \# 5
- capacity of your knapsack $T \in \mathbb{N}$
- Output: the most valuable subset of items that fits in the knapsack
- Subset $S \subseteq\{1, \ldots, n\}$
- Value $V_{S}=\sum_{i \in S} v_{i}$ as large as possible
- Weight $W_{S}=\sum_{i \in S} w_{i}$ at most T

Could write as optimization problem

- SubsetSum: $v_{i}=w_{i}$

$$
\max _{\substack{s \leq\{\cdots n\} \\ S \leq\left\{ \\w_{5} \leqslant T\right.}} V_{S}
$$

is'there a subset that adds up to 7 ?
Tug of Word ${ }_{g}^{0} T=\frac{1}{2} \sum_{i=1}^{n} V_{i}$

Dynamic Programming

- Let $\mathbf{O P T}(\boldsymbol{j}, \boldsymbol{S})$ be the value of the optimal subset of items $\{1, \ldots, j\}$ in a knapsack of size S
- Case 1: $i \notin O_{j, S}$
- Use opt. solution for items 1 to $j-1$ and size S
- Case 2: $i \in O_{j, S}$
- Use $i+$ opt. solution for items 1 to j-1 and size $S-w_{j}$

Recurrence:

$\operatorname{OPT}(j, S)= \begin{cases}\max \left\{\widetilde{O P T}(j-1, S), \widetilde{\left.v_{j}+O P T\left(j-1, S-w_{j}\right)\right\}}\right. & \text { if } w_{j} \leq S \\ O P T(j-1, S) & \text { if } w_{j}>S\end{cases}$

Base Cases:

$$
\operatorname{OPT}(j, 0)=\operatorname{OPT}(0, S)=0
$$

Knapsack ("Bottom-Up")

```
// All inputs are global vars
FindOPT (n,T) :
    M[0,&]\leftarrow0, M[j,0]\leftarrow0 base case}
    for (j = 1,\ldots,n):
        for (s = 1,\ldots,T):
```



```
    return M[n,T]
```

Activity: What is the runtime of this algorithm?

How much memory does it take?

Filling the Knapsack

```
// All inputs are global vars
// M[0:n,0:T] contains solutions to subproblems
FindSol(M,n,T):
    if (n = 0 or T = 0): return \emptyset
    else:
        if (wn}>>T): return FindSol(M,n-1,T
        else:
            if (M[n-1,T] > vn}+M[n-1,T-wn])
                return FindSol(M,n-1,T)
            else:
                return {n} + FindSol(M,n-1,T-w m
```


Graphs: Key Definitions

- Definition: A directed graph $G=(V, E)$

- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges
set of parrs of vortecg
- An edge is an ordered $e=(u, v)$ "from u to v "

$$
\begin{aligned}
& \text { If }(v, v) \in E \text { tho } \\
& \text { it } \overline{13} \text { an Glee of graph }
\end{aligned}
$$

- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and v "

- Simple Graph:

- No duplicate edges
- No self-loops $e=(u, u)$

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $P=\left\{\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)\right\}$
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ where $k \geq 3$ and v_{1}, \ldots, v_{k} are distinct

Activity: how many cycles are there in this graph?

2-Coloring

- Problem: Team Forming
- Need to form two teams $\boldsymbol{R}, \boldsymbol{P}$
- Some people don't want to be on the same team as certain other people $S \in t$ of Peopl E
- Input: Undirected graph $G=(V, E)$
- $(u, v) \in E$ means u, v wont be on the same team
- Output: Split V into two sets \boldsymbol{R}, P so that no pair in either set is connected by an edge
rat- ... - ... nods-onata-......rat
Designing the Algorithm
- Claim: If BFS fails, then G contains an odd cycle
- If G contains an odd cycle then G can't be 2-colored!
(1) Within BFS Gree,
celonny corrat
Explere edge not iñ BFS bree Cosk I: non- ireer is betwaen adjacint layes

Fine Fr 2 edorabilly
case \#: Elye is within a loyer vrolats two coderabiles
 We can build odd cycle

$$
\text { rout }-n \text { node-node -ract Hock 1-2-3-1 }
$$

Even cycla

Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(u, a),(u, c),(c, b)$
- These are the edges that explore new nodes
- Forward edges: (u, b)
- Ancestor to descendant
- Backward edges: (a, u)
- Descendant to ancestor
- Cross edges: (c, a)
- No ancestral relation

Pre-Ordering
 Sortal alphabetically

- Order the vertices by when they were first visited by DFS


```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    pre-visit(u)
    for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS (v)
```


- Maintain a counter clock, initially set clock $=1$
- pre-visit(u) :
set preorder[u]=clock, clock=clock+1

Post-Ordering

- Order the vertices by when they were last visited by DFS

We are done processing a node once we process all of its children


```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
            parent[v] = u
            DFS (v)
    post-visit(u)
```


- Maintain a counter clock, initially set clock $=1$
- post-visit(u) :
set postorder[u]=clock, clock=clock+1

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
- Label nodes v_{1}, \ldots, v_{n} so that $\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i$

- Can compute a TO in $O(n+m)$ time using DFS
- Reverse of post-order is a topological order

Algorithm for Topological Ordering
\qquad

- Claim: ordering nodes by decreasing postorder gives a topological ordering

- Proof:
- A DAG has no backward edges
(Such an coals wald form a cycle)
- Suppose this is not a topological ordering
- That means there exists an edge (u, v) such that postorder[u] < postorder[v]
- We showed that any such (u, v) is a backward edge
- But there are no backward edges, contradiction!

Shortest Paths

- The length of a path $P=v_{1}-v_{2}-\cdots-v_{k}$ is the sum of the edge lengths
- The distance $d(s, t)$ is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$

Structure of Shortest Paths

- If $(u, v) \in E$, then $d(s, v) \leq d(s, u)+\ell(u, v)$ for every node $s \in V$
- If $(u, v) \in E$, and $d(s, v)=d(s, u)+\ell(u, v)$ then there is a shortest $s \leadsto v$-path ending with (u, v)

Weighted Graphs

- Definition: A weighted graph $G=(V, E,\{w(e)\})$
- V is the set of vertices
- $E \subseteq V \times V$ is the set of edges
- $w_{e} \in \mathbb{R}$ are edge weights/lengths/capacities
- Can be directed or undirected
- Today:
- Directed graphs (one-way streets)
- Strongly connected (there is always some path)
- Non-negative edge lengths ($\ell(e) \geq 0$)

Shortest Paths

- The length of a path $P=v_{1}-v_{2}-\cdots-v_{k}$ is the sum of the edge lengths
- The distance $d(s, t)$ is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$

Implementing Dijkstra

```
Dijkstra(G = (V,E,{\ell(e)}, s):
    d[s] \leftarrow 0, d[u] \leftarrow\infty for every u != s
    parent[u] \leftarrow\perp for every u
    Q v // Q holds the unexplored nodes
    While (Q is not empty):
    u\leftarrow\underset{w\inQ}{\operatorname{argmin}}d[w] //Find closest unexplored
    Remove u from Q current estinatg
    // Update the neighbors of u
    For ((u,v) in E):
        If (d[v] > d[u] + \ell(u,v)):
            d[v]}\leftarrowd[u] + \ell(u,v
            parent[v] \leftarrowu
    Return (d, parent)
```


Dijkstra's Algorithm: Demo

Implementing Dijkstra Naively

- Need to explore all n nodes
- Each exploration requires:
- Finding the unexplored node u with smallest distance
- Updating the distance for each neighbor of u
- Lookup current distance
- Possibly decrease distance

Priority Queues

- Need a data structure Q to hold key-value pairs
k ky: node, u
valuc: $d[u]$
- Need to support the following operations
- Insert(Q,k,v): add a new key-value pair
- Lookup(Q, k): return the value of some key
- ExtractMin(Q): identify the key with the smallest value
- DecreaseKey($\mathrm{Q}, \mathrm{k}, \mathrm{v}$): reduce the value of some key

Heaps

- Organize key-value pairs as a binary tree
- Later we'll see how to store pairs in an array
- Heap Order: If a is the parent of b, then $v(a) \leq v(b)$

Each node represents a key-value pair

not acres
bree
Not Sorta

Implementing Insert

Fails to be

Implementation of Priority Queue Using Arrays

- Maintain an array V holding the (key,value) at each node the binary tree
- Maintain an array K mapping keys index
- Can find the value for a given key in $O(1)$ time

Binary Heaps

- Heapify:
- O(1) time to fix a single triple
- With n keys, might have to fix $O(\log n)$ triples
- Total time to heapify is $O(\log n)$
- Lookup takes O(1) time
- ExtractMin takes O(log n) time
- DecreaseKey takes O(log n) time
- Insert takes $O(\log n)$ time

Implementing Dijkstra with Heaps

$$
\begin{aligned}
& \text { Dijkstra (G = (V,E, }\{\ell(e)\}, s): \\
& \text { Let } Q \text { be a new heap } \\
& \text { Let parent[u] } \leftarrow \perp \text { for every } u \\
& \text { Insert (} Q, s, 0 \text {), Insert }(Q, u, \infty) \text { for every } u \quad!=s \\
& \text { While (Q is not empty): } \\
& (u, d[u]) \leftarrow \text { ExtractMin }(Q) \quad \text { remove } \quad \text { one } \mathcal{Z} \text { (em } \\
& \text { For (}(u, v) \text { in } E) \text { : } \\
& \mathrm{d}[\mathrm{v}] \leftarrow \operatorname{Lookup}(\mathrm{Q}, \mathrm{v}) \quad \text { lookup out } \\
& \text { If }(\mathrm{d}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\ell(\mathrm{u}, \mathrm{v})) \text { : }\} \text { mdificatun } \\
& \text { DecreaseKey (} Q, v, d[u]+\ell(u, v)) \\
& \text { parent[} \mathrm{v}] \leftarrow \mathrm{u} \\
& \text { Return (d, parent) } \\
& \begin{aligned}
\text { Toll time } D_{0} \sum_{v} O(\operatorname{lcg} n) \text { A } O(d \operatorname{cy}(U) \log n) & =O((m+n \mid \operatorname{lcg} n) \\
& =O(m \operatorname{lcg} n)
\end{aligned}
\end{aligned}
$$

Dijkstra Summary:

- Dijkstra's Algorithm solves single-source shortest paths in non-negatively weighted graphs
- Algorithm can fail if edge weights are negative!
- Implementation:
- A priority queue supports all necessary operations
- Implement priority queues using binary heaps
- Overall running time of Dijkstra: $O(m \log n)$
- Compare to BFS

$$
\begin{aligned}
& \text { only paying } \\
& \text { log } n \text { cast } \\
& \text { due to wrights }
\end{aligned}
$$

Recurrence

- Subproblems: Let $\operatorname{OPT}(v, j)$ be the length of the shortest path from s to v with at most j hops
- Case $\boldsymbol{u}:(u, v)$ is final edge on the shortest j-hop $s \leadsto v$ path

Recurrence:

$$
\begin{aligned}
& \text { was able } \\
& \text { to reach with feuar hops }
\end{aligned}
$$

$\operatorname{OPT}(v, j)=\min \left\{\operatorname{OPT}(v, j-1), \min _{(u, v) \in E}\left\{\operatorname{OPT}(u, j-1)+\ell_{u, v}\right\}\right\}$
OPT $(s, j)=0$ for every j
$\operatorname{OPT}(v, 0)=\infty$ for every v

Implementation (Bottom Up DP)

