
CS3000: Algorithms & Data
Paul Hand

Lecture 20:

• Network Flow: flows, cuts, duality
• Ford-Fulkerson

Apr 8, 2019

Flow Networks

Flow Networks
• Directed graph ! = #, %
• Two special nodes: source & and sink '
• Edge capacities ()

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows
• An s-t flow is a function ! " such that

• For every " ∈ $, 0 ≤ ! " ≤ ' " (capacity)
• For every (∈), (≠ ,, (≠ -,
∑/ 01 23 4 ! " = ∑/ 362 37 4 ! " (conservation)

• The value of a flow is (89 ! = ∑/ 362 37 : ! "

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• Is this a maximum flow?

• Is there an integer maximum flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Cuts
• An s-t cut is a partition (", $) of & with ' ∈ " and) ∈ $

• The capacity of a cut (A,B) is *+, ", $ = ∑/ 012 03 4 * 5

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Minimum Cut Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• Find a minimum cut of this network

s

a

c

b

d

t

2

1

1

1

1

2

1

Flows vs. Cuts
• Fact: If ! is any s-t flow and (#, %) is any s-t cut, then the

net flow across (#, %) is equal to the amount leaving s

'
()*+), -

! . − '
(01 +) -

! . = 345(!)

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Max Flow Min Cut Duality

• Weak Duality: Let ! be any s-t flow and (#, %) any s-t cut,

• Proof:

'() ! ≤ +(,(#, %)

Augmenting Paths
• Given a network ! = ($, &, ', (,) *) and a flow ,, an

augmenting path - is an ' → (path such that ,(*) <)(*)
for every edge * ∈ -

s

1

2

t

10

10

10 10

0 0

0

20

20

30

Greedy Max Flow
• Start with ! " = 0 for all edges " ∈ &
• Find an augmenting path ', max it out
• Repeat until you get stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

10

10

20 10

10 20

10

20

20

30

greedy optimal

Residual Graphs
• Original edge: ! = #, % ∈ '.

• Flow ((!), capacity +(!)

• Residual edge
• Allows “undoing” flow
• ! = #, % and !, = %, # .
• Residual capacity

• Residual graph -. = /, '.
• Edges with positive residual capacity.
• '(= ! ∶ (! < + ! ∪ !3 ∶ (! > 0 .

Augmenting Paths in Residual Graphs
• Let !" be a residual graph
• Let # be an augmenting path in the residual graph
• Fact: $’ = Augment(!", #) is a valid flow

Augment(Gf, P)
b ¬ the minimum residual capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

Ford-Fulkerson Algorithm
• Start with ! " = 0 for all edges " ∈ &
• Find an augmenting path ' in the residual graph
• Max it out
• Repeat until you get stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

Ford-Fulkerson Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062!:

Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!":

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

2
z

Z Z

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

o
z

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

S

p 9

Ford-Fulkerson	Demo

s

2

3

4

5 t10

10

9

8

4

10

1062

s

2

3

4

5 t

!:

!*:

a

i

What do we want to prove?

• FF Terminates
• FF finds a maximum s-t flow
• There is always a cut (A,B) such that val(f) = cap(A,B)

Ford-Fulkerson Algorithm – Run Time

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else: f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f

Running Time of Ford-Fulkerson
• For integer capacities, ≤ "#$ %∗ augmentation steps

• Can perform each augmentation step in ' (time
• find augmenting path in ' (
• augment the flow along path in ')
• update the residual graph along the path in ')

• For integer capacities, FF runs in ' (⋅ "#$ %∗ time
• ' () time if all capacities are +, = 1
• ' ()/012 time for any integer capacities
• Problematic when capacities are large

Correctness of Ford-Fulkerson
• Theorem: ! is a maximum s-t flow if and only if there is no

augmenting s-t path in "#

• (Strong) MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

• We’ll prove that the following are equivalent for all !
1. There exists a cut (%, ') such that)*+ ! = -*.(%, ')
2. Flow ! is a maximum flow
3. There is no augmenting path in "#

Optimality of Ford-Fulkerson
• Theorem: the following are equivalent for all !

1. There exists a cut (#, %) such that '() ! = +(,(#, %)
2. Flow ! is a maximum flow
3. There is no augmenting path in -.

Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in "#, then there is a

cut (%, ') such that)*+(,) = .*/(%, ')
• Let % be the set of nodes reachable from 0 in "#
• Let ' be all other nodes

Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in "#, then there is a

cut (%, ') such that)*+(,) = .*/(%, ')
• Let % be the set of nodes reachable from 0 in "#
• Let ' be all other nodes
• Key observation: no edges in "# go from % to '

• If 1 is % → ', then , 1 = . 1
• If 1 is ' → %, then , 1 = 0

original network

s

t

A B

Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow

• Running time ! " ⋅ $%& '∗ in networks with integer capacities
• Space !) +"

• MaxFlow-MinCut Duality: The value of the maximum s-t
flow equals the capacity of the minimum s-t cut
• If '∗ is a maximum s-t flow, then the set of nodes reachable from s

in +,∗ gives a minimum cut
• Given a max-flow, can find a min-cut in time !) +"

• Every graph with integer capacities has an integer
maximum flow
• Ford-Fulkerson will return an integral maximum flow

Ask the Audience
• Is this a maximum flow?

• Is there an integer maximum flow?
• Does every graph with integer capacities have an integer

maximum flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow

• Running time ! " ⋅ $%& '∗ in networks with integer capacities
• Space !) +"

• MaxFlow-MinCut Duality: The value of the maximum s-t
flow equals the capacity of the minimum s-t cut
• If '∗ is a maximum s-t flow, then the set of nodes reachable from s

in +,∗ gives a minimum cut
• Given a max-flow, can find a min-cut in time !) +"

• Every graph with integer capacities has an integer
maximum flow
• Ford-Fulkerson will return an integer maximum flow

