
CS3000: Algorithms & Data
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Lecture 20: 

• Network Flow: flows, cuts, duality
• Ford-Fulkerson
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Flow Networks



Flow Networks
• Directed graph ! = #, %
• Two special nodes: source & and sink '
• Edge capacities ( )
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Flows
• An s-t flow is a function ! " such that

• For every " ∈ $, 0 ≤ ! " ≤ ' " (capacity)
• For every ( ∈ ), ( ≠ ,, ( ≠ -, 
∑/ 01 23 4 ! " = ∑/ 362 37 4 ! " (conservation)

• The value of a flow is (89 ! = ∑/ 362 37 : ! "
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Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

• Is this a maximum flow?

• Is there an integer maximum flow?
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Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value
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Maximum Flow Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value
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Cuts
• An s-t cut is a partition (", $) of & with ' ∈ " and ) ∈ $

• The capacity of a cut (A,B) is *+, ", $ = ∑/ 012 03 4 * 5
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Minimum Cut problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity
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Minimum Cut Problem
• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

• Find a minimum cut of this network
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Flows vs. Cuts
• Fact: If ! is any s-t flow and (#, %) is any s-t cut, then the 

net flow across (#, %) is equal to the amount leaving s 
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Max Flow Min Cut Duality

• Weak Duality: Let ! be any s-t flow and (#, %) any s-t cut,

• Proof:

'() ! ≤ +(,(#, %)



Augmenting Paths
• Given a network ! = ($, &, ', (, ) * ) and a flow ,, an 

augmenting path - is an ' → ( path such that ,(*) < )(*)
for every edge * ∈ -

s

1

2

t

10

10

10 10

0 0

0

20

20

30



Greedy Max Flow
• Start with ! " = 0 for all edges " ∈ &
• Find an augmenting path ', max it out
• Repeat until you get stuck
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Does Greedy Work?
• Greedy gets stuck before finding a max flow
• How can we get from our solution to the max flow?
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Residual Graphs
• Original edge:  ! = #, % ∈ '.

• Flow ((!), capacity +(!)

• Residual edge
• Allows “undoing” flow
• ! = #, % and !, = %, # .
• Residual capacity

• Residual graph -. = /, '.
• Edges with positive residual capacity.
• '( = ! ∶ ( ! < + ! ∪ !3 ∶ ( ! > 0 .



Augmenting Paths in Residual Graphs
• Let !" be a residual graph
• Let # be an augmenting path in the residual graph
• Fact: $’ = Augment(!", #) is a valid flow

Augment(Gf, P)
b ¬ the minimum residual capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f



Ford-Fulkerson Algorithm
• Start with ! " = 0 for all edges " ∈ &
• Find an augmenting path ' in the residual graph
• Max it out
• Repeat until you get stuck
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Ford-Fulkerson Algorithm

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f



Ford-Fulkerson Demo

s

2

3

4

5 t10

10

9

8

4

10

1062!:



Ford-Fulkerson Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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Ford-Fulkerson	Demo
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What do we want to prove?

• FF Terminates
• FF finds a maximum s-t flow
• There is always a cut (A,B) such that val(f) = cap(A,B)



Ford-Fulkerson Algorithm – Run Time

Augment(Gf, P)
b ¬ the minimum capacity of an edge in P
for e Î P

if e Î E: f(e) ¬ f(e) + b
else:      f(e) ¬ f(e) - b

return f

FordFulkerson(G,s,t,{c})
for e Î E: f(e) ¬ 0
Gf is the residual graph

while (there is an s-t path P in Gf)
f ¬ Augment(Gf,P)
update Gf

return f



Running Time of Ford-Fulkerson
• For integer capacities, ≤ "#$ %∗ augmentation steps

• Can perform each augmentation step in ' ( time
• find augmenting path in ' (
• augment the flow along path in ' )
• update the residual graph along the path in ' )

• For integer capacities, FF runs in ' ( ⋅ "#$ %∗ time
• ' () time if all capacities are +, = 1
• ' ()/012 time for any integer capacities
• Problematic when capacities are large



Correctness of Ford-Fulkerson
• Theorem: ! is a maximum s-t flow if and only if there is no 

augmenting s-t path in "#

• (Strong) MaxFlow-MinCut Duality: The value of the max s-t 
flow equals the capacity of the min s-t cut 

• We’ll prove that the following are equivalent for all !
1. There exists a cut (%, ') such that )*+ ! = -*.(%, ')
2. Flow ! is a maximum flow
3. There is no augmenting path in "#



Optimality of Ford-Fulkerson
• Theorem: the following are equivalent for all !

1. There exists a cut (#, %) such that '() ! = +(,(#, %)
2. Flow ! is a maximum flow
3. There is no augmenting path in -.



Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in "#, then there is a 

cut (%, ') such that )*+(,) = .*/(%, ')
• Let % be the set of nodes reachable from 0 in "#
• Let ' be all other nodes



Optimality of Ford-Fulkerson
• (3 → 1) If there is no augmenting path in "#, then there is a 

cut (%, ') such that )*+(,) = .*/(%, ')
• Let % be the set of nodes reachable from 0 in "#
• Let ' be all other nodes
• Key observation: no edges in "# go from % to '

• If 1 is % → ', then , 1 = . 1
• If 1 is ' → %, then , 1 = 0
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Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow

• Running time ! " ⋅ $%& '∗ in networks with integer capacities
• Space ! ) +"

• MaxFlow-MinCut Duality: The value of the maximum s-t 
flow equals the capacity of the minimum s-t cut 
• If '∗ is a maximum s-t flow, then the set of nodes reachable from s 

in +,∗ gives a minimum cut
• Given a max-flow, can find a min-cut in time ! ) +"

• Every graph with integer capacities has an integer 
maximum flow
• Ford-Fulkerson will return an integral maximum flow



Ask the Audience
• Is this a maximum flow?

• Is there an integer maximum flow?
• Does every graph with integer capacities have an integer 

maximum flow?
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Summary
• The Ford-Fulkerson Algorithm solves maximum s-t flow 

• Running time ! " ⋅ $%& '∗ in networks with integer capacities
• Space ! ) +"

• MaxFlow-MinCut Duality: The value of the maximum s-t 
flow equals the capacity of the minimum s-t cut 
• If '∗ is a maximum s-t flow, then the set of nodes reachable from s 

in +,∗ gives a minimum cut
• Given a max-flow, can find a min-cut in time ! ) +"

• Every graph with integer capacities has an integer 
maximum flow
• Ford-Fulkerson will return an integer maximum flow


