CS3000: Algorithms & Data
Paul Hand

Lecture 20:

 Network Flow: flows, cuts, duality
e Ford-Fulkerson

Apr 8, 2019

Flow Networks

Flow Networks

e Directed graph G = (V,E)
* Two special nodes: source s and sink £
 Edge capacities c(e)

sink

Flows

* An s-t flow is a function f(e) such that

* Foreverye € E,0 < f(e) < c(e) (capacity)
e Foreveryv e V,v # 5,V # t,
Yeintov)f(€) = Xeoutofv /S (€) (conservation)

* The value of aflowis val(f) = Y. outorsf(€)

4/O<o ™.
<

10 15 0 10

0 4

10

: 5 —Q3)

0
10

capacity — 15
flow =0 N 0 \)/

Maximum Flow Problem

e Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

* |s this a maximum flow?

* Is there an integer maximum flow?

Maximum Flow Problem

e Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

10

S 5

15

G)

AN
S~

I S

15

™

!
BN

10

10

10

Maximum Flow Problem

e Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

10 15 0 10

4 9

10

s . |

. /‘<:< 1 ’O\
\

10
10

capacity — 15
flow = 14 N 14 \/

Cuts

* An s-t cutis a partition (4,B) of V withs € Aandt € B

* The capacity of a cut (A,B) is cap(4,B) = X.u outof a €(€)

10

/?i ™
N \g/

capacity = 15

Minimum Cut problem

e Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

10

AT

15

source / 5

capacity = 15

8
6

T~
N

’@D\
15

6

15

L
7

10

10 sink

10

Minimum Cut Problem

e Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

* Find a minimum cut of this network

Flows vs. Cuts

* Fact: If f is any s-t flow and (4, B) is any s-t cut, then the
net flow across (4, B) is equal to the amount leaving s

D @@=) e =val()

eoutofA einto A
9
2 9 5
10 1 9
10 40 15 15 0 10
4 8 9
s 5 3 8 6 10
4 10
4 0 15 0
capacity — 15 6 10
flow — 14 14
30

Max Flow Min Cut Duality

* Weak Duality: Let f be any s-t flow and (4, B) any s-t cut,
val(f) < cap(4,B)

* Proof:

Augmenting Paths
* Givenanetwork G = (V,E,s,t,{c(e)}) and aflow f, an

augmenting path P is an s — t path such that f(e) < c(e)
for every edgee € P

1
10 10

20 10

30 0 /@

10 20

o\@/o

Greedy Max Flow

e Start with f(e) = 0 for alledges e € E
* Find an augmenting path P, max it out
* Repeat until you get stuck

1
0 0

20 10

30 0 /@

10 20

o\@/o

Does Greedy Work?

* Greedy gets stuck before finding a max flow
 How can we get from our solution to the max flow?

1 1
20 0 20 10

20 10 20 10

30 20 /@ 30 10

10 20 10 20

optimal

greedy

Residual Graphs

* Original edge: e = (u,v) € E.
* Flow f(e), capacity c(e)

* Residual edge
* Allows “undoing” flow
e e = (u,v)and ek = (v,u).
e Residual capacity

* Residual graph Gf = (V, Ef)
* Edges with positive residual capacity.

« E; ={e: f(e) < c(e)} U {e?:f(e) > 0}

Augmenting Paths in Residual Graphs

* Let Gf be a residual graph

* Let P be an augmenting path in the residual graph
* Fact: f° = Augment(Gy, P) is a valid flow

Augment (G¢, P)
b < the minimum residual capacity of an edge in P
for e € P
if e € E: f(e) « £(e) + b
else: f(e) « £(e) - b
return f

Ford-Fulkerson Algorithm

Start with f(e) = O for alledgese € E

Find an augmenting path P in the residual graph
Max it out

Repeat until you get stuck

/\ ’

20 10

30 20 /@)

10 20

\@/ ®

Ford-Fulkerson Algorithm

FordFulkerson(G,s, t, {c})
for e € E: f(e) « 0
G¢ 1s the residual graph

while (there is an s-t path P in Gy)
f <« Augment (G¢, P)
update G

return f

Augment (G¢, P)
b < the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « £(e) - b
return £

Ford-Fulkerson Demo

Ford-Fulkerson Demo

Ford-Fulkerson Demo

G: * 10) 8 6 10
@/10 ') = 9\{5) 7_10\%)
. O
Gy / L\XE\
O ——® SO———@

Ford-Fulkerson Demo

1O
G: 10 9 9 8 6 10
10 @ lg\) lo:|_0>>&>
q S
. @ >(®
N
6 % \XQ\
o——— 0o SO——=0

Ford-Fulkerson Demo

(O

Ford-Fulkerson Demo

3 e
K\
o @ HO) 2
Gf l\ LE 3
J
@ =——0 . ®

Ford-Fulkerson Demo

G: 10 o 2 8 L6 10
6410 ’@ 9\) 10\@
q

1 lo

@\/

Ford-Fulkerson Demo

N - 0l a
o @
Gf 1 l
\ 4/ # N
@bék L |

What do we want to prove?

* FF Terminates
e FF finds a maximum s-t flow
* There is always a cut (A,B) such that val(f) = cap(A,B)

Ford-Fulkerson Algorithm — Run Time

FordFulkerson(G,s, t, {c})
for e € E: f(e) « 0
G¢ 1s the residual graph

while (there is an s-t path P in Gy)
f <« Augment (G¢, P)
update G

return f

Augment (G¢, P)
b < the minimum capacity of an edge in P
for e € P
if e € E: f(e) « f£f(e) + b
else: f(e) « £(e) - b
return £

Running Time of Ford-Fulkerson

* For integer capacities, < val(f™) augmentation steps

* Can perform each augmentation step in O(m) time
* find augmenting path in O(m)
* augment the flow along path in O(n)
« update the residual graph along the path in O(n)

 For integer capacities, FF runs in O(m : val(f*)) time
* O(mn) time if all capacities arec, = 1
* 0(mnCya.x) time for any integer capacities
* Problematic when capacities are large

Correctness of Ford-Fulkerson

* Theorem: f is a maximum s-t flow if and only if there is no
augmenting s-t path in Gy

* (Strong) MaxFlow-MinCut Duality: The value of the max s-t
flow equals the capacity of the min s-t cut

* WEe'll prove that the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting path in G¢

Optimality of Ford-Fulkerson

* Theorem: the following are equivalent for all f
1. There exists a cut (4, B) such that val(f) = cap(4, B)
2. Flow f is a maximum flow
3. There is no augmenting path in G¢

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in Gy, then there is a
cut (4, B) such that val(f) = cap(4, B)
* Let A be the set of nodes reachable from s in Gy
* Let B be all other nodes

Optimality of Ford-Fulkerson

* (3 — 1) If there is no augmenting path in Gy, then there is a
cut (4, B) such that val(f) = cap(A4,B)
* Let A be the set of nodes reachable from s in Gy
* Let B be all other nodes
* Key observation: no edges in Gf go from A to B

original network

* IfeisA — B, then f(e) = c(e)
*IfeisB — A,then f(e) =0

summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow
* Running time O(m : val(f*)) in networks with integer capacities
* Space O(n+m)

* MaxFlow-MinCut Duality: The value of the maximum s-t
flow equals the capacity of the minimum s-t cut

* If f*is a maximum s-t flow, then the set of nodes reachable from s
in G+ gives a minimum cut

* Given a max-flow, can find a min-cut in time O(n + m)

* Every graph with integer capacities has an integer
maximum flow

* Ford-Fulkerson will return an integral maximum flow

Ask the Audience

e |s this a maximum flow?

* |s there an integer maximum flow?

* Does every graph with integer capacities have an integer
maximum flow?

summary

* The Ford-Fulkerson Algorithm solves maximum s-t flow
* Running time O(m : val(f*)) in networks with integer capacities
* Space O(n+m)

* MaxFlow-MinCut Duality: The value of the maximum s-t
flow equals the capacity of the minimum s-t cut

* If f*is a maximum s-t flow, then the set of nodes reachable from s
in G+ gives a minimum cut

* Given a max-flow, can find a min-cut in time O(n + m)

* Every graph with integer capacities has an integer
maximum flow

* Ford-Fulkerson will return an integer maximum flow

