CS3000: Algorithms & Data Paul Hand

Lecture 2:

- Finish Induction
- Stable Matching: the Gale-Shapley Algorithm

Jan 9, 2019

Course Website

http://www.ccs.neu.edu/home/hand/teaching/cs3000-spring-2018/

	•• <	Ccs.neu.edu	0							
CS3000: Algorithms & Data										
		Syllabus Scl	hedule							
	This schedule will be updated frequently—check back often!									
<u>#</u>	<u>Date</u>	Topic	<u>Reading</u>	HW						
1	M 1/7	Course Overview, Induction Slides:								
2	W 1/9	Stable Matching: Gale-Shapley Algorithm, Proof by Contradiction Slides:	KT 1.1,1.2,2.3	HW1 Out (pdf, tex)						
3	M 1/14	Bubblesort, Divide and Conquer: Mergesort, Asymptotic Analysis Slides:	KT 5.1, 2.1-2.2							
4	W 1/16	Divide and Conquer: Karatsuba, Recurrences Slides:	KT 5.5, 5.2 Erickson II.1-3	HW1 Due HW2 Out (pdf, tex)						

Homework Policies

• Homework will be submitted on Gradescope!

- More details on Wednesday
- Entry Code: MKKEW2
- <u>https://www.gradescope.com/courses/36055</u>

Il gradescope

Course Structure

Textbook:

Algorithm Design by Kleinberg and Tardos

More resources on the course website

Exercise

• Claim: For every ,
$$n \in \mathbb{N}, \sum_{i=0}^{n-1} 2^i = 2^n - 1$$

• Proof by Induction:

Stable Matching Problem and the Gale-Shapley Algorithm

Process for solving computational problems with algorithms

- Formulate problem and questions
- Play around
- Devise algorithm
- Determine how long it takes to run
- Determine if algorithm is correct
- Determine appropriate data structures

Stable Matching Problem

Many job candidates (eg. doctors). Many jobs (eg. residency programs). You are to assign candidates to jobs. How should you do it?

Problem Formulation

What information do you need? What makes an output good? What reasonable simplifications can you make?

In case of Stable Matching problem Info 8 job candidate's preferences (over jobs) Employer's préférences (over candidates) which candidate is qualified to work which job can jobs be held simultaneously? Simplifications all candidates rank all jobs all jobs rank all candidates only one job can be taken Good output & no (candidate, job) pair prefers each other over what they have

Problem Formulation

What information do you need? What makes an output good? What reasonable simplifications can you make?

In case of Stable Matching problem

1

Infos

Simplificationso

Good output 8

Problem Formulation

What information do you need? What makes an output good? What reasonable simplifications can you make?

In case of Stable Matching problem Info 8 job candidate's preferences (over jobs) Employer's préférences (over candidates) which candidate is qualified to work which job can jobs be held simultaneously? Simplifications all candidates rank all jobs all jobs rank all candidates only one job can be taken Good output & no (candidate, job) pair prefers each other over what they have

Stable Matching problem - What makes an output good? No candidate-job pair prefers each other over what they have.

Stable Matching - Introduce Formalism
A matching M is a set of candidate-job pairs

$$M = \{ (c_1, j_3), (c_2, j_2), \dots \}$$
 where no candidate
or job appears more than once.
A matching is perfect if every candidate
and job appears exactly once
"C₁ is matched" means (C₁, j) $\in M$ for some job j,
"C₁ is matched to j₃" means (C₁, j₃) $\in M$

Stable Matching - Introduce Formalism
A matching is stable if it has no instabilities
An instability is

$$(c, j) \in M$$
, j'unmatched, and $C: j' > j$.
 $(c, j) \in M$, c'unmatched, and $j^{\circ} c' > c$
 $(c, j) \in M$, but $C^{\circ} j' > j$
 $(c', j') \in M$ but $C^{\circ} j' > j$

Devise algorithm

Go through list of candidates in any order Assign best Job (according to candidate) that prefers them to what that Job has now Repeat

Gale-Shapley Algorithm

- Let M be empty
- While (some job j is unmatched):
 - If (j has offered a job to everyone): break
 - Else: let c be the highest-ranked candidate to which j has not yet offered a job
 - j makes an offer to c:
 - If (c is unmatched):
 - c accepts, add (c,j) to M
 - ElseIf (c is matched to j' & c: j' > j):
 - c rejects, do nothing
 - ElseIf (c is matched to j' & c: j > j'):
 - c accepts, remove (c,j') from M and add (c,j) to M

• Output M

Gale-Shapley Demo

	1st	2nd	3rd	4th	5th	
MGH	Bob	Alice	Dorit	Ernie	Clara	
BW	Dorit	Bob	Alice	Clara	Ernie	
BID	Bob	Ernie	Clara	Dorit	Alice	
MTA	Alice	Dorit	Clara	Bob	Ernie	
СН	Bob	Dorit	Alice	Ernie	Clara	

	1st	2nd	3rd	4th	5th	
Alice	Alice CH		BW	MTA	BID	
Bob	BID	BW	MTA	MGH	СН	
Clara	BW	BID	MTA	СН	MGH	
Dorit	MGH	СН	MTA	BID	BW	
Ernie	MTA	BW	СН	BID	MGH	

Activity: What are the first 4 steps of G-S algorithm?

(Assume it steps through jobs in order 1-4, afterwards starting over with 1 if necessary)

- Jobs: 1,2,3,4
- Candidates: A,B,C,D

Jobs' Preferences

Candidates' Preferences

Observations

• At all steps, the state of the algorithm is a matching

• Jobs make offers in descending order

• Candidates that get a job never become unemployed

• Candidates accept offers in ascending order

Gale-Shapley Algorithm

- Questions about the Gale-Shapley Algorithm:
 - Will this algorithm terminate? After how long?
 - Does it output a perfect matching?
 - Does it output a stable matching?
 - How do we implement this algorithm efficiently?

GS Algorithm: Termination

 Claim: The GS algorithm terminates after n² iterations of the main loop, where n is number of candidates/jobs.

GS Algorithm: Perfect Matching

• Claim: The GS algorithm returns a perfect matching (all jobs/candidates are matched)

GS Algorithm: Stable Matching

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability

• Running Time:

- A straightforward implementation requires at $\approx n^3$ operations, $\approx n^2$ space (memory).

- Let M be empty
- While (some job j is unmatched):
 - If (j has offered a job to everyone): break
 - Else: let c be the highest-ranked candidate to which j has not yet offered a job
 - j makes an offer to c:
 - If (c is unmatched):
 - c accepts, add (c,j) to M
 - ElseIf (c is matched to j' & c: j' > j):
 - c rejects, do nothing
 - ElseIf (c is matched to j' & c: j > j'):
 - c accepts, remove (c,j') from M and add (c,j) to M

• Output M

• Running Time:

- A careful implementation requires just $\approx n^2\,$ time and $\,\approx n^2\,{\rm space}$

• Running Time:

A careful implementation requires just time and space

	1st	2nd	3rd	4th	5th			MGH	BW	BID	ΜΤΑ	СН	
Alice	СН	MGH	BW	MTA	BID		Alice	2 nd	3rd	5 th	4 th	1 st	
Bob	BID	BW	MTA	MGH	СН		Bob	4 th	2 nd	1 st	3rd	5 th	
Clara	BW	BID	MTA	СН	MGH			Clara	5 th	1 st	2nd	3rd	4 th
Dorit	MGH	СН	MTA	BID	BW		Dorit	1 st	5 th	4 th	3rd	2 nd	
Ernie	MTA	BW	СН	BID	MGH		Ernie	5 th	2 nd	4 th	1 st	3rd	

• Running Time:

- A careful implementation requires just $\approx n^2\,$ time and $\,\approx n^2\,{\rm space}$

Proofso

Notes for instructor Students may ignore because they are repeated elsewhere

Termination ° Each loop makes at most one new offer. Only nº total possible offers

Perfect Matching? Suppose a job is unmatched. Job offer was made to all candidates . Job offer was made to all candidates . All candidates have a job . So some candidate is matched with this job . So some candidate is matched. Suppose a candidate is unmatched. . Some job is unmatched. . Some job is unmatched.

As matching is perfect, only possible instability is $(C, j) \in M$ and $C_{0}^{0} j' \neq j$ $(C, j') \in M$ $j'_{0}^{0} \subset \neq C'$ Stability o At some point, j' offered to C. C had a job at least as good as j'. C has a jab at least as good as j'. Contradiction.