CS3000: Algorithms & Data Paul Hand

Lecture 18:

Bellman-Ford Algorithm

Apr 1, 2019

Dijkstra Recap

- Input: Directed, weighted graph $G = (V, E, \{\ell_e\})$, source node s
 - Non-negative edge lengths $\ell_e \geq 0$

- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on shortest $s \sim u$ path
- Running time: $O(m \log n)$
 - Implement using binary heaps

What About Negative Lengths?

- Models various phenomena
 - Transactions (credits and debits)
 - Currency exchange (log(exchange rate) can be + or -)
 - Chemical reactions (can be exo or endothermic)
- Leads to interesting algorithms
 - Variants of Bellman-Ford are used in internet routing

Bellman-Ford

- Input: Directed, weighted graph $G = (V, E, \{\ell_e\})$, source node s
 - Possibly negative edge lengths $\ell_e \in \mathbb{R}$
 - No negative-length cycles!

- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on shortest $s \sim u$ path

Activity

- Suppose we try the following algorithm
 - Take a graph $G = (V, E, \{\ell(e)\})$ with negative lengths
 - Add some valueC to all lengths to make them non-negative
 - Run Dijkstra on the new graph
- Activity: Come up with a graph where this fails

Structure of Shortest Paths

• If $(u, v) \in E$, then $d(s, v) \le d(s, u) + \ell(u, v)$ for every node $s \in V$

• For every v, there exists an edge $(u, v) \in E$ such that $d(s, v) = d(s, u) + \ell(u, v)$

• If $(u, v) \in E$, and $d(s, v) = d(s, u) + \ell(u, v)$ then there is a shortest $s \sim v$ -path ending with (u, v)

Dynamic Programming

• Subproblems: Let $\mathrm{OPT}(v)$ be the length of the shortest path from s to v

Bottom-Up Implementation?

v	S	b	С	d	е
OPT(v)	0				

Dynamic Programming Take II

• Subproblems: Let OPT(v, j) be the length of the shortest path from s to v with at most j hops

Recurrence

- Subproblems: Let OPT(v, j) be the length of the shortest path from s to v with at most j hops
- Case u:(u,v) is final edge on the shortest j-hop $s \sim v$ path

Recurrence:

$$\begin{aligned} & \text{OPT}(v,j) = \min \Big\{ \text{OPT}(v,i-1), \min_{(u,v) \in E} \{ \text{OPT}(u,i-1) + \ell_{u,v} \} \Big\} \\ & \text{OPT}(s,j) = 0 \text{ for every } j \\ & \text{OPT}(v,0) = \infty \text{ for every } v \end{aligned}$$

Finding the paths

- OPT(v, j) is the length of the shortest $s \sim v$ path with at most j hops
- P(v,j) is the last hop on some shortest $s \sim v$ path with at most j hops

Recurrence:

$$\mathrm{OPT}(v,j) = \min \left\{ \mathrm{OPT}(v,i-1), \min_{(u,v) \in E} \left\{ \mathrm{OPT}(u,i-1) + \ell_{u,v} \right\} \right\}$$

	0	1	2	3	4
S	0	0	0	0	0
b	∞	-1	-1	-1	
С	∞	4	2	2	
d	∞	∞	1	-2	
е	∞	∞	1	1	

	0	1	2	3	4
S	0	0	0	0	0
b	∞	-1	-1	-1	-1
С	∞	4	2	2	2
d	∞	∞	1	-2	-2
e	∞	∞	1	1	1

Implementation (Bottom Up DP)

```
Shortest-Path(G, s)
 foreach node v \in V
    D[v,0] \leftarrow \infty
    P[v,0] \leftarrow \bot
D[s,0] \leftarrow 0
 for i = 1 to n-1
     foreach node v \in V
       D[v,i] \leftarrow D[v,i-1]
       P[v,i] \leftarrow P[v,i-1]
       foreach edge (u,v) \in E
            if (D[u,i-1] + \ell_{uv} < D[v,i])
                 D[v,i] \leftarrow D[u,i-1] + \ell_{uv}
                 P[v,i] \leftarrow u
```

Running time:

Space:

Optimizations

- One array d[v] containing shortest path found so far
- No need to check edges (u, v) unless d[u] has changed
- Stop if no d[v] has changed for a full pass through V

Implementation II

```
Efficient-Shortest-Path(G, s)
 foreach node v \in V
    D[v] \leftarrow \infty
    P[v] \leftarrow \bot
D[s] \leftarrow 0
for i = 1 to n
    foreach node u ∈ V
       if (D[u] changed in the last iteration)
          foreach edge (u,v) \in E
           if (D[u] + \ell_{uv} < D[v])
               D[v] \leftarrow D[u] + \ell_{uv}
               P[v] \leftarrow u
       if (no D[u] changed): return (D,P)
```

Running time: O(mn) but O(m) in practice

Space: O(n)

Shortest Paths Summary

- Input: Directed, weighted graph $G = (V, E, \{\ell_e\})$, source node s
- Output: Two arrays d, p
 - d[u] is the length of the shortest $s \sim u$ path
 - p[u] is the final hop on shortest $s \sim u$ path
- Non-negative lengths: Dijkstra's Algorithm solves in $O(m \log n)$ time
- Negative lengths: Bellman-Ford solves in O(nm) time O(n+m) space, or finds a negative cycle