CS3000: Algorithms & Data
Paul Hand

Lecture 18:

Bellman-Ford Algorithm

Apr 1, 2019



Dijkstra Recap

* Input: Directed, weighted graph ¢ = (V,E, {£,}),
source node s
* Non-negative edge lengths £, = 0

* Qutput: Two arrays d, p
* d|u] is the length of the shortest s ~ u path
* p[u] is the final hop on shortest s ~ u path

* Running time: O(mlogn)
* Implement using binary heaps



What About Negative Lengths?

* Models various phenomena
* Transactions (credits and debits)
e Currency exchange (log(exchange rate) can be + or -)
* Chemical reactions (can be exo or endothermic)

* Leads to interesting algorithms
* Variants of Bellman-Ford are used in internet routing



Bellman-Ford

* Input: Directed, weighted graph ¢ = (V,E, {£,}),
source node s
* Possibly negative edge lengths /., € R
* No negative-length cycles!

* Qutput: Two arrays d, p
* d|u] is the length of the shortest s ~ u path
* p[u] is the final hop on shortest s ~ u path



Activity

* Suppose we try the following algorithm
* Take agraph G = (V, E,{f(e)}) with negative lengths
* Add some valueC to all lengths to make them non-negative
* Run Dijkstra on the new graph

* Activity: Come up with a graph where this fails



Structure of Shortest Paths

e If (u,v) € E,thend(s,v) <d(s,u) + ¢(u,v) for
everynhodes € V

* For every v, there exists an edge (u, v) € E such
that d(s,v) = d(s,u) + £(u, v)

e If (u,v) € E,and d(s,v) = d(s,u) + £(u,v) then
there is a shortest s ~» v-path ending with (u, v)



Dynamic Programming

 Subproblems: Let OPT(v) be the length of the shortest
path from s to v



Bottom-Up Implementation?




Dynamic Programming Take |l

* Subproblems: Let OPT(v, j) be the length of the shortest
path from s to v with at most j hops



Recurrence

* Subproblems: Let OPT (v, j) be the length of the shortest
path from s to v with at most j hops

* Case u: (u, v) is final edge on the shortest j-hop s ~ v path

Recurrence:

OPT(v,j) = min {OPT(U i—1), ml)relE{OPT(u,i -1+ fu’v}}

OPT(s,j) = O for every j
OPT(v,0) = oo for every v



Finding the paths

* OPT(v,j) is the length of the shortest s ~ v path with at
most j hops

e P(v,j) is the last hop on some shortest s ~» v path with at
most j hops

Recurrence:

OPT(v,j) = min {OPT(U i —1), ml)réE{OPT(u i—1)+ 72, v}}


















Implementation (Bottom Up DP)

Shortest-Path (G, s)
foreach node v € V
D[v,0] «
P[v,0] « 1
D[s,0] « O

for 1 =1 to n-1
foreach node v € V
D[v,i] <« D[v,i-1]
P[v,i] « P[v,i-1]
foreach edge (u,v) € E
if (D[u,i-1] + ¢, < D[v,1])
D[v,1i] « D[u,i-1] + 4.
P[v,i] «< u

Running time:
Space:



Optimizations

* One array d|v] containing shortest path found so far
* No need to check edges (u, v) unless d[u] has changed

e Stop if no d[v] has changed for a full pass through V



Implementation |l

Efficient-Shortest-Path (G, s)
foreach node v € V
D[v] « o
P[v] « 1
D[s] « O

for 1 =1 ton
foreach node u € V
if (D[u] changed in the last iteration)
foreach edge (u,v) € E
if (D[u] + f,, < D[V])
D[v] « D[u] + ¥,
P[v] < u
if (no D[u] changed): return (D,P)

Running time: O(mn) but O(m) in practice
Space: O(n)



Shortest Paths Summary

* Input: Directed, weighted graph ¢ = (V,E, {£,}),
source node s
* Qutput: Two arrays d, p

* d|u] is the length of the shortest s ~ u path
* p[u] is the final hop on shortest s ~ u path

* Non-negative lengths: Dijkstra’s Algorithm solves in
O(mlogn) time

* Negative lengths: Bellman-Ford solves in O(nm)
time O(n 4+ m) space, or finds a negative cycle



