
CS3000: Algorithms & Data
Paul Hand

Lecture 15:

• Depth First Search
• Topological Sorting
• Shortest Paths

Mar 13, 2019

Depth-First Search (DFS)

Exploring a Graph

• Problem: Is there a path from ! to "?
• Idea: Explore all nodes reachable from !.

• Two different search techniques:
• Breadth-First Search: explore nearby nodes before

moving on to farther away nodes
• Depth-First Search: follow a path until you get stuck,

then go back

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u c

a b

Activity: Draw the BFS and DFS Trees
(starting at s)

Depth-First Search

u c

a b

• Fact: The parent-child edges form a (directed) tree
• Each edge has a type:
• Tree edges: (", $), (", &), (&, ')

• These are the edges that explore new nodes
• Forward edges: (", ')

• Ancestor to descendant
• Backward edges: $, "

• Descendant to ancestor
• Cross edges: (&, $)

• No ancestral relation

Pre-Ordering
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

pre-visit(u)

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u c

a b

• Maintain a counter clock, initially set clock = 1
• pre-visit(u):

set preorder[u]=clock, clock=clock+1

Vertex Pre-Order

• Order the vertices by when
they were first visited by DFS

Post-Ordering
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u c

a b

• Maintain a counter clock, initially set clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order

• Order the vertices by when
they were last visited by DFS

Preorder versus postorder

Pre-order: F, B, A, D, C, E, G, I, H. Post-order: A, C, E, D, B, H, I, G, F.

Activity

a b

e f

• Compute the post-order of this graph
• DFS from !, search in alphabetical order

c d

g h

Vertex a b c d e f g h
Post-Order

Activity

a b

e f

• Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

c d

g h

Vertex a b c d e f g h
Post-Order 8 7 5 4 6 1 2 3

Observation about postordering

• Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

• DFS(u) can’t finish until its children are finished
• If (u,v) is a tree edge, then postorder[u] > postorder[v]

• If (u,v) is a forward edge, then postorder[u] > postorder[v]

• If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)
• When we ran DFS(u), we must have had explored[v]=1

• Thus, DFS(v) started before DFS(u)

• DFS(v) started before DFS(u) but finished after
• Can only happen for a backward edge

Fast Topological Ordering

Topological Ordering (TO)

• DAG: A directed graph with no directed cycles.
• Are these DAGs?

Topological Ordering (TO)

• DAG: A directed graph with no directed cycles
• Any DAG can be toplogically ordered
• Label nodes !",… , !% so that !&, !' ∈) ⟹ + > -

Activity

• Come up with two different topologically orderings
of the following graph

Algorithm for Topological Ordering

• Claim: ordering nodes by decreasing postorder
gives a topological ordering
• Proof:
• A DAG has no backward edges
• Suppose this is not a topological ordering
• That means there exists an edge (u,v) such that

postorder[u] < postorder[v]
• We showed that any such (u,v) is a backward edge
• But there are no backward edges, contradiction!

u c

a b

Topological Ordering (TO)

• DAG: A directed graph with no directed cycles
• Any DAG can be toplogically ordered
• Label nodes !",… , !% so that !&, !' ∈) ⟹ + > -

• Can compute a TO in . / +1 time using DFS
• Reverse of post-order is a topological order

Activity

• Come up with a DAG with 3 nodes such that the
preordering is not a topological ordering.

Shortest Paths

Activity: Find the shortest path

Weighted Graphs

• Definition: A weighted graph ! = #, %, {'())}
• # is the set of vertices
• % ⊆ #×# is the set of edges
• '. ∈ ℝ are edge weights/lengths/capacities
• Can be directed or undirected

• Today:
• Directed graphs (one-way streets)
• Strongly connected (there is always some path)
• Non-negative edge lengths (ℓ()) ≥ 0)

Shortest Paths

• The length of a path ! = #$ − #& −⋯− #(is the
sum of the edge lengths

• The distance) *, , is the length of the shortest
path from * to ,
• Shortest Path: given nodes *, , ∈ ., find the

shortest path from * to ,
• Single-Source Shortest Paths: given a node * ∈ .,

find the shortest paths from * to every , ∈ .

Structure of Shortest Paths

• If !, # ∈ %, then & ', # ≤ & ', ! + ℓ !, # for
every node ' ∈ +

• If !, # ∈ %, and & ', # = & ', ! + ℓ(!, #) then
there is a shortest ' ↝ #-path ending with (!, #)

