CS3000: Algorithms \& Data Paul Hand

Lecture 15:

- Depth First Search
- Topological Sorting
- Shortest Paths

Mar 13, 2019

Depth-First Search (DFS)

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes
- Depth-First Search: follow a path until you get stuck, then go back

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS (v)
```


Activity: Draw the BFS and DFS Trees

(starting at s)
input

Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(u, a),(u, c),(c, b)$
- These are the edges that explore new nodes
- Forward edges: (u, b)
- Ancestor to descendant
- Backward edges: (a, u)
- Descendant to ancestor
- Cross edges: (c, a)
- No ancestral relation

Pre-Ordering

- Order the vertices by when they were first visited by DFS

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    pre-visit(u)
    for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS (v)
```

- Maintain a counter clock, initially set clock $=1$
- pre-visit(u):
set preorder[u]=clock, clock=clock+1

Post-Ordering

- Order the vertices by when they were last visited by DFS

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
        parent[v] = u
        DFS (v)
    post-visit(u)
```

- Maintain a counter clock, initially set clock $=1$
- post-visit(u) : set postorder[u]=clock, clock=clock+1

Preorder versus postorder

Pre-order: F, B, A, D, C, E, G, I, H.

Post-order: A, C, E, D, B, H, I, G, F.

Activity

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

g $\quad \mathbf{h}$

Activity

- Observation: if postorder[u] < postorder[v] then (u, v) is a backward edge

Vertex	a	b	c	d	e	f	g	h
Post-Order	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

Observation about postordering

- Observation: if postorder[u] < postorder[v] then (u, v) is a backward edge
- DFS(u) can't finish until its children are finished
- If (u, v) is a tree edge, then postorder[u] > postorder[v]
- If (u, v) is a forward edge, then postorder[u] > postorder[v]
- If postorder[u] < postorder[v], then DFS(u) finishes before DFS (v), thus DFS(v) is not called by DFS(u)
- When we ran DFS(u), we must have had explored[v]=1
- Thus, DFS(v) started before DFS(u)
- DFS(v) started before DFS(u) but finished after
- Can only happen for a backward edge

Fast Topological Ordering

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles.
- Are these DAGs?

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
- Label nodes v_{1}, \ldots, v_{n} so that $\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i$

Activity

- Come up with two different topologically orderings of the following graph

Algorithm for Topological Ordering

- Claim: ordering nodes by decreasing postorder gives a topological ordering

- Proof:
- A DAG has no backward edges
- Suppose this is not a topological ordering
- That means there exists an edge (u, v) such that postorder[u] < postorder[v]
- We showed that any such (u, v) is a backward edge
- But there are no backward edges, contradiction!

Topological Ordering (TO)

- DAG: A directed graph with no directed cycles
- Any DAG can be toplogically ordered
- Label nodes v_{1}, \ldots, v_{n} so that $\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i$

- Can compute a TO in $O(n+m)$ time using DFS
- Reverse of post-order is a topological order

Activity

- Come up with a DAG with 3 nodes such that the preordering is not a topological ordering.

Shortest Paths

Activity: Find the shortest path

Weighted Graphs

- Definition: A weighted graph $G=(V, E,\{w(e)\})$
- V is the set of vertices
- $E \subseteq V \times V$ is the set of edges
- $w_{e} \in \mathbb{R}$ are edge weights/lengths/capacities
- Can be directed or undirected
- Today:
- Directed graphs (one-way streets)
- Strongly connected (there is always some path)
- Non-negative edge lengths ($\ell(e) \geq 0$)

Shortest Paths

- The length of a path $P=v_{1}-v_{2}-\cdots-v_{k}$ is the sum of the edge lengths
- The distance $d(s, t)$ is the length of the shortest path from s to t
- Shortest Path: given nodes $s, t \in V$, find the shortest path from s to t
- Single-Source Shortest Paths: given a node $s \in V$, find the shortest paths from s to every $t \in V$

Structure of Shortest Paths

- If $(u, v) \in E$, then $d(s, v) \leq d(s, u)+\ell(u, v)$ for every node $s \in V$
- If $(u, v) \in E$, and $d(s, v)=d(s, u)+\ell(u, v)$ then there is a shortest $s \leadsto v$-path ending with (u, v)

