CS3000: Algorithms & Data
Paul Hand

Lecture 15:

* Depth First Search
 Topological Sorting
* Shortest Paths

Mar 13, 2019



Depth-First Search (DFS)



Exploring a Graph

* Problem: Is there a path from s to t?
* Idea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back



Depth-First Search

G = (V,E) is a graph
explored[u] = 0 Vu

DFS (u) :
exploredu] =1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)



Activity: Draw the BFS and DFS Trees
(starting at s)

input




Depth-First Search

* Fact: The parent-child edges form a (directed) tree

* Each edge has a type:
* Tree edges: (u,a), (u,c),(c,b)
* These are the edges that explore new nodes
* Forward edges: (u, b)
* Ancestor to descendant
* Backward edges: (a, u)
 Descendant to ancestor
* Cross edges: (c,a)
* No ancestral relation




Pre-Ordering ° °

 Order the vertices by when G = (V,E) is a graph
they were first visited by DFS explored[u] = 0 Vu

DFS (u) : ° °

exploredu] =1

pre-visit (u)

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DF'S (v)

* Maintain a counter clock, initially set clock = 1
* pre-visit (u) :
set preorder[u]=clock, clock=clock+l



Post-Ordering ° °

* Order the vertices by when G = (V,E) is a graph
they were last visited by DFS explored[u] = 0 Vu

DFS (u) : ° °

explored[u] =1

for ((u,v) in E):

if (explored|[v]=0):
parent[v] = u
DF'S (v)

post-visit (u)

* Maintain a counter clock, initially set clock = 1
e post-visit(u):
set postorder[u]=clock, clock=clock+l



Preorder versus postorder

\
]
1
1

v
1
1
I

Pre-order: F, B, A, D, C, E, G, I, H. Post-order: A, C, E, D, B, H, |, G, F.



Activity

* Compute the post-order of this graph
* DFS from a, search in alphabetical order

Post-Order




Activity

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge




Observation about postordering

* Observation: if postorder[u] < postorder[v] then
(u,v) is a backward edge

e DFS(u) can’t finish until its children are finished
e If (u,v) is a tree edge, then postorder[u] > postorder|[v]

e If (u,v) is a forward edge, then postorder[u] > postorder|[v]

e If postorder[u] < postorder[v], then DFS(u) finishes
before DFS(v), thus DFS(v) is not called by DFS(u)

* When we ran DFS(u), we must have had explored[v]=1
* Thus, DFS(v) started before DFS(u)
e DFS(v) started before DFS(u) but finished after

e Can only happen for a backward edge



Fast Topological Ordering



Topological Ordering (TO)

* DAG: A directed graph with no directed cycles.
* Are these DAGs?




Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy4, ..., 1, so that (vi, vj) EE=j]>Ii

ﬁ—\/’_‘\
OJOSOXOROSOR0




Activity

 Come up with two different topologically orderings
of the following graph




Algorithm for Topological Ordering

* Claim: ordering nodes by decreasing postorder
gives a topological ordering

* Proof:
* A DAG has no backward edges
» Suppose this is not a topological ordering

* That means there exists an edge (u,v) such that
postorder[u] < postorder[v]

 We showed that any such (u,v) is a backward edge

* But there are no backward edges, contradiction!



Topological Ordering (TO)

* DAG: A directed graph with no directed cycles

* Any DAG can be toplogically ordered
* Label nodes vy4, ..., 1, so that (vi, vj) EE=j]>Ii

e Can compute a TO in O(n + m) time using DFS
* Reverse of post-order is a topological order



Activity

* Come up with a DAG with 3 nodes such that the
preordering is not a topological ordering.



Shortest Paths



Activity: Find the shortest path

Office




Weighted Graphs

* Definition: A weighted graph ¢ = (V, E, {w(e)})
* I/ is the set of vertices
| € VXV is the set of edges
* w, € R are edge weights/lengths/capacities
* Can be directed or undirected

* Today:
* Directed graphs (one-way streets)
 Strongly connected (there is always some path)
* Non-negative edge lengths (£(e) = 0)



Shortest Paths

* The length ofa path P = v; — v, — - — v, is the
sum of the edge lengths

* The distance d(s, t) is the length of the shortest
path fromstot

* Shortest Path: given nodes s,t € V, find the
shortest path from sto t

* Single-Source Shortest Paths: given a node s € I/,
find the shortest paths from s toeveryt € V



Structure of Shortest Paths

e If (u,v) € E,thend(s,v) <d(s,u) + ¢(u,v) for
everynhodes € V

e If (u,v) € E,andd(s,v) =d(s,u) + £(u,v) then
there is a shortest s ~» v-path ending with (u, v)



