CS3000: Algorithms & Data Paul Hand

Lecture 14:

- Bipartite Graphs and 2-coloring
- Depth First Search

Mar 11, 2019

Recap: Graphs/BFS

Breadth-First Search (BFS)

- **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t*
- Thm: BFS finds distances from s to other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from *s*

Bipartiteness / 2-Coloring

2-Coloring

- **Problem:** Team Forming
 - Need to form two teams **R**, **P**
 - Some people don't want to be on the same team as certain other people
- Input: Undirected graph G = (V, E)
 - $(u, v) \in E$ means u, v wont be on the same team
- Output: Split V into two sets R, P so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
 - A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R

Activity: Is the following graph bipartite?

Give an example of a bipartite graph that is not connected

Suppose a graph of 10 nodes is bipartite. What is the maximum number of edges it can have?

Activity: Is the following graph bipartite?

All omitted entries are zero

Α	1	2	3	4	5	6	7	8	9	10
1			1					1		
2				1	1					1
3	1					1		1		
4		1			1				1	
5		1		1					1	
6			1				1	1		
7						1		1		
8	1		1			1	1			
9				1	1					
10		1								

Designing an Algorithm to determine if a graph is bipartite

• Key Fact: If G contains a cycle of odd length, then G is not 2-colorable/bipartite

Designing the Algorithm

• Idea for the algorithm:

- BFS the graph, coloring nodes as you find them
- Color nodes in layer *i* **purple** if *i* even, **red** if *i* odd
- See if you have succeeded or failed

Designing the Algorithm

- Claim: If BFS 2-colored the graph successfully, the graph has been 2-colored successfully
- Key Question: Suppose you have not 2-colored the graph successfully, maybe someone else can do it?

Designing the Algorithm

- Claim: If BFS fails, then G contains an odd cycle
 - If G contains an odd cycle then G can't be 2-colored!

Depth-First Search (DFS)

Exploring a Graph

- **Problem:** Is there a path from *s* to *t*?
- Idea: Explore all nodes reachable from *s*.
- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - **Depth-First Search:** follow a path until you get stuck, then go back

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 ∀u
DFS(u):
    explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
            parent[v] = u
            DFS(v)
```


Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
 - Tree edges: (u, a), (u, c), (c, b)
 - These are the edges that explore new nodes
 - Forward edges: (*u*, *b*)
 - Ancestor to descendant
 - Backward edges: (*a*, *u*)
 - Descendant to ancestor
 - **Cross edges:** (*c*, *a*)
 - No ancestral relation

Activity

• Each edge has a type:

- **Tree edges:** (u, a), (u, c), (c, b)
 - Edges that explore new nodes
- Forward edges: (*u*, *b*)
 - Ancestor to descendant
- Backward edges: (*a*, *u*)
 - Descendant to ancestor
- Cross edges: (*c*, *a*)
 - No ancestral relation

• DFS this graph starting from node a

- Search in alphabetical order
- Label edges as { tree , forward , backward , cross}

Pre-Ordering

• Order the vertices by when they were **first** visited by DFS

```
G = (V, E) is a graph
explored[u] = 0 \forall u
                                       а
DFS(u):
  explored[u] = 1
                                      Vertex
                                              Pre-Order
 pre-visit(u)
  for ((u,v) in E):
    if (explored[v]=0):
      parent[v] = u
      DFS(v)
```

U

- Maintain a counter **clock**, initially set **clock** = 1
- pre-visit(u):

set preorder[u]=clock, clock=clock+1

Post-Ordering

 Order the vertices by when they were **last** visited by DFS

```
G = (V, E) is a graph
explored[u] = 0 \forall u
DFS(u):
  explored[u] = 1
  for ((u,v) in E):
    if (explored[v]=0):
     parent[v] = u
     DFS(v)
 post-visit(u)
```


Vertex	Post-Order

- Maintain a counter clock, initially set clock = 1
- post-visit(u):

set postorder[u]=clock, clock=clock+1

Preorder versus postorder

Pre-order: F, B, A, D, C, E, G, I, H.

Post-order: A, C, E, D, B, H, I, G, F.

- Compute the **post-order** of this graph
 - DFS from *a*, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order								

Ask the Audience

- Compute the **post-order** of this graph
 - DFS from *a*, search in alphabetical order

Vertex	а	b	С	d	е	f	g	h
Post-Order	8	7	5	4	6	1	2	3