
CS3000: Algorithms & Data
Paul Hand

Lecture 14:

• Bipartite Graphs and 2-coloring
• Depth First Search

Mar 11, 2019

Recap: Graphs/BFS

Breadth-First Search (BFS)

• Definition: the distance between !, # is the number
of edges on the shortest path from ! to #
• Thm: BFS finds distances from ! to other nodes
• $% contains all nodes at distance & from !
• Nodes not in any layer are not reachable from !

Bipartiteness / 2-Coloring

2-Coloring

• Problem: Team Forming
• Need to form two teams !,#
• Some people don’t want to be on the same team as

certain other people
• Input: Undirected graph $ = &, '
• (,) ∈ ' means (,) wont be on the same team

• Output: Split & into two sets !,# so that no pair in
either set is connected by an edge

2-Coloring (Bipartiteness)

• Equivalent Problem: Is the graph ! bipartite?
• A graph ! is bipartite if I can split " into two sets # and
$ such that all edges %, ' ∈) go between # and $

2 1

3 4

L R

5

Activity: Is the following graph bipartite?

Activity:

Give an example of a bipartite graph that is not connected

Suppose a graph of 10 nodes is bipartite. What is the maximum number of edges
it can have?

Activity: Is the following graph bipartite?
Activity

• Determine if there is path between nodes 1 and 2
All omitted entries are zero

A 1 2 3 4 5 6 7 8 9 10
1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1
8 1 1 1 1
9 1 1
10 1

Designing an Algorithm to determine if a
graph is bipartite

• Key Fact: If ! contains a cycle of odd length, then !
is not 2-colorable/bipartite

Designing the Algorithm

• Idea for the algorithm:
• BFS the graph, coloring nodes as you find them
• Color nodes in layer ! purple if ! even, red if ! odd
• See if you have succeeded or failed

Designing the Algorithm

• Claim: If BFS 2-colored the graph successfully, the
graph has been 2-colored successfully
• Key Question: Suppose you have not 2-colored the

graph successfully, maybe someone else can do it?

Designing the Algorithm

• Claim: If BFS fails, then G contains an odd cycle
• If G contains an odd cycle then G can’t be 2-colored!

Depth-First Search (DFS)

Exploring a Graph

• Problem: Is there a path from ! to "?
• Idea: Explore all nodes reachable from !.

• Two different search techniques:
• Breadth-First Search: explore nearby nodes before

moving on to farther away nodes
• Depth-First Search: follow a path until you get stuck,

then go back

Depth-First Search

G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u b

a c

Depth-First Search

u b

a c

• Fact: The parent-child edges form a (directed) tree
• Each edge has a type:
• Tree edges: (", $), (", &), (&, ')

• These are the edges that explore new nodes
• Forward edges: (", ')

• Ancestor to descendant
• Backward edges: $, "

• Descendant to ancestor
• Cross edges: (&, $)

• No ancestral relation

Activity

a b

e f

• DFS this graph starting from node !
• Search in alphabetical order
• Label edges as { tree , forward , backward , cross}

c d

g h

• Each edge has a type:
• Tree edges: (#, !), (#, &), (&, ')

• Edges that explore new nodes
• Forward edges: (#, ')

• Ancestor to descendant
• Backward edges: !, #

• Descendant to ancestor
• Cross edges: (&, !)

• No ancestral relation

Pre-Ordering
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

pre-visit(u)

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

u b

a c

• Maintain a counter clock, initially set clock = 1
• pre-visit(u):

set preorder[u]=clock, clock=clock+1

Vertex Pre-Order

• Order the vertices by when
they were first visited by DFS

Post-Ordering
G = (V,E) is a graph
explored[u] = 0 ∀u

DFS(u):
explored[u] = 1

for ((u,v) in E):
if (explored[v]=0):
parent[v] = u
DFS(v)

post-visit(u)

u b

a c

• Maintain a counter clock, initially set clock = 1
• post-visit(u):

set postorder[u]=clock, clock=clock+1

Vertex Post-Order

• Order the vertices by when
they were last visited by DFS

Preorder versus postorder

Pre-order: F, B, A, D, C, E, G, I, H. Post-order: A, C, E, D, B, H, I, G, F.

Activity

a b

e f

• Compute the post-order of this graph
• DFS from !, search in alphabetical order

c d

g h

Vertex a b c d e f g h
Post-Order

Ask the Audience

a b

e f

• Compute the post-order of this graph
• DFS from !, search in alphabetical order

c d

g h

Vertex a b c d e f g h
Post-Order 8 7 5 4 6 1 2 3

