CS3000: Algorithms \& Data Paul Hand

Lecture 14:

- Bipartite Graphs and 2-coloring
- Depth First Search

Mar 11, 2019

Recap: Graphs/BFS

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
- L_{i} contains all nodes at distance i from s
- Nodes not in any layer are not reachable from s

Bipartiteness / 2-Coloring

2-Coloring

- Problem: Team Forming
- Need to form two teams $\boldsymbol{R}, \boldsymbol{P}$
- Some people don't want to be on the same team as certain other people
- Input: Undirected graph $G=(V, E)$
- $(u, v) \in E$ means u, v wont be on the same team
- Output: Split V into two sets \boldsymbol{R}, P so that no pair in either set is connected by an edge

2-Coloring (Bipartiteness)

- Equivalent Problem: Is the graph G bipartite?
- A graph G is bipartite if I can split V into two sets L and R such that all edges $(u, v) \in E$ go between L and R

Activity: Is the following graph bipartite?

Activity:

Give an example of a bipartite graph that is not connected

Suppose a graph of 10 nodes is bipartite. What is the maximum number of edges it can have?

Activity: Is the following graph bipartite?

All omitted entries are zero

A	1	2	3	4	5	6	7	8	9	10
1			1					1	1	
2				1	1					1
3	1					1		1		
4		1			1				1	
5		1		1					1	
6			1				1	1		
7						1		1		
8	1		1			1	1			
9				1	1					
10		1								

Designing an Algorithm to determine if a graph is bipartite

- Key Fact: If G contains a cycle of odd length, then G is not 2-colorable/bipartite

Designing the Algorithm

- Idea for the algorithm:
- BFS the graph, coloring nodes as you find them
- Color nodes in layer i purple if i even, red if i odd
- See if you have succeeded or failed

Designing the Algorithm

- Claim: If BFS 2-colored the graph successfully, the graph has been 2-colored successfully
- Key Question: Suppose you have not 2-colored the graph successfully, maybe someone else can do it?

Designing the Algorithm

- Claim: If BFS fails, then G contains an odd cycle
- If G contains an odd cycle then G can't be 2 -colored!

Depth-First Search (DFS)

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes
- Depth-First Search: follow a path until you get stuck, then go back

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS (v)
```


Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(u, a),(u, c),(c, b)$
- These are the edges that explore new nodes
- Forward edges: (u, b)
- Ancestor to descendant
- Backward edges: (a, u)
- Descendant to ancestor
- Cross edges: (c, a)
- No ancestral relation

Activity

Each edge has a type:

- Tree edges: $(u, a),(u, c),(c, b)$
- Edges that explore new nodes
- Forward edges: (u, b)
- Ancestor to descendant
- Backward edges: (a, u)
- Descendant to ancestor
- Cross edges: (c, a)
- No ancestral relation
- DFS this graph starting from node a
- Search in alphabetical order
- Label edges as \{ tree , forward , backward , cross\}

Pre-Ordering

- Order the vertices by when they were first visited by DFS

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    pre-visit(u)
    for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS (v)
```

- Maintain a counter clock, initially set clock $=1$
- pre-visit(u):
set preorder[u]=clock, clock=clock+1

Post-Ordering

- Order the vertices by when they were last visited by DFS

```
G = (V,E) is a graph
explored[u] = 0 \forallu
DFS (u):
    explored[u] = 1
    for ((u,v) in E):
        if (explored[v]=0):
        parent[v] = u
        DFS (v)
    post-visit(u)
```

- Maintain a counter clock, initially set clock $=1$
- post-visit(u) : set postorder[u]=clock, clock=clock+1

Preorder versus postorder

Pre-order: F, B, A, D, C, E, G, I, H.

Post-order: A, C, E, D, B, H, I, G, F.

Activity

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

g $\quad \mathbf{h}$

Ask the Audience

- Compute the post-order of this graph
- DFS from \boldsymbol{a}, search in alphabetical order

Vertex	a	b	c	d	e	f	g	h
Post-Order	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

