CS3000: Algorithms \& Data Paul Hand

Lecture 13:

- Introduction to Graphs
- Breadth First Search

Feb 25, 2019

Graphs

Graphs Are Everywhere

- Transportation networks
- Communication networks
- WWW
- Biological networks
- Citation networks
- Social networks
- ...

What's Next

- Graph Algorithms:

- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
- Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
- Dijkstra
- Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
- Borůvka, Prim, Kruskal
- Network Flow:
- Algorithms
- Reductions to Network Flow

Graphs: Key Definitions

- Definition: A directed graph $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges
- An edge is an ordered $e=(u, v)$ "from u to v "
- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and v "
- Simple Graph:
- No duplicate edges
- No self-loops $e=(u, u)$

Activity

- How many edges can there be in a simple directed/undirected graph with n nodes?

Directed

undiratal

$$
\binom{n}{2}=\frac{n-(n-1)}{2} \quad \text { b/c all edges above }
$$

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $P=\left\{\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)\right\}$
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every

$$
\begin{gathered}
\text { Er. Path Given by }(U, V) \\
\text { is of I } G_{g} \text { en } 1
\end{gathered}
$$

Sonnet

Not connetal two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ where $k \geq 3$ and v_{1}, \ldots, v_{k} are distinct

Activity: how many cycles are there in this graph?

Activity

- Suppose an n-node undirected graph G is connected True False? G has at least $n-1$ edges OnO OO

Start $2 / 1$ node
Add anceter node 0 - 0 that is connciel to il
Report ($n-1$) times

- Suppose an n-node undirected graph G has $n-1$ edges
- True/Ralse? G is connected

$$
\begin{aligned}
& n=S \\
& 4 \in \operatorname{dss}
\end{aligned}
$$

0
not connerbel

- A simple undirected graph G is a tree if:
- G is connected
- G contains no cycles
- Theorem: any two of the following implies the third
- G is connected
- G contains no cycles
- G has $=n-1$ edges

Trees

Phylogeny Trees

Phylogenetic Tree of Life

Exploring a Graph

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.

If t is not in this $s \in t$, then no path from $s t a t$.

- Two different search techniques:
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes
- Depth-First Search: follow a path until you get stuck, then go back

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in $\left\{L_{0}, L_{1}\right\}$
- $L_{3}=$ all neighbors of L_{2} that are not in $\left\{L_{0}, L_{1}, L_{2}\right\}$
- ...
- $L_{d}=$ all neighbors of L_{d-1} that are not in $\left\{L_{0}, \ldots, L_{d-1}\right\}$
- Stop when L_{d+1} is empty

$$
\begin{aligned}
& L_{0}=\{1\} \\
& L_{1}=\{2,3\} \\
& L_{2}=\{4,5,7,8\} \\
& L_{3}=\{6\} \\
& L_{4}=\{ \}
\end{aligned}
$$

This Bids a bree thracia this connected component of the graph

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
- L_{i} contains all nodes at distance i from s
- Nodes not in any layer are not reachable from s

Adjacency Matrices
applies
for diverted or undirated graphs

$$
A[i, j]= \begin{cases}1 & (i, j) \in E \\ 0 & (i, j) \notin E\end{cases}
$$

$$
\frac{\text { Cost }}{\text { Space: } \theta\left(n^{2}\right)} \begin{gathered}
\text { docent } \\
\text { dor) } \\
\text { on \# clues }
\end{gathered}
$$

Eds Lookup: Θ (1) time
List Neighbors: $\Theta(n)$ time of al parziculs node

- The adjacency matrix of a graph $G=(V, E)$ with n nodes is the matrix $A[1: n, 1: n]$ where

1,2 entry is a 1 means Edge from 1 to 2

If we have an undircteal graph $A[i, j]=A[5,0]$

Activity

- Determine if there is path between nodes 1 and 2 All omitted entries are zero

$$
\begin{aligned}
& L_{0}=\{1\} \\
& L_{1}=\{3,8\} \\
& L_{2}=\{6,7\} \\
& L_{3}=\{ \} \\
& 2 \text { is not } \\
& \text { connate to / }
\end{aligned}
$$

Adjacency Lists (Undirected)

- The adjacency list of a vertex $v \in V$ is the list $A[v]$ of all u s.t. $(v, u) \in E$
n \# nodes
m \# cages
Each olga listel twice.

$$
\begin{aligned}
& A[1]=\{2,3\} \\
& A[2]=\{1,3\} \\
& A[3]=\{1,2,4\} \\
& A[4]=\{3\}
\end{aligned}
$$

Cost
Space: $\Theta(n+m)$
\# alg E Edge Lookup: $\Theta(\operatorname{deg}(t a)+1)$ time of u

List Neighbors: $\Theta(\operatorname{deg}(\sqrt{*})+1)$ time

Breadth-First Search Implementation

```
\(\operatorname{BFS}(G=(V, E), s):\)
    Let found [v] \(\leftarrow\) false \(\forall v\), found [s] \(\leftarrow\) true
    Let layer [v] \(\leftarrow \infty \forall \mathrm{v}\), layer \([\mathrm{s}] \leftarrow 0\)
    Let \(i \leftarrow 0, L_{0}=\{s\}, T \leftarrow \emptyset\)
    While ( \(L_{i}\) is not empty) :
        Initialize new layer \(\mathrm{L}_{\mathrm{i}+1}\)
        For ( \(u\) in \(L_{i}\) ):
        For ( \((u, v)\) in \(E)\) :
            If (foun div] = false):
                found [v] \(\leftarrow\) true, layer [v] \(\leftarrow i+1\)
                Add ( \(u, v\) ) to \(T\) and add \(v\) to \(L_{i+1}\)
    \(i \leftarrow i+1\)
```

Implements BFS in $O(n+m)$ time

