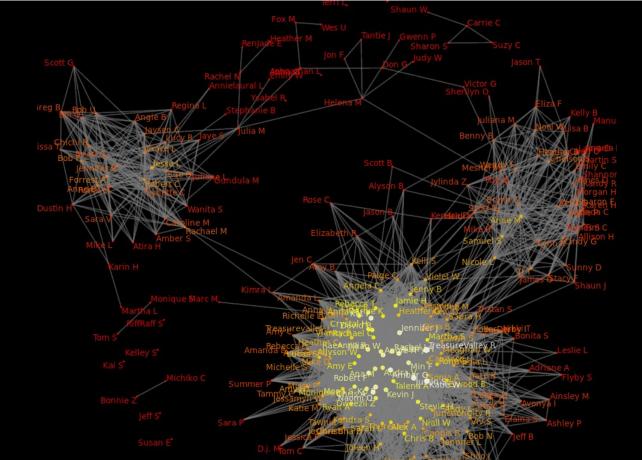
CS3000: Algorithms & Data Paul Hand

Lecture 13:

- Introduction to Graphs
- Breadth First Search

Feb 25, 2019

Graphs



Graphs Are Everywhere

- Transportation networks
- Communication networks
- WWW
- Biological networks
- Citation networks
- Social networks
- ...

What's Next

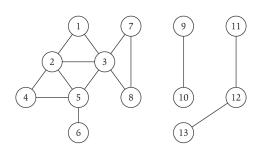
Graph Algorithms:

- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
 - · Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
 - Dijkstra
 - Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
 - Borůvka, Prim, Kruskal
- Network Flow:
 - Algorithms
 - · Reductions to Network Flow

Graphs: Key Definitions

- **Definition:** A directed graph G = (V, E)
 - *V* is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
 - An edge is an ordered e = (u, v) "from u to v"
- **Definition:** An undirected graph G = (V, E)
 - Edges are unordered e = (u, v) "between u and v"

- Simple Graph:
 - No duplicate edges
 - No self-loops e = (u, u)



Activity

 How many edges can there be in a simple directed/undirected graph with n nodes?

Paths/Connectivity

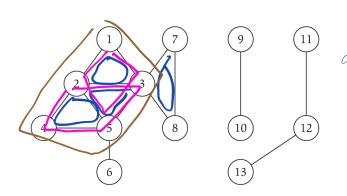
- A path is a sequence of consecutive edges in E
 - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
 - $P = u w_1 w_2 w_3 \dots w_{k-1} v$
 - The length of the path is the # of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Es. Path Given by (U,V)
is of Gight

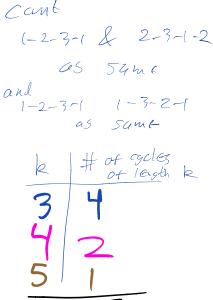
Not connected

Cycles

• A cycle is a path $v_1 - v_2 - \cdots - v_k - v_1$ where $k \ge 3$ and v_1, \ldots, v_k are distinct



Activity: how many cycles are there in this graph?



Activity

• Suppose an n-node undirected graph G is connected False? G has at least n-1 edges

9-0-0-0

Start w/ 1 nade

Add another nede O

that is achorable to il /

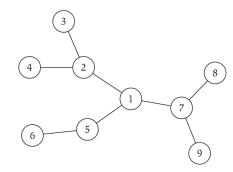
Repeat (n-1) times o

- ullet Suppose an n-node undirected graph G has n-1 edges
 - True/False? G is connected

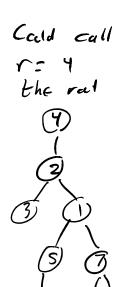
99

Trees no report no self edges loops

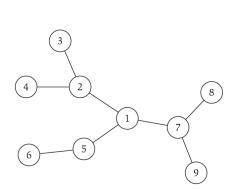
- A simple undirected graph *G* is a tree if:
 - *G* is connected
 - *G* contains no cycles
- Theorem: any two of the following implies the third
 - *G* is connected
 - *G* contains no cycles
 - G has = n 1 edges

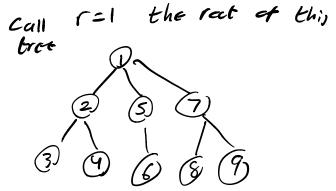


Trees



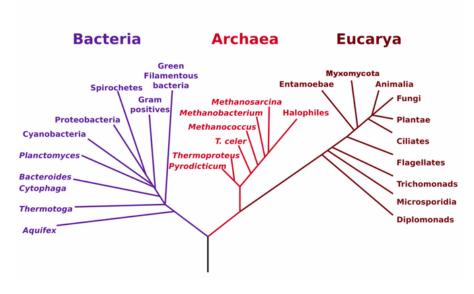
- ullet Rooted tree: choose a root node r and orient edges away from r
 - Models hierarchical structure





Phylogeny Trees

Phylogenetic Tree of Life



Exploring a Graph

Exploring a Graph

- **Problem:** Is there a path from *s* to *t*?
- Idea: Explore all nodes reachable from s.

 If t is not in this set, then no path from S to E.
- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - Depth-First Search: follow a path until you get stuck, then go back

Breadth-First Search (BFS)

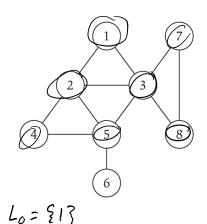
• Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...

- BFS Tree:
 $L_0 = \{s\}$

 - L_1 = all neighbors of L_0
 - L_2 = all neighbors of L_1 that are not in $\{L_0, L_1\}$
 - L_3 = all neighbors of L_2 that are not in $\{L_0, L_1, L_2\}$

 - L_d = all neighbors of L_{d-1} that are not in $\{L_0, ..., L_{d-1}\}$
 - Stop when L_{d+1} is empty

This Bilds a bree through this connected component of the graph

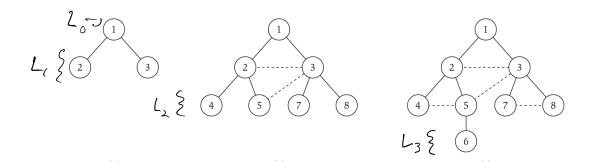


$$L_1 = 22.33$$

 $L_2 = 24.5, 7.83$

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from s



Adjacency Matrices

applies For directed or sudirected graphs

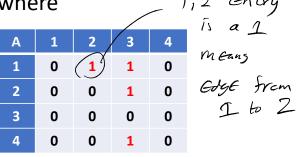
• The adjacency matrix of a graph G = (V, E) with n nodes is the matrix A[1:n,1:n] where

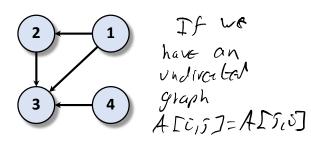
$$A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

 $\frac{\text{Cost}}{\text{Space: }\Theta(n^2)} \int_{\text{OR}} do_{\text{CSM}} t$ on # elye

Edse Lookup: $\Theta(1)$ time

List Neighbors: $\Theta(n)$ time





Activity

• Determine if there is path between nodes 1 and 2 All omitted entries are zero $L_0 = \{1\}$

Α	1	2	3	4	5	6	7	8	9	10
1			1					(1))	
2				1	1					1
3	1					1		1)	
4	7	1			1				1	
5		1		1					1	
6			1				1	1		
7						1		1		
8	(<u>1</u>)		<u>1</u>)			(1)	1			
9				1	1					
10		1								

$$L_0 = \frac{213}{13}$$
 $L_1 = \frac{23}{13}$
 $L_2 = \frac{23}{13}$
 $L_3 = \frac{23}{13}$

Adjacency Lists (Undirected)

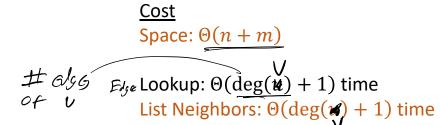
• The adjacency list of a vertex $v \in V$ is the list A[v] of all u s.t. $(v, u) \in E$

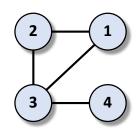
$$n \# ndes$$

 $m \# Glges$

$$A[1] = \{2,3\}$$

 $A[2] = \{1,3\}$
 $A[3] = \{1,2,4\}$
 $A[4] = \{3\}$





```
Breadth-First Search Implementation
BFS(G = (V,E), s):
  Let found[v] \leftarrow false \forallv, found[s] \leftarrow true
  Let layer[v] \leftarrow \infty \ \forall v, layer[s] \leftarrow 0
  Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
  While (L<sub>i</sub> is not empty):
     Initialize new layer Li+1
     For (u in L;):
       For ((u,v) in E):
          If (found[v] = false):
            found[v] \leftarrow true, layer[v] \leftarrow i+1
            Add (u,v) to T and add v to L_{i+1}
     i \leftarrow i+1
```

Implements BFS in O(n+m) time