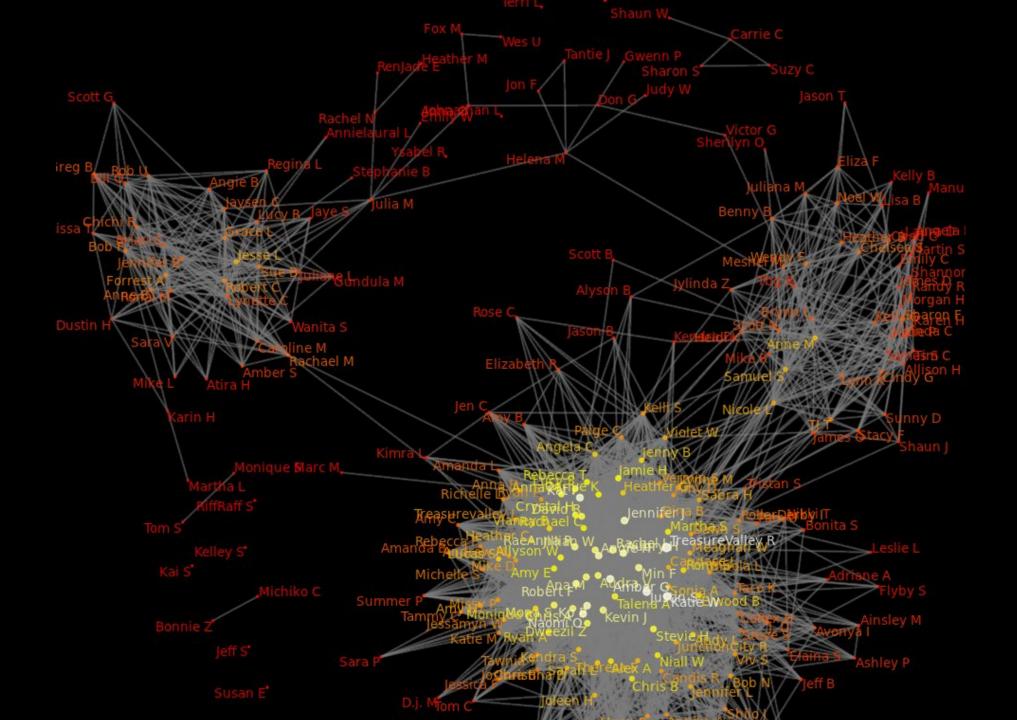
CS3000: Algorithms & Data Paul Hand

Lecture 13:

- Introduction to Graphs
- Breadth First Search

Feb 25, 2019

Graphs



Graphs Are Everywhere

- Transportation networks
- Communication networks
- WWW
- Biological networks
- Citation networks
- Social networks
- •

What's Next

• Graph Algorithms:

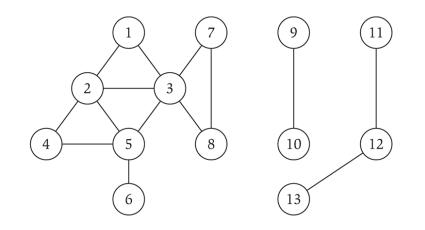
- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
 - Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
 - Dijkstra
 - Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
 - Borůvka, Prim, Kruskal
- Network Flow:
 - Algorithms
 - Reductions to Network Flow

Graphs: Key Definitions

- **Definition:** A directed graph G = (V, E)
 - *V* is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
 - An edge is an ordered e = (u, v) "from u to v"
- **Definition:** An undirected graph G = (V, E)
 - Edges are unordered e = (u, v) "between u and v"

• Simple Graph:

- No duplicate edges
- No self-loops e = (u, u)



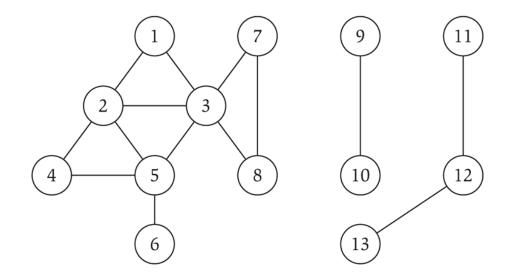
• How many edges can there be in a **simple** directed/undirected graph with n nodes?

Paths/Connectivity

- A path is a sequence of consecutive edges in E
 - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
 - $P = u w_1 w_2 w_3 \dots w_{k-1} v$
 - The length of the path is the # of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

• A cycle is a path $v_1 - v_2 - \dots - v_k - v_1$ where $k \ge 3$ and v_1, \dots, v_k are distinct



Activity: how many cycles are there in this graph?

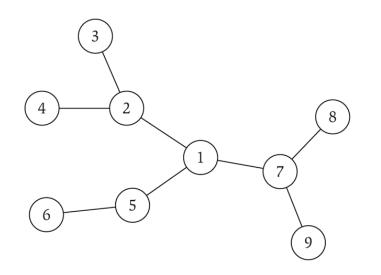
Activity

- Suppose an *n*-node undirected graph *G* is connected
 - True/False? G has at least n 1 edges

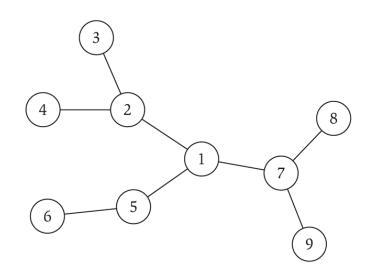
- Suppose an *n*-node undirected graph G has n 1 edges
 - True/False? *G* is connected

Trees

- A simple undirected graph *G* is a tree if:
 - *G* is connected
 - G contains no cycles
- Theorem: any two of the following implies the third
 - G is connected
 - G contains no cycles
 - G has = n 1 edges



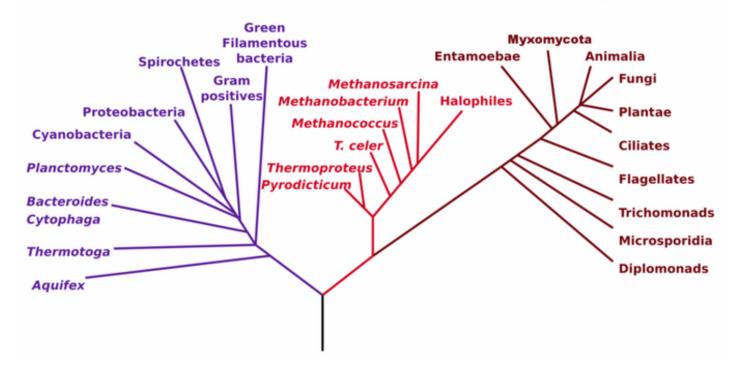
- Rooted tree: choose a root node r and orient edges away from r
 - Models hierarchical structure



Phylogenetic Tree of Life

Eucarya

Bacteria Archaea



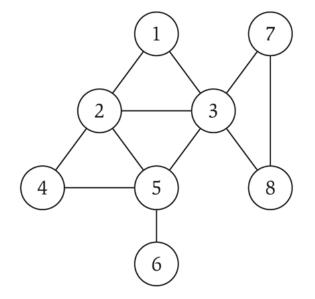
Exploring a Graph

Exploring a Graph

- **Problem:** Is there a path from *s* to *t*?
- Idea: Explore all nodes reachable from *s*.
- Two different search techniques:
 - Breadth-First Search: explore nearby nodes before moving on to farther away nodes
 - **Depth-First Search:** follow a path until you get stuck, then go back

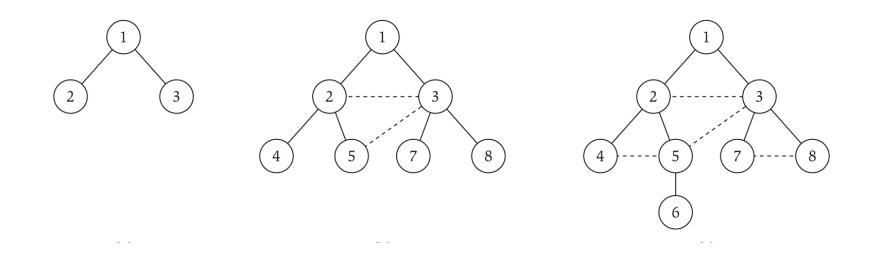
Breadth-First Search (BFS)

- Informal Description: start at *s*, find neighbors of *s*, find neighbors of neighbors of *s*, and so on...
- BFS Tree:
 - $L_0 = \{s\}$
 - $L_1 =$ all neighbors of L_0
 - L_2 = all neighbors of L_1 that are not in $\{L_0, L_1\}$
 - $L_3 = all neighbors of L_2$ that are not in $\{L_0, L_1, L_2\}$
 - ...
 - L_d = all neighbors of L_{d-1} that are not in $\{L_0, ..., L_{d-1}\}$
 - Stop when L_{d+1} is empty



Breadth-First Search (BFS)

- **Definition:** the distance between *s*, *t* is the number of edges on the shortest path from *s* to *t*
- Thm: BFS finds distances from *s* to other nodes
 - L_i contains all nodes at distance i from s
 - Nodes not in any layer are not reachable from *s*



Adjacency Matrices

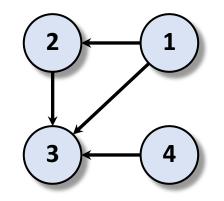
• The adjacency matrix of a graph G = (V, E) with n nodes is the matrix A[1:n, 1:n] where

$$A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

Α 0 0

<u>Cost</u> Space: $\Theta(n^2)$

Lookup: $\Theta(1)$ time List Neighbors: $\Theta(n)$ time



Activity

• Determine if there is path between nodes 1 and 2 All omitted entries are zero

Α	1	2	3	4	5	6	7	8	9	10
1			1					1		
2				1	1					1
3	1					1		1		
4		1			1				1	
5		1		1					1	
6			1				1	1		
7						1		1		
8	1		1			1	1			
9				1	1					
10		1								

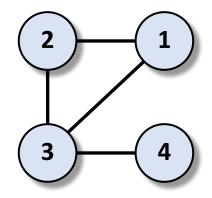
Adjacency Lists (Undirected)

• The adjacency list of a vertex $v \in V$ is the list A[v] of all u s.t. $(v, u) \in E$

 $A[1] = \{2,3\}$ $A[2] = \{1,3\}$ $A[3] = \{1,2,4\}$ $A[4] = \{3\}$

<u>Cost</u> Space: $\Theta(n+m)$

Lookup: $\Theta(\deg(u) + 1)$ time List Neighbors: $\Theta(\deg(u) + 1)$ time



Breadth-First Search Implementation

```
BFS(G = (V, E), s):
Let found[v] \leftarrow false \forall v, found[s] \leftarrow true
Let layer[v] \leftarrow \infty \forall v, layer[s] \leftarrow 0
Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
While (L_i \text{ is not empty}):
   Initialize new layer L<sub>i+1</sub>
   For (u in L_i):
      For ((u,v) \text{ in } E):
         If (found[v] = false):
            found[v] \leftarrow true, layer[v] \leftarrow i+1
           Add (u, v) to T and add v to L_{i+1}
   i \leftarrow i+1
```

Implements BFS in O(n + m) time