CS3000: Algorithms & Data
Paul Hand

Lecture 13:

* Introduction to Graphs
* Breadth First Search

Feb 25, 2019

Graphs

rallve B
Relly O

lizZA F
v/,

|Ii aM W lisa B

i NOE]) I
senny)\ AR
AR

S

WA T et o 9 ! —‘
oé"’?"’{!zlllﬁ"'f 2 Sedll3artin 5
4 ¢ ‘

7 }.ﬁ?(R
{{;ﬁ“ organ H

SRR 2o
vedac

_/
THERY

Rose C

J : Z
\d : <) .
J e ; 1COH '’ ‘e, P .
\ ¥ b' ‘]‘ ‘/Z,' u—, \ nnyD

CAs W,
Eoecg \J A

o
\\'/

Graphs Are Everywhere

* Transportation networks
e Communication networks
e WWW

* Biological networks
 Citation networks

e Social networks

What’s Next

e Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

* Dijkstra

e Bellman-Ford (Dynamic Programming)
Minimum Spanning Trees:

e BorUvka, Prim, Kruskal
Network Flow:

e Algorithms
 Reductions to Network Flow

Graphs: Key Definitions

* Definition: A directed graph ¢ = (I/, E)
* I/ is the set of nodes/vertices
€ VXV is the set of edges
* An edge is an ordered ¢ = (u, v) “from u to v”

 Definition: An undirected graph ¢ = (I/, E)

* Edges are unordered ¢ = (1, v) “between u and v”

OEROEROENO
 Simple Graph: Q‘G
* No duplicate edges .'
* No self-loops e = (u, u) (—C) © WO (©

Activity

* How many edges can there be in a simple
directed/undirected graph with n nodes?

Paths/Connectivity

* A path is a sequence of consecutive edges in E
* P ={(u,wy), (wy,wy), (W, ws), ..., (Wg_1,V)}
e P = uU—-—wy =Wy — Wz — " —Wg_1—U
* The length of the path is the # of edges

 An undirected graph is connected if for every two
vertices u, v € V, there is a path from u to v

e A directed graph is strongly connected if for every
two vertices u, v € V, there are paths from u to v
and fromvtou

Cycles

* Acycleisapathv, — v, — - — v, — v; where
k = 3 and vq, ..., v are distinct

Activity: how many cycles are there in this graph?

Activity

* Suppose an n-node undirected graph G is connected
* True/False? G has at least n — 1 edges

e Suppose an n-node undirected graph ¢ has n — 1 edges
* True/False? G is connected

Trees

* A simple undirected graph G is a tree if:
* (7 is connected
* (G contains no cycles

* Theorem: any two of the following implies the third
* (G is connected

* (G contains no cycles (3)
* G has=n — 1 edges

Trees

* Rooted tree: choose a root node r and orient edges
away from r

e Models hierarchical structure

Phylogeny Trees

Phylogenetic Tree of Life

Bacteria Archaea Eucarya
Green
Filamentous Myxomycota
Spirochetes bacteria Entamoebae Animalia
Gram Methanosarcina Fungl
positives| pmathanobacterium | Halophiles
Proteobacteria Plantae
. Methanococcus
Cyanobacteria
T. celer Ciliates
Planctomyces Thermoproteys
Pyrodicticu Flagellates
Bacteroides
Cytophaga Trichomonads
Microsporidia
Thermotoga

Diplomonads
Aquifex

Exploring a Graph

Exploring a Graph

* Problem: Is there a path from s to t?
* Idea: Explore all nodes reachable from s.

* Two different search techniques:

* Breadth-First Search: explore nearby nodes before
moving on to farther away nodes

* Depth-First Search: follow a path until you get stuck,
then go back

Breadth-First Search (BFS)

* Informal Description: start at s, find neighbors of s,
find neighbors of neighbors of s, and so on...

* BFS Tree:
* Lo ={s}
* L, = all neighbors of L
* L, = all neighbors of L4 that are notin {Ly, L1}
* L3 = all neighbors of L, that are notin {L, L1, L,}

* Lz = all neighbors of L;_1 thatarenotin{Lg, ..., Lg_1}
* Stop when L; 1 is empty

Breadth-First Search (BFS)

e Definition: the distance between s, £ is the number
of edges on the shortest path from s to ¢

* Thm: BFS finds distances from s to other nodes
* L; contains all nodes at distance i from s
* Nodes not in any layer are not reachable from s

Adjacency Matrices

* The adjacency matrix of agraph G = (V,E) withn
nodes is the matrix A[1:n,1:n] where

A1]2]3]|4a

o W o 1 1 o

{5 e BT
’ 0 (i,j)€E 0O 0 o0 o0
0 0 1 0

Cost
Space: B(n?)

Lookup: ©(1) time ‘
List Neighbors: ®(n) time e °

Activity

* Determine if there is path between nodes 1 and 2
All omitted entries are zero

Al1l2/3]4/5]6]7 8]0 10
1 1

1

1 1 1

[T
[T
[

[T
[EEY
[T
[

[
[EEY
[
[

Adjacency Lists (Undirected)

* The adjacency list of a vertex v € I/ is the list A[V]
ofallus.t. (v,u) € E

Al1] = {2,3}
Al2] = {1,3}
A[3] = {1,2,4}
Al4] = {3}

Cost
Space: O(n + m) o’e

Lookup: ©(deg(u) + 1) time
List Neighbors: @(deg(u) + 1) time e o

Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v] « false Vv, found[s] « true
Let layer([v] « o Vv, layer[s] <0
Let i<0, Ly = {s}, T «<0

While (L; is not empty) :
Initialize new layer L;,.,
For (u in L,):
For ((u,v) in E):
If (found[v] = false):

found[v] < true, layer|[v] « i+l
Add (u,v) to T and add v to L;,,

i<i+l

Implements BFS in O(n + m) time

