
CS3000: Algorithms & Data
Paul Hand

Lecture 13:

• Introduction to Graphs
• Breadth First Search

Feb 25, 2019

Graphs

Graphs Are Everywhere

• Transportation networks
• Communication networks
• WWW
• Biological networks
• Citation networks
• Social networks
• …

What’s Next

• Graph Algorithms:
• Graphs: Key Definitions, Properties, Representations
• Exploring Graphs: Breadth/Depth First Search

• Applications: Connectivity, Bipartiteness, Topological Sorting
• Shortest Paths:

• Dijkstra
• Bellman-Ford (Dynamic Programming)

• Minimum Spanning Trees:
• Borůvka, Prim, Kruskal

• Network Flow:
• Algorithms
• Reductions to Network Flow

Graphs: Key Definitions

• Definition: A directed graph ! = #, %
• # is the set of nodes/vertices
• % ⊆ #×# is the set of edges
• An edge is an ordered (=), * “from) to *”

• Definition: An undirected graph ! = #, %
• Edges are unordered (=), * “between) and *”

• Simple Graph:
• No duplicate edges
• No self-loops (=),)

Activity

• How many edges can there be in a simple
directed/undirected graph with n nodes?

Paths/Connectivity

• A path is a sequence of consecutive edges in !
• " = $,&' , &', &(, &(, &) ,… , &+,', -
• " = $ − &' − &(− &) −⋯−&+,' − -
• The length of the path is the # of edges

• An undirected graph is connected if for every two
vertices $, - ∈ 1, there is a path from $ to -
• A directed graph is strongly connected if for every

two vertices $, - ∈ 1, there are paths from $ to -
and from - to $

Cycles

• A cycle is a path !" − !$ −⋯− !& − !" where
' ≥ 3 and !", … , !& are distinct

Activity: how many cycles are there in this graph?

Activity

• Suppose an !-node undirected graph " is connected
• True/False? " has at least ! − 1 edges

• Suppose an !-node undirected graph " has ! − 1 edges
• True/False? " is connected

Trees

• A simple undirected graph ! is a tree if:
• ! is connected
• ! contains no cycles

• Theorem: any two of the following implies the third
• ! is connected
• ! contains no cycles
• ! has = # − 1 edges

Trees

• Rooted tree: choose a root node ! and orient edges
away from !
• Models hierarchical structure

Phylogeny Trees

Exploring a Graph

Exploring a Graph

• Problem: Is there a path from ! to "?
• Idea: Explore all nodes reachable from !.

• Two different search techniques:
• Breadth-First Search: explore nearby nodes before

moving on to farther away nodes
• Depth-First Search: follow a path until you get stuck,

then go back

Breadth-First Search (BFS)
• Informal Description: start at !, find neighbors of !,

find neighbors of neighbors of !, and so on…

• BFS Tree:
• "# = !
• "% = all neighbors of "#
• "& = all neighbors of "% that are not in {"#, "%}
• "* = all neighbors of "& that are not in {"#, "%, "&}
• …
• "+ = all neighbors of "+,% that are not in {"#, … , "+,%}
• Stop when "+.% is empty

Breadth-First Search (BFS)

• Definition: the distance between !, # is the number
of edges on the shortest path from ! to #
• Thm: BFS finds distances from ! to other nodes
• $% contains all nodes at distance & from !
• Nodes not in any layer are not reachable from !

Adjacency Matrices

• The adjacency matrix of a graph ! = #, % with &
nodes is the matrix ' 1: & , 1: & where

' *, + = ,1 *, + ∈ %
0 *, + ∉ %

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Cost
Space: Θ &1

Lookup: Θ 1 time
List Neighbors: Θ & time

2 1

3 4

Activity

• Determine if there is path between nodes 1 and 2
All omitted entries are zero

A 1 2 3 4 5 6 7 8 9 10
1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1
8 1 1 1 1
9 1 1
10 1

Adjacency Lists (Undirected)

• The adjacency list of a vertex ! ∈ # is the list $[!]
of all ' s.t. !, ' ∈)

2 1

3 4

$ 1 = 2,3
$ 2 = 1,3
$ 3 = 1,2,4
$ 4 = 3

Cost
Space: Θ 0 +2

Lookup: Θ deg ' + 1 time
List Neighbors: Θ deg ' + 1 time

Breadth-First Search Implementation

BFS(G = (V,E), s):
Let found[v]← false ∀v, found[s]← true
Let layer[v]← ∞ ∀v, layer[s]← 0
Let i← 0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]← true, layer[v]← i+1
Add (u,v) to T and add v to Li+1

i← i+1

Implements BFS in %(' +)) time

