
CS3000: Algorithms & Data
Paul Hand

Lecture 12:

• Dynamic Programming – Sequence Alignment
• Introduction to Graphs

Feb 25, 2019

Sequence Alignments and
Edit Distance

Distance Between Strings

• Autocorrect works by finding similar strings

• ocurrance and occurrence seem similar, but
only if we define similarity carefully

ocurrance
occurrence

oc urrance
occurrence

Edit Distance / Alignments

• Given two strings ! ∈ Σ$, & ∈ Σ', the edit distance
is the number of insertions, deletions, and swaps
required to turn ! into &.

• Given an alignment, the cost is the number of
positions where the two strings don’t agree

o c u r r a n c e
o c c u r r e n c e

Ask the Audience

• What is the minimum cost alignment of the strings
smitten and sitting

Activity

• Find two strings where two different alignments
(insertions, deletions, replacements) realize the
edit distance between them.

Edit Distance / Alignments

• Input: Two strings ! ∈ Σ$, & ∈ Σ'
• Output: The minimum cost alignment of ! and &
• Edit Distance = cost of the minimum cost alignment

Dynamic Programming

• Consider the optimal alignment of !, #
• Three choices for the final column
• Case I: only use ! (!$,−)
• Case II: only use # (−, #&)
• Case III: use one symbol from each (!$, #&)

Dynamic Programming

• Consider the optimal alignment of !, #
• Case I: only use ! (!$, −)
• deletion + optimal alignment of !&:$(&, #&:)

• Case II: only use # (−, #))
• insertion + optimal alignment of !&:$, #&:)(&

• Case III: use one symbol from each (!$, #))
• If !$ = #): optimal alignment of !&:$(&, #&:)(&
• If !$ ≠ #): mismatch + opt. alignment of !&:$(&, #&:)(&

Dynamic Programming

• !"# $, & = cost of opt. alignment of '(:* and +(:,
• Case I: only use ' ('*, −)
• Case II: only use + (−, +,)
• Case III: use one symbol from each ('*, +,)

Dynamic Programming

• !"# $, & = cost of opt. alignment of '(:* and +(:,
• Case I: only use ' ('*, −)
• Case II: only use + (−, +,)
• Case III: use one symbol from each ('*, +,)

Recurrence:
OPT 1, 2 = 4min 1 + OPT 1 − 1, 2 , 1 + OPT 1, 2 − 1 , OPT(1 − 1, 2 − 1) '* = +,

min 1 + <=> 1 − 1, 2 , 1 + OPT 1, 2 − 1 , 1 + OPT 1 − 1, 2 − 1 '* ≠ +,
Base Cases:
OPT 1, 0 = 1, OPT 0, 2 = 2

Example
x = pert
y = beast

- b e a s t

-

p

e

r

t

Finding the Alignment

• !"# $, & = cost of opt. alignment of '(:* and +(:,
• Case I: only use ' ('*, −)
• Case II: only use + (−, +,)
• Case III: use one symbol from each ('*, +,)

Edit Distance (“Bottom-Up”)

// All inputs are global vars
FindOPT(n,m):
M[0,j]← j, M[i,0]← i

for (i= 1,…,n):
for (j = 1,…,m):
if (xi = yj):
M[i,j] = min{1+M[i-1,j],1+M[i,j-1],M[i-1,j-1]

elseif (xi != yj):
M[i,j] = 1+min{M[i-1,j],M[i,j-1],M[i-1,j-1]}

return M[n,m]

Activity

• Suppose inserting/deleting costs ! > # and
swapping $ ↔ & costs '$,& > #
• Write a recurrence for the min-cost alignment

OPT ,, - = /min 1 + OPT , − 1, - , 1 + OPT ,, - − 1 , OPT(, − 1, - − 1) 89 = :;
min 1 + <=> , − 1, - , 1 + OPT ,, - − 1 , 1 + OPT , − 1, - − 1 89 ≠ :;

Discussion

• Dynamic Programming is a time-space tradeoff.
Comment on the tradeoff in the case of edit
distance.

OPT $, & = (min 1 + OPT $ − 1, & , 1 + OPT $, & − 1 , OPT($ − 1, & − 1) 12 = 34
min 1 + 567 $ − 1, & , 1 + OPT $, & − 1 , 1 + OPT $ − 1, & − 1 12 ≠ 34

Graphs

Graphs Are Everywhere

• Transportation networks
• Communication networks
• WWW
• Biological networks
• Citation networks
• Social networks
• …

What’s Next

• Graph Algorithms:
• Graphs: Key Definitions, Properties, Representations
• Exploring Graphs: Breadth/Depth First Search

• Applications: Connectivity, Bipartiteness, Topological Sorting
• Shortest Paths:

• Dijkstra
• Bellman-Ford (Dynamic Programming)

• Minimum Spanning Trees:
• Borůvka, Prim, Kruskal

• Network Flow:
• Algorithms
• Reductions to Network Flow

Graphs: Key Definitions

• Definition: A directed graph ! = #, %
• # is the set of nodes/vertices
• % ⊆ #×# is the set of edges
• An edge is an ordered (=), * “from) to *”

• Definition: An undirected graph ! = #, %
• Edges are unordered (=), * “between) and *”

• Simple Graph:
• No duplicate edges
• No self-loops (=),)

Activity

• How many edges can there be in a simple
directed/undirected graph?

Paths/Connectivity

• A path is a sequence of consecutive edges in !
• " = $,&' , &', &(, &(, &) ,… , &+,', -
• " = $ − &' − &(− &) −⋯−&+,' − -
• The length of the path is the # of edges

• An undirected graph is connected if for every two
vertices $, - ∈ 1, there is a path from $ to -
• A directed graph is strongly connected if for every

two vertices $, - ∈ 1, there are paths from $ to -
and from - to $

Cycles

• A cycle is a path !" − !$ −⋯− !& − !" where
' ≥ 3 and !", … , !& are distinct

Activity: how many cycles are there in this graph?

Activity

• Suppose an undirected graph ! is connected
• True/False? ! has at least " − 1 edges

Activity

• Suppose an undirected graph ! has " − 1 edges
• True/False? ! is connected

