CS3000: Algorithms \& Data Paul Hand

Lecture 12:

- Dynamic Programming - Sequence Alignment
- Introduction to Graphs

Feb 25, 2019

Sequence Alignments and Edit Distance

Distance Between Strings

- Autocorrect works by finding similar strings

- ocurrance and occurrence seem similar, but only if we define similarity carefully
ocurrance
occurrence

OC urrance
occurrence

Edit Distance / Alignments

- Given two strings $x \in \Sigma^{n}, y \in \Sigma^{m}$, the edit distance is the number of insertions, deletions, and swaps required to turn x into y.
- Given an alignment, the cost is the number of positions where the two strings don't agree

0	c		u	r	r	a	n	c	e
0	c	c	u	r	r	e	n	c	e

Ask the Audience

- What is the minimum cost alignment of the strings
smitten and sitting

Activity

- Find two strings where two different alignments (insertions, deletions, replacements) realize the edit distance between them.

Edit Distance / Alignments

- Input: Two strings $x \in \Sigma^{n}, y \in \Sigma^{m}$
- Output: The minimum cost alignment of x and y
- Edit Distance $=$ cost of the minimum cost alignment

Dynamic Programming

- Consider the optimal alignment of x, y
- Three choices for the final column
- Case I: only use $x\left(x_{n},-\right)$
- Case II: only use $y\left(-, y_{m}\right)$
- Case III: use one symbol from each (x_{n}, y_{m})

Dynamic Programming

- Consider the optimal alignment of x, y
- Case I: only use $x\left(x_{n},-\right)$
- deletion + optimal alignment of $x_{1: n-1}, y_{1: m}$
- Case II: only use $y\left(-, y_{m}\right)$
- insertion + optimal alignment of $x_{1: n}, y_{1: m-1}$
- Case III: use one symbol from each (x_{n}, y_{m})
- If $x_{n}=y_{m}$: optimal alignment of $x_{1: n-1}, y_{1: m-1}$
- If $x_{n} \neq y_{m}$: mismatch + opt. alignment of $x_{1: n-1}, y_{1: m-1}$

Dynamic Programming

- $\operatorname{OPT}(\boldsymbol{i}, \boldsymbol{j})=$ cost of opt. alignment of $x_{1: i}$ and $y_{1: j}$
- Case I: only use $x\left(x_{i},-\right)$
- Case II: only use $y\left(-, y_{j}\right)$
- Case III: use one symbol from each (x_{i}, y_{j})

Dynamic Programming

- $\mathbf{O P T}(\boldsymbol{i}, \boldsymbol{j})=$ cost of opt. alignment of $x_{1: i}$ and $y_{1: j}$
- Case I: only use $x\left(x_{i},-\right)$
- Case II: only use $y\left(-, y_{j}\right)$
- Case III: use one symbol from each $\left(x_{i}, y_{j}\right)$

Recurrence:

$$
\mathrm{OPT}(i, j)=\left\{\begin{array}{lrl}
\min \{1+\operatorname{OPT}(i-1, j), 1+\operatorname{OPT}(i, j-1), & \operatorname{OPT}(i-1, j-1)\} & x_{i}=y_{j} \\
\min \{1+\operatorname{OPT}(i-1, j), 1+\operatorname{OPT}(i, j-1), 1+\operatorname{OPT}(i-1, j-1)\} & x_{i} \neq y_{j}
\end{array}\right.
$$

Base Cases:

$$
\operatorname{OPT}(i, 0)=i, \operatorname{OPT}(0, j)=j
$$

Example
x = pert
$y=$ beast

Finding the Alignment

- $\mathbf{O P T}(\boldsymbol{i}, \boldsymbol{j})=$ cost of opt. alignment of $x_{1: i}$ and $y_{1: j}$
- Case I: only use $x\left(x_{i},-\right)$
- Case II: only use $y\left(-, y_{j}\right)$
- Case III: use one symbol from each (x_{i}, y_{j})

Edit Distance ("Bottom-Up")

```
// All inputs are global vars
FindOPT (n,m):
    M[0,j]}\leftarrowj,M[i,0]\leftarrow
    for (i= 1,\ldots,n):
        for (j = 1,\ldots,m):
            if ( }\mp@subsup{x}{i}{}=\mp@subsup{y}{j}{\prime}\mathrm{ ):
            M[i,j] = min{1+M[i-1,j],1+M[i,j-1],M[i-1,j-1]
        elseif (x}\mp@subsup{\textrm{x}}{\textrm{i}}{\prime}!=\mp@subsup{y}{j}{\prime})
            M[i,j] = 1+min{M[i-1,j],M[i,j-1],M[i-1,j-1]}
    return M[n,m]
```


Activity

- Suppose inserting/deleting costs $\delta>0$ and swapping $a \leftrightarrow b$ costs $c_{a, b}>0$
- Write a recurrence for the min-cost alignment

$$
\operatorname{OPT}(i, j)=\left\{\begin{array}{lrl}
\min \{1+\operatorname{OPT}(i-1, j), 1+\operatorname{OPT}(i, j-1), & \operatorname{OPT}(i-1, j-1)\} & x_{i}=y_{j} \\
\min \{1+\operatorname{OPT}(i-1, j), 1+\operatorname{OPT}(i, j-1), 1+\operatorname{OPT}(i-1, j-1)\} & x_{i} \neq y_{j}
\end{array}\right.
$$

Discussion

- Dynamic Programming is a time-space tradeoff. Comment on the tradeoff in the case of edit distance.

$$
\mathrm{OPT}(i, j)=\left\{\begin{array}{lrr}
\min \{1+\mathrm{OPT}(i-1, j), 1+\mathrm{OPT}(i, j-1), & \mathrm{OPT}(i-1, j-1)\} & x_{i}=y_{j} \\
\min \{1+\operatorname{OPT}(i-1, j), 1+\mathrm{OPT}(i, j-1), 1+\mathrm{OPT}(i-1, j-1)\} & x_{i} \neq y_{j}
\end{array}\right.
$$

Graphs

Graphs Are Everywhere

- Transportation networks
- Communication networks
- WWW
- Biological networks
- Citation networks
- Social networks
- ...

What's Next

- Graph Algorithms:

- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
- Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
- Dijkstra
- Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
- Borůvka, Prim, Kruskal
- Network Flow:
- Algorithms
- Reductions to Network Flow

Graphs: Key Definitions

- Definition: A directed graph $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges
- An edge is an ordered $e=(u, v)$ "from u to v "
- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and v "
- Simple Graph:
- No duplicate edges
- No self-loops $e=(u, u)$

Activity

- How many edges can there be in a simple directed/undirected graph?

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $P=\left\{\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)\right\}$
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ where $k \geq 3$ and v_{1}, \ldots, v_{k} are distinct

Activity: how many cycles are there in this graph?

Activity

- Suppose an undirected graph G is connected
- True/False? G has at least $n-1$ edges

Activity

- Suppose an undirected graph G has $n-1$ edges
- True/False? G is connected

