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 Dynamic Programming — Sequence Alignment
* Introduction to Graphs
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Sequence Alignments and
Edit Distance



Distance Between Strings

* Autocorrect works by finding similar strings

ocurrance §y Q

All Shopping Maps News Images More Settings Tools

About 36,400 results (0.62 secon ds)

Did you mean: occurrence

e ocurrance and occurrence seem similar, but
only if we define similarity carefully

ocurrance OC urrance
occurrence occurrence



Edit Distance / Alignments

* Given two strings x € £™,y € ™, the edit distance
is the number of insertions, deletions, and swaps
required to turn x into y.

e Given an alignment, the cost is the number of
positions where the two strings don’t agree

o C u ¥ ¥r a n cCc e

O C€C € u r r e n cC e



Ask the Audience

* What is the minimum cost alignment of the strings
smitten and sitting



Activity

* Find two strings where two different alignments
(insertions, deletions, replacements) realize the
edit distance between them.



Edit Distance / Alignments

* Input: Two strings x € X",y € £™

* Output: The minimum cost alighment of x and y
* Edit Distance = cost of the minimum cost alighment



Dynamic Programming

* Consider the optimal alignment of x, y

* Three choices for the final column
* Case l:only use x ( x,,, — )
* Casell:onlyusey (—, v )
* Case lll: use one symbol from each ( x;;, Vi, )



Dynamic Programming

* Consider the optimal alignment of x, y

* Case l: only use x ( x,,, — )
* deletion + optimal alignment of x1.,,—1, Y1.m

* Casell:onlyusey (—, v )
* insertion + optimal alignment of x1.,, V1.m-1

* Case lll: use one symbol from each ( x,,, vy, )
* If x,, = y,: optimal alignment of X1.,,_1, V1.m—-1
* If X, # Vs mismatch + opt. alignment of X1.,,—1, Y1.m—-1



Dynamic Programming

* OPT(i, j) = cost of opt. alignment of x;.; and y;_;
* Case l: only use x ( x;,—)

* Casell:onlyusey (—,y;)

* Case lll: use one symbol from each ( x;,y; )



Dynamic Programming

* OPT(i, j) = cost of opt. alignment of x;.; and y;_;
* Case l: only use x ( x;,—)

* Casell:onlyusey (—,y;)

* Case lll: use one symbol from each ( x;,y; )

Recurrence:
OPT(L, /) min{1 + OPT(i —1,/),1+ OPT(i,j— 1),  OPT(i—1,j—1)} Xi = Vj
“J) = Ymin{1 + 0PT(i — 1,),1 4+ OPT(i,j — 1),1+ OPT( —1,j — 1)} X # V)
Base Cases:

OPT(i,0) = i, OPT(0,j) =j



Example
X = pert
y = beast

o> lelals e




Finding the Alignment

* OPT(i, j) = cost of opt. alignment of x;.; and y;_;
* Case l: only use x ( x;,—)

* Casell:onlyusey (—,y;)

* Case lll: use one symbol from each ( x;,y; )



Edit Distance (“Bottom-Up”)

// All inputs are global vars
FindOPT (n,m) :
M[O,3j] < 3J, M[1i,0] <1

for (i= 1,..,n):

for (J =1,..,m):
if (x; = yy):
M[i,j] = min{1+M[i-1,j],1+M[i,j-1] ,M[i-1,3j-1]

elseif (x; '= y;):
M[i,j] = l+min{M[i-1,3],M[1,]-1],M[i-1,]-1]}

return M[n,m]



Activity

 Suppose inserting/deleting costs 6 > 0 and
swapping a <> b costs ¢, > 0

* Write a recurrence for the min-cost alignment

min{1 + OPT(i — 1,/),1 4+ OPT(i,j — 1), OPT(i—1,j—1)} Xi=Y;

OPTC1) =\min{1 + 0PT(i — 1,/),1+ OPT(,j — 1), 1+ OPT(i—1,j — 1)} Xi # Yj



Discussion

* Dynamic Programming is a time-space tradeoff.
Comment on the tradeoff in the case of edit
distance.

min{1 + OPT(i — 1,j),1 4+ OPT(i,j — 1), OPT(i—1,j—1)} Xi=Y;j

OPTWI) = min{1 + 0PT(i — 1,/),1 4 OPT(,j — 1), 1+ OPT(i — 1,/ — 1)} i #



Graphs
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Graphs Are Everywhere

* Transportation networks
e Communication networks
e WWW

* Biological networks
 Citation networks

e Social networks



What’s Next

e Graph Algorithms:
* Graphs: Key Definitions, Properties, Representations

Exploring Graphs: Breadth/Depth First Search

* Applications: Connectivity, Bipartiteness, Topological Sorting
Shortest Paths:

* Dijkstra

e Bellman-Ford (Dynamic Programming)
Minimum Spanning Trees:

e BorUvka, Prim, Kruskal
Network Flow:

e Algorithms
 Reductions to Network Flow



Graphs: Key Definitions

* Definition: A directed graph ¢ = (I/, E)
* I/ is the set of nodes/vertices
€ VXV is the set of edges
* An edge is an ordered ¢ = (u, v) “from u to v”

 Definition: An undirected graph ¢ = (I/, E)

* Edges are unordered ¢ = (1, v) “between u and v”

OEROEROENO
 Simple Graph: Q‘G
* No duplicate edges .'
* No self-loops e = (u, u) (—C) © WO (©



Activity

* How many edges can there be in a simple
directed/undirected graph?



Paths/Connectivity

* A path is a sequence of consecutive edges in E
* P ={(u,wy), (wy,wy), (W, ws), ..., (Wg_1,V)}
e P = uU—-—wy =Wy — Wz — " —Wg_1—U
* The length of the path is the # of edges

 An undirected graph is connected if for every two
vertices u, v € V, there is a path from u to v

e A directed graph is strongly connected if for every
two vertices u, v € V, there are paths from u to v
and fromvtou



Cycles

* Acycleisapathv, — v, — - — v, — v; where
k = 3 and vq, ..., v are distinct

Activity: how many cycles are there in this graph?



Activity

e Suppose an undirected graph G is connected
* True/False? G has at leastn — 1 edges



Activity

e Suppose an undirected graph G hasn — 1 edges
* True/False? G is connected



