
CS3000:	Algorithms	&	Data  
Paul	Hand

Day	1:		
• Course	Overview	
• Warmup	Exercise	(Induction,	Asymptotics,	Fun)	

Jan	7,	2019

• Name:	Paul	Hand	
• Call	me	Paul	
• NEU	since	Fall	2018	
• Office:	523	Lake	
• Office	Hours:	Mon	1:15-2:45	

• Research:	
• Machine	Learning,	Artificial	Intelligence,	Computer	Vision	
• Algorithms	are	at	the	core	of	all	of	these!

Instructor

Discussion:	  
 
What	impressive	things	can	computers	now	do		
(but	couldn’t	when	you	were	born)?	

What	do	you	think	computers	will	be	able	to	do	
in	10	years	that	they	can’t	today?	

Discussion:	  
 

What	would	you	say	is	driving	computational	
advances?	

• What	is	an	algorithm?	

• Essentially	all	computer	programs	(and	more)	are	
algorithms	for	some	computational	problem.

Algorithms

An	explicit,	precise,	unambiguous,	mechanically-
executable	sequence	of	elementary	instructions	for	
solving	a	computational	problem.	

-Jeff	Erickson	

• What	is	Algorithms?	

• Abstract	and	formalize	computational	problems		

• Identify	broadly	useful	algorithm	design	principles	for	
solving	computational	problems	

• Rigorously	analyze	properties	of	algorithms	
• correctness,	running	time,	space	usage

Algorithms

The	study	of	how	to	solve	computational	problems.

Moore’s	Law

• Each	of	you:	 
 
Determine	how	many	other	people	in	this	room	
have	the	same	first	name	as	you.

A	computational	problem

• Sometimes	your	first	instinct	approach	is	reasonable.	
• Sometimes	your	first	instinct	is	not.

There	are	multiple	ways	to	solve	problems

Example	problems	we	will	look	at

Closest	Pair	of	Points Sequence	Alignment

Interval	Scheduling Finding	the	shortest	path

Other	good	problems	(we	wont	see)

Planted	Clique Traveling	Salesman	Problem

• What	is	CS3000:	Algorithms	&	Data?	

• Proofs	are	about	understanding	and	communication,			
not	about	formality	or	certainty	
• Different	emphasis	from	courses	on	logic	

• We’ll	talk	a	lot	about	proof	techniques	and	what	makes	a	
correct	and	convincing	proof

Algorithms

The	study	of	how	to	solve	computational	problems.	
How	to	rigorously	prove	properties	of	algorithms.

• That	sounds	hard.		Why	would	I	want	to	do	that?	

• Build	Intuition:	
• How/why	do	algorithms	really	work?	
• How	to	attack	new	problems?	
• Which	design	techniques	work	well?	
• How	to	compare	different	solutions?	
• How	to	know	if	a	solution	is	the	best	possible?

Algorithms

• That	sounds	hard.		Why	would	I	want	to	do	that?	

• Improve	Communication:	
• How	to	explain	solutions?	
• How	to	convince	someone	that	a	solution	is	correct?	
• How	to	convince	someone	that	a	solution	is	best?

Algorithms

• That	sounds	hard.		Why	would	I	want	to	do	that?	

• Get	Rich:	
• Many	of	the	world’s	most	successful	companies	(eg.	
Google)	began	with	algorithms.	

• Many	job	interviews	have	algorithm	questions	

• Understand	the	natural	world:	
• Brains,	cells,	networks,	etc.	often	viewed	as	algorithms.	

• Fun:	
• Yes,	seriously,	fun.

Algorithms

Course	Structure
End	
4/17

Final		
TBD

Start	
1/7

Midterm	I	
2/20

Midterm	II	
3/27

• HW	=	45%	
• Exams	=	55%	
• Midterm	I	=	15%	
• Midterm	II	=	15%	
• Final	=	25%

Course	Structure	
End	
4/17

Start	
1/7

Divide	and		
Conquer

Dynamic	
Programming

Graphs Network	Flow

Textbook:		
Algorithm	Design	by	Kleinberg	and	Tardos	

More	resources	on	the	course	website

Final		
TBD

Midterm	I	
2/20

Midterm	II	
3/27

• TBD	
• Office	Hours:	TBD	
• Location:	TBD	

• TBD	
• Office	Hours:	TBD	
• Location:	TBD	

• TBD	
• Office	Hours:	TBD	
• Location:	TBD

The	TA	Team

• Weekly	HW	Assignments	(45%	of	grade)	
• Due	Wednesdays	by	2:50pm	
• HW1	out	on	Wednesday!		Due	Wed	1/16	
• No	extensions,	no	late	work	
• Lowest	HW	score	will	be	dropped	from	your	grade	

• A	mix	of	mathematical	and	algorithmic	questions

Homework

• Homework	must	be	typeset	in	LaTeX!	
• Many	resources	available	
• Many	good	editors	available	(TexShop,	TexStudio)	
• I	will	provide	HW	source

Homework	Policies

• Homework	will	be	submitted	on	Gradescope!	
• More	details	on	Wednesday

Homework	Policies

• You	are	encouraged	to	work	with	your	classmates	
on	the	homework	problems.	
• You	may	not	use	the	internet	
• You	may	not	use	students/people	outside	of	the	class	

• Collaboration	Policy:		
• You	must	write	all	solutions	by	yourself	
• You	may	not	share	any	written	solutions	
• You	must	state	all	of	your	collaborators	
• We	reserve	the	right	to	ask	you	to	explain	any	solution

Homework	Policies

• We	will	use	Piazza	for	discussions	
• Ask	questions	and	help	your	classmates	
• Please	use	private	messages	sparingly	

• More	details	on	Wednesday!

Discussion	Forum

Course	Website	

http://www.ccs.neu.edu/home/hand/teaching/cs3000-spring-2018/	

• Prof.	Schnyder	teaches	another	section	
• No	formal	relationship	with	my	section	
• Will	cover	very	similar	topics	and	share	some	materials	
• Will	be	out	of	sync	
• You	should	not	go	to	OH	for	Prof.	Schnyder’s	TAs

What	About	the	Other	Sections?

Illustration: 
Let’s	count	how	many	  
students	are	in	this	class

• Is	this	correct?	
• How	long	does	this	take	with	n	students?	 	

Simple	Counting

SimCount:
 Find first student
 First student says 1
 Until we’re out of students:
 Go to next student
 Next student says (what last student said + 1)

Recursive	Counting	-	Divide	and	Conquer

RecursiveCount:
If you are the only person in group:

return 1
Else:

Split your group into two subgroups of similar size
(one includes you)
Appoint a leader of the other subgroup
Ask that leader how many are in that subgroup
Determine how many are in your subgroup.
return # in your subgroup + # in other subgroup

Recursive	Counting	-	Divide	and	Conquer
RecursiveCount:

If you are the only person in group:
return 1

Else:
Split your group into two subgroups of similar size
(one includes you)
Appoint a leader of the other subgroup
Ask that leader how many are in that subgroup
Determine how many are in your subgroup.
return # in your subgroup + # in other subgroup

• How	long	does	this	take	
with	n=2m	students?

Proofs	by	Induction

• Claim:	For	every	number	of	students		

• In	terms	of	n,

Running	Time	-	Proof	by	Induction

n = 2m

T (2m) = 3m+ 1

T (n) ⇡ 3 log2 n+ 1

