Week 1— Summary — Real Numbers, Limits and Continuous Functions

- 1. *Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the natural numbers, $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ be the integers.
- 2. *Let \mathbb{Q} be the rationals. If $x \in \mathbb{Q}$, then x = n/m, for $n, m \in \mathbb{Z}$ and $m \neq 0$. There are a countable number of rationals.
- 3. *Let \mathbb{R} be the reals. There are an uncountable number of reals. Each real number has a decimal representation (possibly two)
- 4. Some axioms of real numbers:
 - (a) $(x+y)+z=x+(y+z) \ \forall x,y,z\in\mathbb{R}$ (additive associativity)
 - (b) $0 + x = x + 0 \ \forall x \in \mathbb{R}$ (additive identity)
 - (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x + y = 0 \text{ (additive inverse)}$
 - (d) $\forall x, y \in R, x + y = y + x$ (additive commutativity)
 - (e) $(xy)z = x(yz) \ \forall x, y, z \in \mathbb{R}$ (multiplicative associativity)
 - (f) $1x = x \ \forall x \in \mathbb{R}$ (multiplicative identity)
 - (g) $\forall x \neq 0, \exists y \text{ such that } yx = 1 \text{ (multiplicative inverse)}$
 - (h) $xy = yx \ \forall x, y \in \mathbb{R}$ (multiplicative commutativity)
 - (i) $x(y+z) = xy + xz \ \forall x, y, z \in \mathbb{R}$ (distributivity)
- 5. Completeness axiom of reals:
 - (a) *Every non-empty set of reals which is bounded from above has a least upper bound. We denote the least upper bound of a set S by $\sup(S)$, which stands for the supremum of S. If S is unbounded from above, then we say that $\sup(S) = \infty$.
 - (b) *Similarly, every non-empty set S which is bounded from below has a greatest lower bound, $\inf(S)$, which stands for the infimum of S. If S is unbounded from below, then we say that $\inf(S) = -\infty$.
- 6. Properties of the reals
 - (a) Triangle inequality: For real numbers, $|x+y| \le |x| + |y|$ and $|x-y| \ge |x| |y|$.
 - (b) Archimedian property: If $0 \le x \le 1/n \ \forall n \in \mathbb{N}$, then x = 0
 - (c) Density of rationals within the reals: For all $x \in \mathbb{R}$ and $\varepsilon > 0$, there exists $q \in \mathbb{Q}$ such that $|q x| < \varepsilon$.
 - (d) Between two distinct rationals, there is a real. Between two distinct reals, there is a rational.
- 7. *The sequence $\{x_n\}_{n=1}^{\infty}$ converges if $\exists a \in \mathbb{R}$ such that for all $\varepsilon > 0$ $\exists N$ such that $n \geq N \Rightarrow |x_n a| < \varepsilon$. We say that $\lim_{n \to \infty} x_n = a$.
- 8. *A bounded monotonic sequence converges.

- 9. *The sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0$, there exists N such that $m, n \ge N \Rightarrow |x_m x_n| < \varepsilon$.
- 10. \mathbb{R} is complete: If $\{x_n\}$ is a Cauchy sequence of \mathbb{R} , then $\{x_n\}$ converges to an element of \mathbb{R} .
- 11. Let $x = \{x_n\}$ be a sequence. A subsequence of x is obtained by keeping (in order) an infinite number of the items x_n and discarding the rest. Two ways to denote a subsequence are $x_{(n)}$ and x_{n_k} .
- 12. Let $\{x_n\}$ be a sequence. The number x is an accumulation point (or point of accumulation) of the sequence if $\forall \varepsilon$ there are infinitely many n such that $|x_n x| < \varepsilon$.
- 13. *Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has a convergent subsequence.
- 14. (a) * $\limsup\{x_n\}$ is defined as supremum of the accumulation points of $\{x_n\}$. An alternative way to think about it is through $\limsup\{x_n\} = \lim_{n\to\infty} \sup_{m>n} x_m$.
 - (b) * $\liminf \{x_n\}$ is defined analogously.
- 15. *Let f be a function defined on $S \subset \mathbb{R}$. The limit of f(x) as x approaches a exists if there exists an L such that for all ε there is a $\delta > 0$ such that $|x a| < \delta \Rightarrow |f(x) L| < \varepsilon$ for $x \in S$. We write such a limit as $\lim_{x \to a} f(x) = L$.
- 16. Limits commute with addition, multiplication, division, and non-strict inequalities
 - (a) If $\lim_{x\to a} (cf)(x) = c \lim_{x\to a} f(x)$ for any real c.
 - (b) If $\lim_{x\to a} (f+g)(x) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$ if both limits on the right exist.
 - (c) If $\lim_{x\to a} (fg)(x) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$ if both limits on the right exist.
 - (d) If $\lim_{x\to a} (f/g)(x) = \lim_{x\to a} f(x)/\lim_{x\to a} g(x)$ if both limits on the right exist and the limit of g is nonzero.
 - (e) If $f(x) \leq g(x)$ for all x sufficiently close to a, then $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$, provided both limits on the right exist.
- 17. The function $f: S \to \mathbb{R}$ is continuous at a if $\lim_{x\to a} f(x) = f(a)$.
- 18. The function f is continuous on the set S if f is continuous at every point in S.
- 19. The composition of two continuous functions is continuous.
- 20. Intermediate value theorem: Let f be continuous on [a,b]. For any y satisfying f(a) < y < f(b) or f(b) < y < f(a), there exists an $x \in (a,b)$ such that f(x) = y.
- 21. *The function f is uniformly continuous on the set S if for all ε , there exists a $\delta > 0$ such that $|x-y| < \delta \Rightarrow |f(x) f(y)| < \varepsilon$. Notice that the dependence of δ on ϵ does not depend on the position within the set. That is what makes it uniform.
- 22. *A continuous function on a closed, bounded interval is uniformly continuous.