36 III. Differentiation

Given € > 0 select § > 0 such that if |z ~ o] < 6 and p/g = z € Q, then
1/g < ce. Then
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If z is irrational, then the Newton quotient is 0, so f is differentiable at «

and f'(a) =0.
(b) For p/g = = € Q, the Newton quotient of g at o becomes
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By Exercise 6, §4, of Chapter 1 we know that given V > 0 there exists
integers pn,gn such that
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thus g is not differcntiable at o.

Exercise II1.1.2 (a) Show that the function f(z) = |z| is not differen-
tiable at 0. (b) Show that the function g{z) = z|z| is differentiable for all
z. What is its derivative?

Solution. (a) For k > 0 we have
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and if h < 0, then
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whence f is not differentiable at 0.
(b) If z > 0, then f(z) = z? and if A > 0 we get
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If £ < 0, then f(z) = —x? and the Newton quotient at O tends to 0 as
h — 0 with b < 0. Thus f is differentiable for all z and for z > 0 its
derivative is 2z and for z < 0 its derivative is —2z.

Exercise II1.1.3 For a positive integer k, let f(*) denote the k-th deriva-
tive of f. Let P(z) = ap + a1+ - - -+ a,x" be e polynomial. Show that for
all k,

P™N(0) = klay.
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Solution. We prove by induction that for 0 < k& < n we have the formula
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4 When k = 0 the formula holds. Differentiating the above expression we get
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which is equal to P(*+1)(z), thereby concluding the proof by induction. We
{ immediadely get that P(*)(0) = k!a; whenever 0 < k < n. If k > n, then
. P} is identically 0.

Exercise IIL.1.4 By induction, obtain a formula for the n-th derivative
of a product, i.e. (fg)™, in terms of lower derivatives f), gU).
Solution. We prove by induction that
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When n = 1 the formula yields (fg)’ = f'g+ fg’ which holds. Differentiat-
ing the above formula using the product rule and splitting the sum in two
we get
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The change of index j = k + 1 in the first sum shows that: ( Fo)r ) s
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The second to last equality follows from Exercise 4, §3, of Chapter 0.
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II1.2 Mean Value Theorem

Exercise 1I1.2.1 Let f(z) = apz™ +- - - + a9 be a polynomial with a, # 0.
Let ¢ < €2 < -+ < ¢, be numbers such that f(e;) =0 fori=1,...,7.
Show that < n. [Hint: Show that f' has at least  — 1 roots, conlinue to
take the derivatives, and use induction.]

Solution. Suppose © > n. By Lemma 2.2, f’ has at least one root in
(¢j,¢j41) for all 1 < j < 7— 1. Therefore f! has at least  —1 distinct roots.
Suppose that for some 1 < k < n — 1, the function F) has at least 7 — k
distinct roots, cx,; < k2 < --* < Ckr—k- Then by Lemma 2.2, F+1) has
at least one root in (ck j,Ckj+1) forall 1 € j <r—k—1. Thus f+1) has
at least r — (k + 1) distinct roots. Therefore f(™) has at least r — n roots.
But f) = a,n!, so £ has no roots. This contradiction shows that r < n.

Exercise I11.2.2 Let f be a function which is twice differentiable. Let c; <
€2 < --- < ¢, be numbers such that f(c;) = 0 for all i. Show that f' has at
least r — 1 zeros (i.e. numbers b such that f'(b) =0).

Solution. Lemma 2.2 implies that for each 1 £ j < r — 1 there exists
numbers d; such that ¢; < d; < ¢j41 and f'(d;) = 0. So f' has at least
T — 1 roots.

Exercise 111.2.3 Leta,,...,a, be numbers. Determine z so that Y, (ai—
z)? is a minimum.

Solution. Let f(z) = Y.I_,(a; — z)?. The limits lim;_.o f(z) = 00 and
lim;—, oo f(z) = 0o imply that f has a minimum. The minimum verifies
f'(z) = 0, which is equivalent to

IMUM?;.IHV ={.

i=1
We conclude that f is at a minimum at z = }_ a;/n.

Exercise I11.2.4 Let f(z) = 23 + ax? + bz + ¢ where a,b,c are numbers.
Show that there is a number d such that f is convez downwerd if z < d and
convex upward if T > d.

Solution. The function f” exists and f”(z) = 6z + 2a. Then for all z <
d = —a/3, the function f is convex downward, and for all z > d, f is convex
upward.

Exercise IIL.2.5 A function f on an interval is said to selisfy a Lips-
chitz condition with Lipschitz constant C if for all z,y in the interval,
we have

If(z) = fW)] < Clz —yl.
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Prove that a function whose derivative is bounded on an interval is Lips-
chitz. In particular, a C' function on a closed interval is Lipschitz. Also,
note that a Lipschitz function is uniformly continuous. However, the con-
verse if not necessarily true. See Ezercise 5 of Chapter IV, §3.

Solution. Let M be a bound for the derivative. Given z and y in the
interval, there exists c in (z,y) such that f(z)— f(y) = f'(c)(z — y) which

implies
1F(z) = F) = | (e)llz ~ yl < Mz —y|.
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