Given $\epsilon > 0$ select $\delta > 0$ such that if $|x - \alpha| < \delta$ and $p/q = x \in \mathbb{Q}$, then

$$\left|\frac{f(x)}{x-\alpha}\right| \leq \frac{q^2}{c} \cdot \frac{1}{q^3} < \epsilon,$$

$$\lim_{x \to \infty} \frac{f(x) - f(\alpha)}{x - \alpha} = 0.$$

If x is irrational, then the Newton quotient is 0, so f is differentiable at α

(b) For $p/q = x \in \mathbb{Q}$, the Newton quotient of g at α becomes

$$\left|\frac{g(\alpha) - g(\alpha)}{x - \alpha}\right| = \frac{1}{|p - q\alpha|}.$$

integers p_N, q_N such that By Exercise 6, §4, of Chapter 1 we know that given N > 0 there exists

$$\left| \frac{1}{p_N - q_N \alpha} \right| \ge N \quad \text{and} \quad \left| \frac{p_N}{q_N} - \alpha \right| \le \frac{1}{N},$$

thus g is not differentiable at α .

Exercise III.1.2 (a) Show that the function f(x) = |x| is not differentiable at 0. (b) Show that the function g(x) = x|x| is differentiable for all x. What is its derivative?

Solution. (a) For h > 0 we have

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1,$$

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{-h}{h} = -1,$$

whence f is not differentiable at 0. (b) If x > 0, then $f(x) = x^2$ and if h > 0 we get

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} h = 0.$$

If x < 0, then $f(x) = -x^2$ and the Newton quotient at 0 tends to 0 as $h \to 0$ with h < 0. Thus f is differentiable for all x and for x > 0 its derivative is 2x and for x < 0 its derivative is -2x

tive of f. Let $P(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial. Show that for Exercise III.1.3 For a positive integer k, let $f^{(k)}$ denote the k-th deriva-

$$J^{(n)}(0) = k!a_k$$

Solution. We prove by induction that for $0 \le k \le n$ we have the formula

$$P^{(k)}(x) = k!a_k + \frac{(k+1)!}{1!}a_{k+1}x + \frac{(k+2)!}{2!}a_{k+2}x^2 + \dots + \frac{(k+n-k)!}{(n-k)!}a_nx^{n-k}.$$

When k=0 the formula holds. Differentiating the above expression we get

$$(k+1)!a_{k+1} + \frac{(k+2)!}{1!}a_{k+2}x + \dots + \frac{(k+n-k)!}{(n-k-1)!}a_nx^{n-k-1}$$

which is equal to $P^{(k+1)}(x)$, thereby concluding the proof by induction. We immediately get that $P^{(k)}(0) = k!a_k$ whenever $0 \le k \le n$. If k > n, then $P^{(k)}$ is identically 0.

of a product, i.e. $(fg)^{(n)}$, in terms of lower derivatives $f^{(k)}, g^{(j)}$ Exercise III.1.4 By induction, obtain a formula for the n-th derivative

Solution. We prove by induction that

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} (f)^{(k)} (g)^{(n-k)}.$$

When n=1 the formula yields (fg)'=f'g+fg' which holds. Differentiating the above formula using the product rule and splitting the sum in two

$$(fg)^{(n+1)} = \sum_{k=0}^{n} \binom{n}{k} (f)^{(k+1)} (g)^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} (f)^{(k)} (g)^{(n+1-k)}.$$

The change of index j = k + 1 in the first sum shows that $(fg)^{(r-1)}$ is

$$= \sum_{j=1}^{n+1} {n \choose j-1} (f)^{(j)} (g)^{(n+1-j)} + \sum_{k=0}^{n} {n \choose k} (f)^{(k)} (g)^{(n+1-k)}$$

$$= (f)^{(0)} (g)^{(n+1)} + (f)^{(n+1)} (g)^{(0)} + \sum_{k=1}^{n} \left[{n \choose k-1} + {n \choose k} \right] f^{(k)} g^{(n+1-k)}$$

$$= (f)^{(0)} (g)^{(n+1)} + (f)^{(n+1)} (g)^{(0)} + \sum_{k=1}^{n} {n+1 \choose k} f^{(k)} g^{(n+1-k)}$$

$$= \sum_{k=0}^{n+1} {n+1 \choose k} (f)^{(k)} (g)^{(n+1-k)}.$$

The second to last equality follows from Exercise 4, §3, of Chapter 0.

III.2 Mean Value Theorem

Exercise III.2.1 Let $f(x) = a_n x^n + \cdots + a_0$ be a polynomial with $a_n \neq 0$. Let $c_1 < c_2 < \cdots < c_r$ be numbers such that $f(c_i) = 0$ for $i = 1, \dots, r$. Show that $r \leq n$. [Hint: Show that f' has at least r - 1 roots, continue to take the derivatives, and use induction.]

Solution. Suppose r > n. By Lemma 2.2, f' has at least one root in (c_j, c_{j+1}) for all $1 \le j \le r-1$. Therefore f' has at least r-1 distinct roots. Suppose that for some $1 \le k \le n-1$, the function $f^{(k)}$ has at least r-k distinct roots, $c_{k,1} < c_{k,2} < \cdots < c_{k,r-k}$. Then by Lemma 2.2, $f^{(k+1)}$ has at least one root in $(c_{k,j}, c_{k,j+1})$ for all $1 \le j \le r-k-1$. Thus $f^{(k+1)}$ has at least r-(k+1) distinct roots. Therefore $f^{(n)}$ has at least r-n roots. But $f^{(n)} = a_n n!$, so $f^{(n)}$ has no roots. This contradiction shows that $r \le n$.

Exercise III.2.2 Let f be a function which is twice differentiable. Let $c_1 < c_2 < \cdots < c_r$ be numbers such that $f(c_i) = 0$ for all i. Show that f' has at least r - 1 zeros (i.e. numbers b such that f'(b) = 0).

Solution. Lemma 2.2 implies that for each $1 \le j \le r-1$ there exists numbers d_j such that $c_j < d_j < c_{j+1}$ and $f'(d_j) = 0$. So f' has at least r-1 roots.

Exercise III.2.3 Let a_1, \ldots, a_n be numbers. Determine x so that $\sum_{i=1}^{n} (a_i - x_i)^2$ is a minimum.

Solution. Let $f(x) = \sum_{i=1}^{n} (a_i - x)^2$. The limits $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to -\infty} f(x) = \infty$ imply that f has a minimum. The minimum verifies f'(x) = 0, which is equivalent to

$$-\sum_{i=1}^{n} 2(a_i - x) = 0.$$

We conclude that f is at a minimum at $x = \sum a_i/n$.

Exercise III.2.4 Let $f(x) = x^3 + ax^2 + bx + c$ where a, b, c are numbers. Show that there is a number d such that f is convex downward if $x \le d$ and convex upward if $x \ge d$.

Solution. The function f'' exists and f''(x) = 6x + 2a. Then for all $x \le d = -a/3$, the function f is convex downward, and for all $x \ge d$, f is convex upward.

Exercise III.2.5 A function f on an interval is said to satisfy a Lipschitz condition with Lipschitz constant C if for all x, y in the interval, we have

$$|f(x) - f(y)| \le C|x - y|$$

Prove that a function whose derivative is bounded on an interval is Lipschitz. In particular, a C^1 function on a closed interval is Lipschitz. Also, note that a Lipschitz function is uniformly continuous. However, the converse if not necessarily true. See Exercise 5 of Chapter IV, §3.

Solution. Let M be a bound for the derivative. Given x and y in the interval, there exists c in (x,y) such that f(x)-f(y)=f'(c)(x-y) which implies

$$|f(x) - f(y)| = |f'(c)||x - y| \le M|x - y|.$$

3) $f(x) = \sqrt{x}$ is uniformly continuous on [0,1] It has unbounded derivative and is hence not Lipschitz 7) F(X)= { if X=0 is not continuous on [0,1]

To show f is convex, we must show $f((1-v)x+vy) \leq (1-v)f(v)+vf(y) \quad \forall \ X_1y. \ \forall \ Ue(o_1)$

If x = 0 & y = 0, holds trivially.

If X = 0, $y \neq 0$ we must show $f(vy) \leq (1-v) f(0) + v f(y) \quad \forall \quad V G(0,1)$ This inequality holds, as $f(vy) = 0 \quad \forall \quad V G(0,1)$ and 1-v > 0 and f(v), f(y) > 0.

If X=0, y=0, holds immediately

IF X=10, y=0, Same as case 4 X=0, y =0.