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1
Writing Parallel

Programs in GAP Easily

The ParGAP (Parallel GAP) share package provides a way of writing parallel programs using the GAP
language. Former names of the package were ParGAP/MPI and GAP/MPI; the word MPI refers to Message
Passing Interface, a well-known standard for parallelism. ParGAP is based on the MPI standard, and this
distribution includes a subset implementation of MPI, to provide a portable layer with a high level interface
to BSD sockets. Since knowledge of MPI is not required for use of this software, we now refer to the package
as simply ParGAP. For more information visit the author’s ParGAP home page at:

http://www.ccs.neu.edu/home/gene/pargap.html

For some background reading, see [Coo95] and [Coo97].

This first chapter is intended to help a new user set up ParGAP and run through some quick examples: see

• Section 1.1 for an overview of the features of ParGAP and a general discussion of how it’s implemented;

• Section 1.2 for how to install ParGAP;

• Section 1.3 for how to run ParGAP (not by using RequirePackage); and

• Section 1.4 for some introductory ParGAP examples.

The later chapters present detailed explanations of the facilities of ParGAP. Because parallel programming is
sufficiently different from sequential programming, this author recommends printing out at least Chapters 1
through 5, and skimming through those chapters for areas of interest, before returning to the terminal to
try out some of the ideas. This document can be found in .../pkg/pargap/doc/manual.dvi of the software
distribution. You may also want to print the index at the end of manual.dvi. In particular, the heading
example in the index, or ??example from within GAP, should be useful. If you prefer postscript, the UNIX
command dvips will convert that file to postscript form.

The development of ParGAP was partially supported by National Science Foundation grants CCR-9509783
and CCR-9732330.

1.1 Overview of ParGAP

ParGAP is currently functional only on UNIX installations. (Cygwin for Windows is also an option, if you
would like to port it.) ParGAP can be installed on top of an existing GAP installation. See Section 1.2
for instructions on installation of ParGAP. At the time that ParGAP is invoked, a special “procgroup” file
must be available to tell ParGAP which processors to use for slave processors. See sections 1.2 and 1.4
for instructions on invoking ParGAP. If there are questions or bugs concerning ParGAP, please write to:
gene@ccs.neu.edu

If one wishes only to try out the parallel features, the first five pages of this manual (through the section on
the slave listener) will suffice for installation, and using it. For the more advanced user who wishes to design
new parallel algorithms or port old sequential code to a parallel environment, it is strongly recommended
to also read the sections following on from Section 3.

ParGAP should be invoked via the script bin/pargap.sh created by the installation process which invokes
GAP ROOT DIR/bin/ARCH /pargapmpi, where ARCH depends on your system but is the same directory
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in which the gap binary is found. MPI and the higher layers will not be available if the binary is invoked in
the standard way as gap. This is a feature, since a single binary and source distribution serves both for the
standard GAP and for ParGAP.

ParGAP is implemented in three layers: 1) MPI, 2) Slave Listener, and 3) Master Slave (TOP-C abstraction).
Most users will find that the two highest layers (Slave Listener and Master Slave) meet all their needs.

1) MPI:

The lowest layer is MPI. Most users can ignore this layer. MPI is a standard for message-based
parallel computation. A subset of the original MPI commands is provided. The syntax is modified
from the original C binding to make a GAP binding in an interpreted environment more convenient.
This includes default arguments, useful return values, and Error break in the presence of errors.
MPI Init() (see 7.2.2) and MPI Finalize() (see 7.2.2) are invoked automatically by ParGAP.

The MPI layer is not documented, since most users will not be using it. From GAP level, you can type:
MPI tabtab to see all implemented MPI functions and variables. However, typing the symbol name
alone (e.g.: MPI Send; ) will cause it to display the calling syntax. The same information is displayed
after an incorrect call. The return value is typically obvious. MPI is implemented in src/pargap.c.
The standard distribution uses a simple, subset implementation of MPI in pkg/gapmpi/mpinu/,
which is implemented on top of a standard sockets interface. It is possible to substitute other
implementations of MPI.

For those who wish to directly use the MPI interface, the meanings of the MPI calls are best found
from the standard MPI documentation:

MPI Forum:

http://www.mpi-forum.org/

MPI Standard (version 1.1):

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

UNIX style man pages:

http://www-c.mcs.anl.gov/mpi/www/

2) Slave Listener:

This layer provides basic message passing facilities for communication among multiple ParGAP
processes in a form that is more convenient for programming than the lower MPI layer. This will be
the most useful entry point to ParGAP for most users. This is the default mode for ParGAP. Each
remote (slave) process is in a receive-eval-send loop, in which the slave receives a GAP command
from the local or master, the slave evaluates the GAP command, and the slave then sends the result
back to the master as a GAP object.

Almost all commands in the slave listener are of the form *Msg* e.g. SendMsg() (see 2.1.1),
RecvMsg() (see 2.1.2), ProbeMsg() (see 2.1.14). Since the slave is in a receive-eval-send loop, every
SendMsg(cmd) on the master must be balanced by a later RecvMsg(). SendRecvMsg() (see 2.1.5)
is provided to combine these steps. A few parallel utilities are also included, such as ParRead()

(2.1.12), ParList() (2.1.13), ParEval() (2.1.10), etc.

Messages are arbitrary GAP objects. Note that arguments to any GAP function are evaluated before
being passed to the function. Hence, any argument to SendMsg() or ParEval() would be evaluated
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locally before being sent across the network. For this reason, arguments can also be given as strings,
to delay evaluation until reaching the destination process. Hence, real strings must be quoted:
ParEval("x:="abc";"); Additionally, multiple commands are valid, and the final “;” of the string
is optional. So, one can write:

BroadcastMsg("x:=\"abc\"; Print(Length(x), \"\\n\")");;

A full description is contained in Chapter 2.

3) Master Slave:

The Master Slave facility is provided both for writing complex parallel software, and as an easier
way to parallelize previous or “legacy” sequential code. While the Slave Listener may be sufficient
for simple parallel requirements, more complex software requires a higher level abstraction. The
fundamental abstractions of the master slave layer are the task and the shared data.

1) The task typically corresponds to the procedure or inner body of a loop in a sequential program.
This is the part that must be repetitively computed in parallel.

2) The shared data typically corresponds to the data of a sequential program that is not within the
local scope of the task. Often this is a global data structure. In the case that the task is the inner
body of a loop, the shared data may be a local data structure that is outside the local scope of the
loop.

It is usually quite easy to identify the task and the shared data of a sequential program or algorithm,
which is the first step in parallelizing an algorithm.

The Master Slave parallel model described here has also been successfully used in C and in LISP. It
has been used both in distributed memory and shared memory environments, although this version
in GAP currently works only in a distributed environment. In the C language, this parallel model
is known as TOP-C (Task Oriented Parallel C). For examples of the use of the TOP-C model see
[Coo98], [CFTY97], [CMV97], [CHLM97], [CLMW99], and [CT96].

While no parallel software can eliminate the problem of designing an algorithm that is efficient in
a parallel environment, the TOP-C abstraction eases the job by eliminating programmer concerns
about lower level details, such as message passing, migration and replication of data, load balancing,
etc. This leaves the programmer to concentrate on the primary goal: maximizing the concurrency
or parallelism.

1.2 Installing ParGAP

Installing ParGAP should be relatively simple. However, since there are many interactions both with the GAP
kernel and with the UNIX operating system, in a minority of cases, manual intervention will be necessary.
If you are part of this minority, please see the section 1.7. The most common problem is the local security
policy; ParGAP is more pleasant to use when you don’t have to manually provide the password for each
slave. See section 1.9 for suggestions in this respect.

To install the ParGAP share package, move the file pargap-XXX.zoo or pargap-XXX.tar.gz (for some
version number XXX of ParGAP) into the pkg directory in which you plan to install ParGAP. Usually, this
will be the directory pkg in the hierarchy of your version of GAP 4 (in fact, currently it is not possible to
have the pkg directory separate from GAP’s pkg directory; we hope to remedy this in future versions of
ParGAP so that it will also possible to keep an additional pkg directory in your private directories; section
73.1 of the GAP 4 reference manual gives details on how to do this, when it’s possible.)
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Now change into the pkg directory in which you plan to install ParGAP. If you got a .zoo file, unpack it
with:

unzoo -x pargap-XXX

If you got a .tar.gz file and your tar command supports the z option, unpack it with:

tar zxf pargap-XXX.tar.gz

or otherwise unpack in two steps with:

gunzip pargap-XXX.tar

tar xvf pargap-XXX.tar

Whether you got the .zoo or .tar.gz archive you should now have a new directory pargap. As for a generic
GAP share package, do:

cd pargap

./configure ../..

make

If your version of GAP is earlier than GAP 4.3 you will first need to adjust GAP’s lib/init.g file; see item 0.
of Section 1.7.

Your ParGAP should now be ready to use. Now read the next section which decribes how to run ParGAP (if
you are reading this from GAP’s on-line help, type: ?>).

1.3 Running ParGAP

After doing the configure and make steps of ParGAP’s installation process (see Section 1.2), you should
find in ParGAP’s bin subdirectory a script

pargap.sh

which you should use to start ParGAP. (ParGAP can not be started by starting GAP 4 in the usual way,
and using RequirePackage; doing so will result in Info-ed advice to read this section.) Edit the pargap.sh

script if necessary, copy it to a standard path and rename it according to how you intend to call ParGAP
(e.g. rename it: pargap). Also, in the bin subdirectory is a sample procgroup file which defines the master
and slave processes that will be used by ParGAP. When ParGAP is started it looks for a file called procgroup

in the current directory, unless the -p4pg option is used. Thus if you renamed your shell script pargap, the
following are valid ways of starting ParGAP:

pargap

(if current directory contains the file: procgroup), or

pargap -p4pg myprocgroupfile

(where myprocgroupfile is the complete path of your procgroup file – there is no restriction on how you name
it).

If you had trouble installing ParGAP, see the section 1.7. Otherwise continue onto Section 1.4 and try out
ParGAP.

Note: The script pargap.sh defines the program that runs ParGAP as pargapmpi. In fact, after installation
pargapmpi is a symbolic link to the GAP binary named gap. The same binary runs both GAP and ParGAP;
when the binary is invoked as gap GAP runs in the usual way without any parallel features; only when the
binary is invoked as pargapmpi are the parallel features incorporated. See Section 1.10 for more details.

Now you are ready to test your installation, try the example in the following section (if you are reading this
from GAP’s on-line help, type: ?>).
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1.4 Extended Example

After installation, try it out. Invoke ParGAP as described in Section 1.3 and try the example below (but
substitute your own program where you see "/home/gene/myprogram.g"). The commands in this first
example are also found in the README file. So, you may wish to copy text from the README file and paste
it into a ParGAP session. If you are using the unmodified procgroup file, your remote slaves will be other
processes on your local machine. It is a good idea to run only on your local machine for your first experiments
and while you are debugging parallel programs. When you wish to experiment with using remote machines,
you can then proceed to the following section, 1.6.

gap> # This assumes your procgroup file includes two slave processes.

gap> PingSlave(1); #a ‘true’ response indicates Slave 1 is alive

true

gap> # Print() on slave appears on standard output

gap> # i.e. after the master’s prompt.

gap> SendMsg( "Print(3+4)" );

gap> 7

gap> # A <return> was input above to get a fresh prompt.

gap> #

gap> # To get special characters (including newline: ‘\n’)

gap> # into a string, escape them with a ‘\’.

gap> SendMsg( "Print(3+4,\"\\n\")" );

gap> 7

gap> # Again, a <return> was input above after the 7 and new-line

gap> # were printed to get a fresh prompt.

gap> #

gap> # Each SendMsg() is normally balanced by a RecvMsg().

gap> SendMsg( "3+4", 2);

gap> RecvMsg( 2 );

7

gap> # The following is equivalent to the two previous commands.

gap> SendRecvMsg( "3+4", 2);

7

gap> # Flush any messages that are pending. The response is

gap> # the number of messages flushed. (Above, the two

gap> # SendMsg("Print...") (to the default slave: 1) did not

gap> # have a corresponding RecvMsg() command.)

gap> FlushAllMsgs();

2

gap> # As with Print() the result of Exec() appears on standard

gap> # output. Print() and Exec() are each ‘no-value’ functions,

gap> # and so the result of a RecvMsg() in these cases

gap> # is "<no_return_val>".

gap> SendRecvMsg( "Exec(\"pwd\")" ); # Your pwd will differ :-)

/home/gene

"<no_return_val>"

gap> # Put default slave into an infinite loop.

gap> SendMsg("while true do od");

gap> # Default slave can’t execute the next command until it’s

gap> # finished with the previous command.

gap> SendMsg("Print(\"WAKE UP\\n\")");
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gap> # Check to see if a message is waiting to be collected but

gap> # return immediately (i.e. don’t get blocked by waiting for

gap> # a message to appear). A ‘false’ response indicates the

gap> # infinite loop hasn’t terminated and produced a value yet!

gap> ProbeMsgNonBlocking();

false

gap> # Send an interrupt to each slave, slave 1 will see the

gap> # following command and print ‘WAKE UP’, and then all

gap> # pending messages are flushed.

gap> ParReset();

... resetting ...

WAKE UP

0

gap> # The return value, 0, from ParReset() indicates there

gap> # were 0 pending messages flushed, confirming correctness

gap> # of ProbeMsgNonBlocking() when it returned "false"

gap> SendRecvMsg( "a:=45; 3+4", 1 );

7

gap> # Note "a" is defined on slave 1, not slave 2.

gap> SendMsg( "a", 2 ); # Slave prints error, output on master

gap> Variable: ’a’ must have a value

gap> # <return> entered to get fresh prompt.

gap> RecvMsg( 2 ); # No value for last SendMsg() command

"<no_return_val>"

gap> RecvMsg( 1 );

45

gap> myfnc := function() return 42; end;;

gap> # Use PrintToString() to define myfnc on all slave processes

gap> BroadcastMsg( PrintToString( "myfnc := ", myfnc ) );

gap> SendRecvMsg( "myfnc()", 1 );

42

gap> FlushAllMsgs(); # There are no messages pending.

0

gap> # Execute analogue of GAP’s List() in parallel on slaves.

gap> squares := ParList( [1..100], x->x^2 );

[ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256,

289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841,

900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600,

1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601,

2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844,

3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329,

5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056,

7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025,

9216, 9409, 9604, 9801, 10000 ]

gap> # Ensure problem shared data is read into master and slaves.

gap> # Try one of your GAP program files instead.

gap> ParRead( "/home/gene/myprogram.g");

Now that you have done a fairly rudimentary test of ParGAP you should be ready to do something a little
bit more interesting:
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gap> ParInstallTOPCGlobalFunction( "MyParList",

> function( list, fnc )

> local result, iter;

> result := [];

> iter := Iterator(list);

> MasterSlave( function() if IsDoneIterator(iter) then return NOTASK;

> else return NextIterator(iter); fi; end,

> fnc,

> function(input,output) result[input] := output;

> return NO_ACTION; end,

> Error

> );

> return result;

> end );

gap> MyParList( [1..25], x->x^3 );

master -> 1: 1

master -> 2: 2

2 -> master: 8

1 -> master: 1

master -> 1: 3

master -> 2: 4

2 -> master: 64

1 -> master: 27

master -> 1: 5

master -> 2: 6

2 -> master: 216

1 -> master: 125

master -> 1: 7

master -> 2: 8

2 -> master: 512

1 -> master: 343

master -> 1: 9

master -> 2: 10

2 -> master: 1000

1 -> master: 729

master -> 1: 11

master -> 2: 12

2 -> master: 1728

1 -> master: 1331

master -> 1: 13

master -> 2: 14

2 -> master: 2744

1 -> master: 2197

master -> 1: 15

master -> 2: 16

2 -> master: 4096

1 -> master: 3375

master -> 1: 17

master -> 2: 18

2 -> master: 5832

1 -> master: 4913

master -> 1: 19
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master -> 2: 20

2 -> master: 8000

1 -> master: 6859

master -> 1: 21

master -> 2: 22

2 -> master: 10648

1 -> master: 9261

master -> 1: 23

master -> 2: 24

2 -> master: 13824

1 -> master: 12167

master -> 1: 25

1 -> master: 15625

[ 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375,

4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625 ]

gap> ParInstallTOPCGlobalFunction( "MyParListWithAglom",

> function( list, fnc, aglomCount )

> local result, iter;

> result := [];

> iter := Iterator(list);

> MasterSlave( function() if IsDoneIterator(iter) then return NOTASK;

> else return NextIterator(iter); fi; end,

> fnc,

> function(input,output)

> local i;

> for i in [1..Length(input)] do

> result[input[i]] := output[i];

> od;

> return NO_ACTION;

> end,

> Error, # Never called, can specify anything

> aglomCount

> );

> return result;

> end );

gap> MyParListWithAglom( [1..25], x->x^3, 4 );

master -> 1: (AGGLOM_TASK): [ 1, 2, 3, 4 ]

master -> 2: (AGGLOM_TASK): [ 5, 6, 7, 8 ]

1 -> master: [ 1, 8, 27, 64 ]

2 -> master: [ 125, 216, 343, 512 ]

master -> 1: (AGGLOM_TASK): [ 9, 10, 11, 12 ]

master -> 2: (AGGLOM_TASK): [ 13, 14, 15, 16 ]

1 -> master: [ 729, 1000, 1331, 1728 ]

2 -> master: [ 2197, 2744, 3375, 4096 ]

master -> 1: (AGGLOM_TASK): [ 17, 18, 19, 20 ]

master -> 2: (AGGLOM_TASK): [ 21, 22, 23, 24 ]

1 -> master: [ 4913, 5832, 6859, 8000 ]

2 -> master: [ 9261, 10648, 12167, 13824 ]

master -> 1: (AGGLOM_TASK): [ 25 ]

1 -> master: [ 15625 ]

[ 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375,

4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625 ]
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If you wish an accelerated introduction to the models of parallel programming provided here, you might
wish to read the beginning of Chapter 2 through section 2.1, and then proceed immediately to Chapter 3.

1.5 Author

The ParGAP share package was designed and written by Gene Cooperman, College of Computer Science,
Northeastern University, Boston, MA, U.S.A.

If you use ParGAP to solve a problem then please send a short email to gene@ccs.neu.edu about it, and
cite the ParGAP package as follows:

\bibitem[Coo99]{Coo99}

Cooperman, Gene,

{\sl Parallel GAP/MPI (ParGAP/MPI)}, Version 1,

College of Computer Science, Northeastern University, 1999,

\verb+http://www.ccs.neu.edu/home/gene/pargap.html+.

1.6 Invoking ParGAP with Remote Slaves

ParGAP, unlike GAP, must be invoked under a separate name. After ParGAP has been installed, a script
bin/pargap.sh will have been created which (after any changes you needed to make; see Section 1.2) you
should use to invoke ParGAP. This is similar to GAP ROOT DIR/bin/gap.sh that is used to invoke the
non-parallel GAP. Installers are encouraged to treat pargap.sh in analogy to gap.sh. For example, if your
site has copied gap.sh to /usr/local/bin/gap, then you should also look for the pargap.sh script as
/usr/local/bin/pargap.

In addition, when pargap (we’ll assume that’s how ParGAP is invoked at your site) is called, there must be a
file, procgroup, in the current directory, or alternatively, if you wish to use a single procgroup file for all jobs,
and that procgroup file is in /home/joe, then you can alias pargap to pargap -p4pg /home/joe/procgroup.

The procgroup file has a simple syntax, taken from the MPICH implementation of MPI (inherited from P4).
A # in column 1 introduces a comment line. The first non-comment line should be local 0, verbatim. This
line declares the master process as the local process. Other lines are of the form:

host-machine 1 pargap-script

e.g.

regulus.ccs.neu.edu 1 /usr/local/bin/pargap

The first field is the hostname for a remote process. The second field specifies one thread per process. (ParGAP
recognizes only the value 1 for the second field.) The third field is an absolute pathname for ParGAP, as it
would be called on the remote process. Note that you can repeat the same line twice if you want two remote
ParGAP processes on the same processor. The default procgroup provided in the distribution will have lines
of form:

localhost 1 path-of-provided-pargap.sh

If you change path-of-provided-pargap.sh to just, say, pargap, this will work only if pargap is in your path on
the remote machine shell (localhost in this case), using your default shell. On most machines, localhost
is an alias for the local processor. This is a good default for debugging, so that you don’t disturb users on
other machines.

MPI will use a line

host-machine 1 pargap-script

to create a UNIX subprocess executing:
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rsh host-machine pargap-script

Suppose host-machine is regulus.ccs.neu.edu and pargap-script is /usr/local/bin/pargap as in the
above example, and we were to have trouble invoking ParGAP, then it would be a good idea to try invoking
rsh regulus.ccs.neu.edu from a UNIX prompt and if that succeeds, to then try executing the full rsh
command.

A typical problem is that the remote processor requires a password to login. MPI requires a login without
passwords. Typically, /etc/hosts.equiv has not been set up to remove the password requirement for your
remote host. Sometimes this can be solved by an appropriate .rhosts file in your home directory on the
remote host. Sometimes, PAM is also used for user authentication (see /etc/pam.conf). man in.rshd also
has helpful information. Consult your system staff for further analysis. In these days of hyper-security, rsh
may be disabled at your site and you may have to use ssh instead; if so, there is a solution here: add the
lines

#############################################################################

##

## RSH . . . .. . . . . . . . . . . . . . . . . remote shell used by ParGAP

##

##

RSH=ssh

export RSH

before the GAP block with the exec line. (Of course, the # lines are not needed; they are comments.)

Note that the remote ParGAP process will not read from standard input, although signals such as SIGINT
(^C) may be received by the remote process. However, the remote ParGAP process will write to standard
output, which is relayed to the local process. So,

gap> SendMsg("Exec(\"hostname\")", 2);

will execute and print from the remote process.

1.7 Problems with Installation

If you still have problems, here is a list of things to check.

0. In versions of GAP earlier than GAP 4.3 some ParGAP “hooks” need to be added to GAP’s lib/init.g
file. Please add:

PAR_GAP_SLAVE_START := fail;

before the line:

READ(GAP_RC_FILE);

and add:

if PAR_GAP_SLAVE_START <> fail then PAR_GAP_SLAVE_START(); fi;

at the end of the file.

1. Do you have enough swap space to support multiple GAP processes? A simple way to check this is with
the UNIX command, top. The Linux version of top sorts by memory usage if you type M.

2. make tries to automatically create:
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pkg/pargap/bin/pargap.sh

and copy the parameters from GAP ROOT/bin/gap.sh.GAP ROOT was specified when you executed
./configure GAP ROOT to install ParGAP. This can be error-prone if your site has an unusual setup.
If you execute GAP ROOT/bin/gap.sh, does gap come up? If so, compare it with pargap.sh and check
for correct settings in .../pkg/pargap/bin/pargap.sh?

3. Did ParGAP find your procgroup file? [It looks in the current directory for procgroup, or for:

... -p4pg PATH /procgroup

on the command line.]

4. Were the remote slave processes able to start up? If so, could they connect back to the master? To
test connectivity problems, try manually starting a remote slave by executing a line in the script. Try
a simple rsh remote-hostname to see if the issue is with security. If your site uses ssh instead of rsh,
then there is a security issue. Read Section 1.9, and possibly man sshd.

5. If the previous step failed due to security issues, such as requesting a password, you have several options.
man rshd tells you the security model at your site (or possibly man ssh if you use that). Then read
Section 1.9.

6. Is the procgroup file in your current directory set correctly? Test it. If you are calling it on a remote
host, manually type:

rsh HOSTNAME ParGAP

where HOSTNAME and ParGAP appear exactly as in procgroup, e.g.

rsh denali.ccs.neu.edu /usr/local/gap4r3/bin/pargap.sh

In some cases, exec is used to save process overhead. Also try:

rsh HOSTNAME exec ParGAP

If you plan to call it on localhost, try just: ParGAP

Note that if not all the slave processes succeed in connecting to the master, then ParGAP writes out a
file:

/tmp/pargapmpi--rsh.$$

where $$ is replaced by the the process id of the ParGAP process.

7. Is pargap listed in .../pkg/ALLPKG? [It’s needed to autostart slaves.]

8. Inside ParGAP, has MPI been successfully initialized? Try:

gap> MPI_Initialized();

9. A remote (slave) ParGAP process starts in your home directory and tries to cd to a directory of the
same name as your local directory. Check your assumptions about the remote machine. Try:

gap> SendRecvMsg("Exec(pwd)"); SendRecvMsg("UNIX_Hostname()");

gap> SendRecvMsg("UNIX_Getpid()");

10. If the connection dies at random, after some period of time: You can experiment with SO KEEPALIVE and
variants. (See man setsockopt.) This periodically sends null messages so the remote machine does
not think that the originating machine is dead. However, if the remote machine fails to reply, the local
process sends a SIGPIPE signal to notify current processes of a broken socket, even though there might
have been only a temporary lapse in connectivity. ssh specifies KeepAlive yes by default, but setting
KeepAlive no might get you through some transient lapses in connectivity due to high congestion. You
may also want to experiment with: setenv RSH "rsh -n"

11. Read the documentation for further possible problems.
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1.8 Problems with Hosts on Multiple Networks

If a host is on multiple networks, it will have multiple IP addresses and usually multiple hostnames. In this
case, the master process cannot always guess correctly which IP address (which internet address) should be
passed to the slave process, so that the slave process can call back to the master. In such cases, you may
need to tell ParGAP which hostname or IP address to use for the callback. This is done by setting the UNIX
environment variable, CALLBACK HOST, as in the example below.

# [ in sh/bash/... ]

CALLBACK_HOST=denali.ccs.neu.edu; export CALLBACK_HOST

# [ in csh/tcsh/... ]

setenv CALLBACK_HOST=denali.ccs.neu.edu

The appropriate line for your shell can be placed in your shell initialization file. Alternatively, you can set
this up for all users by placing the Bourne shell version (for sh) somewhere between the first and last line
of .../pkg/pargap/bin/pargap.sh.

1.9 Problems with Passwords (Getting Around Security)

There is a simple test to see if you need to read this section. Pick a remote machine, HOSTNAME , that
you wish to execute on, and type: rsh HOSTNAME . If this did not work, also try ssh HOSTNAME . If
you were asked for your password, then you and your system administrator may need to talk about security
policy. If you were successful with ssh and not with rsh then set the environment variable, RSH, to the value
ssh, as described in item 3 below.

(1) Ask your systems administrator to put the machines in a hosts.equiv file, so that logging in from one
to the other does not require a password. (man hosts.equiv)

(2) Add a .rhosts file to your home directory (or .shosts for ssh).

(3) Hack around the problem: By default, the startup script uses rsh to start remote processes. However,
if the environment variable RSH was set, the script uses the value of the environment variable instead
of rsh. This may be useful, if you have your own script, myrsh, that automatically gets around the
security issues. Then just type:

RSH=myrsh; export RSH # [ in sh/bash/... ]

setenv RSH myrsh # [ in csh/tcsh/... ]

The appropriate line for your shell can be placed in your shell initialization file. Alternatively, you can
set this up for all users by placing the Bourne shell version (for sh) somewhere between the first and
last line of .../pkg/pargap/bin/pargap.sh. (The example for ssh was given earlier.)

(4) ssh: man ssh mentions some possibilities for giving the password the first time, and then having ssh
remember that future logins to that machine are authorized for the duration of the session. Don’t
overlook the use of $HOME/.ssh/config to set special parameters, such as specifying a different login
name on the remote machine. Some parameters of interest might be KeepAlive, RSAAuthentication,
UseRsh. You may also find useful information in man sshd.

(5) After starting ParGAP, manually call

/tmp/pargapmpi--rsh.$$

and repeatedly type in the password for each slave process. If you find yourself doing this, you may want
to talk with your system administrator, since it actually hurts system security to have you repeatedly
typing passwords with a concommitant risk that someone else will find out your password.
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1.10 Modifying the GAP kernel

Note that this package modifies the GAP src and bin files, and creates a new GAP kernel. This new GAP
kernel can be shared by traditional users of the old, sequential GAP kernel, and by those doing parallel
processing.

The GAP kernel will have identical behavior to the old GAP kernel when invoked through the gap.sh script
or the bin/@GAParch@/gap binary. The new ParGAP variables will appear to the end user ONLY if the
GAP binary was invoked as pargapmpi: a symbolic link to the actual GAP binary. The script, pargap.sh,
does this.

So, in a multi-user environment, traditional users can continue to use gap.sh without noticing any difference.
Only an invocation of pargap.sh will add the new features.

In a future version of GAP, it is hoped that the GAP kernel will have enough “hooks”, so that no modification
of the GAP kernel is required. At that time, it will also be possible to speed up the startup time for ParGAP.
Much of the startup time is caused by waiting for GAP to read its library files. It will be possible to use
the GAP function, SaveWorkspace() to save a version with the GAP library pre-loaded. That saved version
can then be used to start up ParGAP. This is not currently possible, because ParGAP needs to get at the
command line of GAP before the GAP kernel sees it.

Comments and contributions to a ParGAP user library, or any other type of assistance, are gratefully
accepted.

Gene Cooperman gene@ccs.neu.edu



2 Slave Listener

ParGAP implements a model of a slave process as a slave listener. This means that the slave is running a
simple program:

(1) Read message from master [as string]

(2) Evaluate message and return result

(3) Send message to master with result [as string]

(4) Goto step 1

An example using this interactive style is contained in section 1.4.

Some enhancements to this simple model should also be noted. The reply message from the slave will wait
in a queue until the master process decides to read it. If unwanted messages accumulate in the queue, the
master can execute FlushAllMsgs() (see 2.1.8). If a slave process prints to the standard output, this will
be visible at the console of the master process. If a slave process executes an Error and goes into a break
loop, then it will automatically return to the top level, return any error message to the master process, and
wait for another message from the master process. If a slave process goes into an infinite loop, the master
process can call ParReset(); (see 2.1.16) to interrupt all slave processes and return them to their top level
loop as a slave listener.

At this point, you may wish to review the commands by looking again at the extended example in section 1.4.
Note also some naming conventions:

MPI ...:
A command prefix of MPI signifies a GAP binding of an MPI function. These functions are low
level functions on which the rest of ParGAP is built. They can be safely ignored by the casual user.
(Recall that MPI, Message Passing Interface, is a standard for message passing.) In ParGAP,
type MPI <tab> for a list of all such functions.

UNIX ...:
Commands with prefix UNIX are additional system commands that were not present in the
unmodified GAP kernel. They are typically GAP versions of UNIX commands that make life easier.
UNIX Nice() is an example. In ParGAP, type UNIX <tab> for a list of all such functions.

Par...:
Commands beginning with Par are “parallel” commands that should only be called by the master
process. Such commands invoke all slave processes to do their work. In ParGAP, type Par<tab> for
a list of all such functions.

2.1 Slave Listener Commands

The slave listener commands are implementd in slavelist.g in ParGAP’s lib directory. Most procedures
are short, and can also be read online by using GAP’s Print command, e.g. try: Print(SendMsg, "\n");

(the newline is needed only to get back to a clean “gap> ” prompt). The code of SlaveListener and
CloseSlaveListener (try: Print(SlaveListener, "\n"); and Print(CloseSlaveListener, "\n");) is
also instructive and should provide some insights into the behavior of the slave listener. Examples of slave
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listener commands can be found in context in the section 1.4. Some of these commands are based on MPI.
Further information on basic concepts of MPI can be found in section 7.1, but that section can be safely
ignored on a first reading.

1
�

SendMsg( command[, dest[, tag]] ) F

sends command to dest (a non-negative integer that is the “rank” of the destination process); command
should normally be a string (otherwise it is evaluated on the master before being passed to dest which almost
certainly will defeat the purpose of using SendMsg()). If dest is omitted it defaults to 1 (the rank of the first
slave) on the master process (i.e. if IsMaster() is true), or to 0 (the rank of the master) on a slave process
(i.e. if IsMaster() is false). The argument tag , if given, should be a positive integer less than 1000. The
default value of tag is 1. Tags of value 1000 and above are reserved for use by ParGAP itself, and should not
be used by application routines.

2
�

RecvMsg( [source] ) F

gets a response from a command. The default value of source is MPI ANY SOURCE, which receives the next
available message from any source. GetLastMsgSource() (see 2.1.3) allows one to determine the source in
such cases. GetLastMsgTag() (see 2.1.4) always allows one to determine the tag, although most applications
can ignore the tag. Tags are applied to commands by SendMsg() or SendRecvMsg() (see 2.1.1).

3
�

GetLastMsgSource() F

returns the source of the last message that was either received (e.g. by RecvMsg(); see 2.1.2) or simply
probed (e.g. by ProbeMsg(); see 2.1.14).

4
�

GetLastMsgTag() F

returns the tag (see 2.1.1) of the last message that was either received (e.g. by RecvMsg(); see 2.1.2) or
simply probed (e.g. by ProbeMsg(); see 2.1.14).

5
�

SendRecvMsg( command[, dest[, tag]] ) F

This command is equivalent to SendMsg( command[, dest[, tag]] ); RecvMsg([dest]); (see 2.1.1
and 2.1.2), except that even if dest is omitted the source for the RecvMsg() part of the command always
matches the destination to which command is sent.

Note: The response obtained will not be the response of the command itself if there are messages waiting
to be received at the destination of command at the time SendRecvMsg() is called.

Also note that tag values of 1000 and higher are reserved for use by ParGAP.

6
�

BroadcastMsg( command ) F

executes command on (all) slaves only. The slaves do not send back a return value.

Note: this use of the term broadcast is distinct from the MPI usage. In MPI, a broadcast message will be
received by every process, including the process sending the message.

7
�

IsMaster() F

returns true if at console (i.e. if MPI Comm rank() = 0), and false otherwise.

8
�

FlushAllMsgs() F

flushes all messages that are waiting to be received and returns the number of messages flushed. (If there are
no waiting messages 0 is returned.) It is essentially equivalent to executing RecvMsg();; until there are no
more messages waiting to be received (see 2.1.2), except that it also returns the number of messages flushed.

9
�

PingSlave( dest ) F

Check if slave dest is alive and listening for messages, where dest is a positive integer.
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10
�

ParEval( stringCmd ) F

Evaluate stringCmd on all processes, where stringCmd is a command inside double quotes so that it is
passed as a string (like BroadcastMsg() (see 2.1.6), but ParEval() (see 2.1.10) also executes on the master
and also returns a value based on result on the master.)

11
�

PrintToString( object [, ...] )

[Note that PrintToString("abc") => "abc" (like Print(), NOT ""abc"") Hence, a useful idiom is:
ParEval( PrintToString( "foo := ", foo ) ); ]

12
�

ParRead( filename ) F
�

ParReread( filename ) F

are parallel analogues of the GAP Read and Reread functions, respectively (see 9.7.1 and 9.7.13 in the
Reference Manual). ParRead (resp. ParReread) executes Read (resp. Reread) on all processes. Note that it
is redundant (and often incorrect) to call ParRead on a file that itself contains Par... functions. One should
either place sequential functions in a file and call ParRead or place Par... functions in a file and call Read
from the master. As an example, in writing this code, the author (after having started ParGAP from its
bin directory via pargap.sh) found it useful to edit masslave.g in ParGAP’s lib directory and then type
ParReread("../lib/masslave.g");.

13
�

ParList( list, func ) F

is the parallel analogue of GAP’s two-argument List function. But faster since it also uses the slave processes.

14
�

ProbeMsg( [source] ) F

probes for a pending message from source or any source if the argument source is omitted. It will block until
such a message appears, and then return true. ^C (interrupt) works to unblock it.

Note: When the argument source is omitted, ProbeMsg sets source to MPI ANY SOURCE (which is -1), which
specifies a probe for a message from any source.

15
�

ProbeMsgNonBlocking( [source] ) F

Exactly like ProbeMsg, but non-blocking. It returns immediately with true or false, depending on whether
a message was present from source. The default value of source is MPI ANY SOURCE.

16
�

ParReset() F

flushes all pending messages from slaves, resets the slaves, pings the slaves and returns the number of
messages flushed.

17
�

ParBindGlobal( gvar, value ) F

Not currently implemented, due to certain technical considerations.

18
�

ParDeclareGlobalValue( string ) F
�

ParDeclareGlobalFunction( string ) F

Similar to corresponding GAP functions. Note that unlike GAP’s DeclareGlobalFunction and ParDeclare-

GlobalValue, these functions also allow you to re-declare an old function or variable. The net effect is to
remove the old value, and allow one to again call InstallGlobalFunction and InstallValue. This elim-
inates the necessity for Reread() in ParGAP, and it also makes it easier to place the commands in a local
file, and using a simple Read() instead of ParRead(). It also makes it easier to interactively re-declare and
re-install functions.
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19
�

ParInstallValue( gvar, value ) F
�

ParInstallValue( string, value ) F
�

ParInstallGlobalFunction( gvar, function ) F
�

ParInstallGlobalFunction( string, function ) F

Note that the second version of ParInstallGlobalFunction (with string) is equivalent to

ParDeclareGlobalFunction( string );

ParInstallGlobalFunction( gvar, function );

where gvar is a GAP variable whose name is string .

Note that ParInstallValue is currently implemented only in the version for string , due to certain technical
considerations.

This completes the middle layer of ParGAP. It allows one to easily use parallelism interactively. There are now
two choices for further reading. The recommended choice for writing your own parallel applications is to read
the next chapter on the TOP-C task-oriented model of parallelism, and the follow-on chapter, containing a
tutorial on the TOP-C model. These two chapters should provide enough background to write significant
parallel applications. If on the other hand you are interested in MPI and the low-level fundamentals of
message passing for parallel applications, then you should read Chapter 7.



3
Basic Concepts for
the TOP-C model

(MasterSlave)

TOP-C stands for Task-Oriented Parallel C [Coo96]. The “TOP-C model” is the specific master slave
model implemented here. That model has been adapted for use in ParGAP. The implementation is in
masslave.g in ParGAP’s lib directory. Note that the functions and variables with names TOPC... are
intended as internal functions only, and should not be used by the GAP programmer.

For the impatient, you may type MSexample(); in a ParGAP session now. If you prefer further hands-
on learning in a tutorial style, you may wish to next read Chapter 5. Eventually, if you wish a deeper
understanding of the TOP-C model, you will need to read this current section and those that follow.

The initial GAP process is the master process, and all others are slave processes. It allows most of the CPU-
intensive computations to be carried out on slave processes, which typically reside on remote processors. A
well-developed TOP-C application should find that the master process is almost never busy when a slave
process is idle, waiting for a new computation to carry out. This provides a natural way of maximizing
utilization and load balancing.

The TOP-C model depends on three concepts:

the task:
a function that takes an arbitrary object as its single argument, reads some or all of the global
shared data, and then returns an arbitrary object as its value. The task typically corresponds to
the inner loop of a typical application.

the shared data:
global data, shared among all processes. This data can be read as part of the computation of a task.
However, after initialization of the shared data, this data must be written (modified) only by a
particular user-provided application routine, UpdateSharedData().

the action:
After the output of a task has been produced, an application routine must choose one of four actions
to determine how the output is used.

The task input is defined to be the argument of the task (considered as a function), and the task output
is the return value of the task.

3.1 Basic TOP-C (Master-Slave) commands

There is only one core TOP-C command, a utility function, and several constants. A TOP-C command must
be evaluated on the master and on all slaves. We shall describe the commands in detail in the following
sections, but a short list of the essentials and a small example will be helpful to set the context.
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1
�

MasterSlave( SubmitTaskInput,DoTask[,CheckTaskResult[,UpdateSharedData[,taskAgglomCount]]] )

F

See Section 3.2 for a description of MasterSlave.

2
�

NOTASK V

3
�

NO ACTION V
�

UPDATE ACTION V
�

REDO ACTION V
�

CONTINUATION ACTION( taskContinuation ) F

CONTINUATION ACTION() is described in Section 3.6.

4
�

IsUpToDate() F

5
�

ParInstallTOPCGlobalFunction( string, function ) F
�

ParInstallTOPCGlobalFunction( gvar, function ) F

A short example shows one possible implementation of ParList().

gap> ParInstallTOPCGlobalFunction( "MyParListWithAgglom",

> function( list, fnc )

> local result, i;

> result := []; i := 0;

> MasterSlave( function() if i >= Length(list) then return NOTASK;

> else i := i+1; return i; fi; end,

> fnc,

> function(input,output) result[input] := output;

> return NO_ACTION; end,

> Error

> );

> return result;

> end );

(Of course rather than type such code in a ParGAP session it’s generally more convenient to have it in a file
and Read it in.)

3.2 Other TOP-C Commands

A master-slave computation is invoked when a GAP program issues the command MasterSlave(). As given
earlier, the typical form is:

MasterSlave( SubmitTaskInput, DoTask [, CheckTaskResult[, UpdateSharedData[, taskAgglom]]]

)

where the first four arguments of MasterSlave() are also functions, but they must be defined by the
application writer. Their calling syntax is defined by the following GAP code, which also provides a simplified
description of how a sequential (non-parallel) MasterSlave()would invoke these functions if there were only
a single process. (A more sophisticated version of this routine is provided in ParGAP to allow one to debug
within a single process first.) The use of the fifth argument, taskAgglom, is deferred until section 5.7.

In this section, we define MasterSlave() and describe the use of its four arguments in a purely sequential
environment. The issues of parallelism and passing of messages between processes is covered in the next
section. The call to MasterSlave() in ParGAP, above, will have the same result as if MasterSlave()
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were defined equivalently to SeqMasterSlave() below, and then run in a standard, sequential GAP (a
single process). The next section describes the multi-process implementation of MasterSlave() in ParGAP,
in which taskInput is computed on the master process and sent as a message to a slave process, while
taskOutput is computed on a slave process and sent as a message to the master process.

SeqMasterSlave :=

function(SubmitTaskInput, DoTask, CheckTaskResult, UpdateSharedData)

local taskInput, taskOutput, action;

while true do

taskInput := SubmitTaskInput();

if taskInput = NOTASK then break; fi;

repeat

taskOutput := DoTask( taskInput );

action := CheckTaskResult( taskOutput, taskInput );

until action <> REDO_ACTION;

if action = UPDATE_ACTION then

# Modify the shared data (global data structures) here

# Called on all processes, master and slaves

UpdateSharedData( taskOutput, taskInput );

fi;

od;

end;

One can also follow the life of a single task in a multi-processing environment through the diagram below.

MASTER | SLAVE

_________________________________________________________________________

|

+---------------------+ |

| GenerateTaskInput() | |

+---------------------+ |

\input |

\______________

| |

| v

| +---------------+

| | DoTask(input) |

| +---------------+

|output/ ^

_________/ |

| | |

v | |

+--------------------------------+ | |

| CheckTaskResult(input, output) |___________|

+--------------------------------+ (if action == REDO)

| |

| (if action == UPDATE)

v |

+---------------------------------+

| UpdateSharedData(input, output) |

+---------------------------------+

|

TOP-C Programmers’ Model
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(Life Cycle of a Task)

Although not explicit in the code, the application writer should add comments to define the shared data. The
shared data is defined as a global data structure that is treated as “read-write” by UpdateSharedData(),
while being treated as “read-only” by SubmitTaskInput(), DoTask(), and CheckTaskResult(). Note also
that an application writer may use different names for the four functions SubmitTaskInput(), etc. It is only
a convention within this manual to give those functions the names, above. Similarly, taskInput , taskOutput
and action are the conventional names used in this manual, and a given application may use different names.

In a correct ParGAP application, the shared data should be initialized to the same value on all processes
before the application calls MasterSlave(). MasterSlave() is then called on all processes. After that, the
shared data can be modified only by a call to UpdateSharedData(), and MasterSlave() arranges for each
call to UpdateSharedData() to be executed on all processes. Further, UpdateSharedData() has access only
to taskInput , taskOutput , and the previous value of the shared data. Thus, MasterSlave() maintains the
same shared data uniformly on all processes.

3.3 Simple Usage of MasterSlave()

This section is concerned with formal definitions for the routines associated with ParGAP. It is important
to keep in mind the pseudo-code of Chapter 3. Since MasterSlave() uses all the ParGAP processes, the
user must invoke it on all processes. This is typically done through some function provided by the slave
listener layer, such as ParEval() (see 2.1.10). It may be instructive for the reader to run ParGAP and
type MSexample(); now, or else to look at some examples of ParGAP applications in the section 5. This
demonstrates the use of MasterSlave() in a typical session.

The four functions written by the application writer are: SubmitTaskInput(), DoTask(), CheckTaskResult(),
and UpdateSharedData(). DoTask() is executed on a slave. SubmitTaskInput() and CheckTaskResult() are
executed on the master, where a taskInput is generated and a corresponding taskOutput is received. Finally,
UpdateSharedData() is executed on all processes. ParGAP arranges to automatically pass taskInput and
taskOutput between the master and a slave.

Since the single master process is responsible for generating all taskInputs and receiving all taskOutputs, it is
critical that computation on the master process should not become a bottleneck for a well-designed ParGAP
application. Accordingly, the application writer should arrange for SubmitTaskInput() and CheckTaskRe-
sult() to execute quickly, even if this means additional computation by DoTask() or UpdateSharedData().

As seen in the examples, SubmitTaskInput() may use global variables on the master to “remember” the
last taskInput or other state information. Note that such global variables cannot be part of the shared data,
since they are modified outside of UpdateSharedData().

3.4 Efficient Parallelism in MasterSlave() using CheckTaskResult()

It is instructive to review the logic for the lifetime of a task, as described by the pseudo-code for
SeqMasterSlave in Section 3.2. Initially, MasterSlave() calls SubmitTaskInput() on the master, which
returns an application-defined GAP object, taskInput . MasterSlave() then copies taskInput to an arbitrary
slave process, and MasterSlave() then calls DoTask( taskInput ) on the slave. This returns an application-
defined GAP object, taskOutput , which MasterSlave() copies to the master process. On the master,
MasterSlave() then calls CheckTaskResult( taskInput, taskOutput ), which returns an action. (Recall
that taskInput , taskOutput and CheckTaskResult() are defined by the application writer, and so an
application program may give them different names.)

There are four possible actions (ParGAP constants): NO ACTION, UPDATE ACTION, REDO ACTION, CONTINUA-
TION ACTION( taskContinuation ). A standard language idiom in ParGAP is to define CheckTaskResult()
as the ParGAP function DefaultCheckTaskResult(), whose code is as follows:
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DefaultCheckTaskResult := function( taskOutput, taskInput )

if taskOutput = false then return NO_ACTION;

elif IsUpToDate() then return UPDATE_ACTION;

else return REDO_ACTION;

fi;

end;

In the simplest case, CheckTaskResult() returns NO ACTION, in which case there is no further computation
related to the original taskInput . CheckTaskResult() may record global information on the master process,
based on the taskOutput , but the shared data, and hence the state of the slave processes, will not be modified.

In the second most common case, CheckTaskResult() returns UPDATE ACTION. This action causes Master-
Slave() to call UpdateSharedData( taskOutput, taskInput ) on all processes (master and slaves). This is
the only way in which the shared data can be modified by a correct ParGAP program.

In the third most common case, CheckTaskResult() returns REDO ACTION. When a REDO ACTION action is
generated, the value of taskInput is re-sent to the same slave that executed DoTask( taskInput ) for the
current task. An application will typically invoke REDO ACTION if the shared data has changed, and this
changed shared data will produce a new taskOutput . As before, DoTask() then returns a new value of
taskOutput . Then, taskInput and the new taskOutput are again passed to CheckTaskResult().

Note that MasterSlave() guarantees that REDO ACTION causes the task to be re-sent to the same slave
process. This allows the application to cache in a global variable some information computed by the first
invocation of DoTask(). A second invocation of DoTask() caused by the REDO ACTION allows the task to test
if the taskInput is the same as the last invocation. In that case, the application-defined DoTask() routine
can recognize that this is a REDO ACTION, and it can take advantage of the cached global variable to avoid
re-computing certain quantities that would not be changed by the altered shared data. In order to make this
strategy possible, MasterSlave() also guarantees that in the case of REDO ACTION, the slave process will
not have seen any intervening calls to DoTask() with values of taskInput other than the current value.

In typical usage, the application-defined routine, CheckTaskResult(), will first call IsUpToDate(). IsUpTo-
Date() tests if the shared data has been modified since the current taskInput corresponding to CheckTaskRe-
sult() was originally generated by SubmitTaskInput(). The times of the relevant events are recorded as when
seen on the master process. It is an error to call IsUpToDate() outside of a call to CheckTaskResult() by
MasterSlave(). IsUpToDate() returns a boolean value, true or false.

The last possible action, CONTINUATION ACTION( taskContinuation ), is provided for unusual cases. As with
advice about the use of “goto”, it is recommended to avoid CONTINUATION ACTION() where possible.

A favorite aphorism of this author is, “The source code is the ultimate documentation”. With this in mind,
the reader may also wish to read lib/masslave.g, for which readability of the code was one of the design
criteria.

3.5 Modifying Task Output or Input (a dirty trick)

At this point, it should be noted that it explicitly is allowed to modify the input or output of a task
from within CheckTaskResult(). This is not recommended in general, but there may be times when
CheckTaskResult() returns an UPDATE ACTION and must also be used to pass additional information to
UpdateSharedData(). In order to modify a previous input or output, it is important that the application
has chosen a representation of the input or output as a list or record, which can be modified in place, such
that the code excerpt succeeds without error.
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oldOutput := taskOutput;

# Modify taskOutput here

if ( IsIdenticalObj( oldOutput, taskOutput ) ) = false then

Error( "MasterSlave() will see only oldOutput, not current taskOutput" );

fi;

return UPDATE_ACTION;

In principle, a dirty trick like this would also work in the case of returning a REDO ACTION. However, this is
not recommended. For that functionality, the code will be clearer if an explicit CONTINUATION ACTION( mod-
ifiedTaskOutput ) is returned. See Section 3.6 for further discussion on the use of CONTINUATION ACTION().

3.6 The GOTO statement of the TOP-C model
1

�
CONTINUATION ACTION( taskContinuation )

The CONTINUATION ACTION(), like the goto statement, is not recommended for ordinary programs, but
it may be useful in unusual circumstances. This is a parametrized action. When the application routine
CheckTaskResult() returns this action, MasterSlave() guarantees to invoke DoTask() on the same slave
process as for the original task. There will have been no intervening calls to DoTask() on that slave, although
there may have been an intervening call to UpdateSharedData() on that slave.

This action allows arbitrary, repeated communication between the master and a single slave process. The
slave process executes DoTask( taskInput ) and communicates with the master by returning a taskOutput .
The master process executes CheckTaskResult( taskInput, taskOutput ) and returns a taskContinuation.
The original slave process then receives another call to DoTask( taskInput ), this time with taskInput
bound to taskContinuation.

3.7 Being nice to other users (Nice, Alarm and LimitRss)

When you are running a long job on a network of workstations, you will often be sharing it with others.
Making your parallel job as unintrusive as possible will leave you with a warmer welcome the next time that
you want to use that network of workstations. Accordingly, three useful functions are provided.

1
�

UNIX Nice( priority ) F

This is similar to the nice command of many UNIX shells. UNIX priorities are in a range from −20 to 20
with −20 being the highest. Users typically start at priority 0. You can give yourself a lower priority by
specifying a priority of 5, for example. Usually, priorities 19 and 20 are absolute priorities. Any process
with a priority higher than 19 that wishes to run will always have precedence. Other priorities are relative
priorities. Your process will still receive some CPU time even if other processes with higher priorities are
running. You can set your priority lower, but you cannot raise it back to its original value after that. The
return value is the previous priority of your process.

2
�

UNIX Alarm( seconds ) F

This causes the process to kill itself after that many seconds. This is a useful safety measure, since it is
unfortunately too easy for a runaway slave process to continue if the master process is killed without the
normal quit;. You might consider adding something like UNIX Alarm( 25000 ); (about 6 hours) to your
.gaprc file. Executing UNIX Alarm( 0 ); cancels any previous alarm. The return value is the number of
seconds remaining under the previous setting of the alarm.

3
�

UNIX LimitRss( size ) [ = setrlimit(RLIMIT RSS, ...) ] F

Many dialects of UNIX (and their shells) offer a limit or ulimit command to limit the resources available
to the shell. This command limits the size of the RSS (resident set size), or the amount of physical RAM
used by your process. The size limit is in bytes. Unfortunately, some UNIX dialects may not allow or even
silently ignore this request to limit the RSS. A UNIX command such as top can show you if your process
RSS is staying below your requested limit.
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3.8 Converting legacy sequential code to the TOP-C model

The (tutorial contains a section 5.8, about raw version of MasterSlave() that is useful for converting legacy
sequential code to the TOP-C model. However, that model is not recommended for writing new code, for
stylistic reasons.



4 Tutorial

Section 4.1 covers trivial parallelism (the simplest and most common form of parallel application). This is
followed in Section 4.2 by a description of how to use ParGAP interactively, and Section 4.3 illustrates these
principles with a short implementation of parallel streaming. Streaming refers to simultaneously running
different algorithms for the same problem in different “streams” or processes, and accepting the first answer
that returns. The remaining processes for the other algorithms are then terminated. ParGAP allows those
processes to reside on a single CPU or on different CPUs. Hence, in the case of streaming, ParGAP is
potentially useful even if one has only a single computer available, since multiple streams can still reside
locally in separate processes.

For more sophisticated (non-trivial) parallel applications, the TOP-C model of parallelism is recommended,
and it is described in Section 4.4.

4.1 Trivial Parallelism

In parallel computation, perhaps 80% of the applications fall under the heading of “trivial parallelism”.
These are situations in which one must compute many unrelated cases. For example, perhaps 200 different
cases must be computed and results returned for each case and each case has no interaction with any other
one. In the absence of shared data, it would be common to start 20 GAP jobs on 20 distinct workstations in
a student computer laboratory. If there are 200 cases, then one writes 20 different “batch jobs”, each batch
job handling 10 distinct cases.

ParGAP provides strong support for this common situation. Conceptually, one is always talking to ParGAP
on a master process (the local workstation), and the master process talks to each of various slave processes.
In its simplest form, one merely generates a list of inputs for the cases, and writes a suitable function to
provide the case information. Effectively, trivial parallelism can be expressed by a parallel version of GAP’s
List() function (see 21.16.16 in the Reference Manual), which is called ParList() (see 2.1.13) in ParGAP.

The following is an example of a ParGAP session that uses the ParList() function. Observe the use of
BroadcastMsg() (see 2.1.6) to ensure that the function AnalyzePrimitivePermGroupsOfOrder() is known
to the slaves.

gap> AnalyzePrimitivePermGroupsOfOrder := function(ord)

> #returns a list of data records of all primitive

> #permutation groups of order ord that are represented

> #as permutation groups in GAP’s primitive group database

>

> local PrimitiveGroupsOfOrder, AnalyzePrimitivePermGroup;

>

> PrimitiveGroupsOfOrder :=

> ord -> List( [1..NrPrimitiveGroups(ord)],

> i -> PrimitiveGroup(ord,i) );

>

> AnalyzePrimitivePermGroup :=

> grp -> rec( order := Size(grp),
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> degree := NrMovedPoints(grp),

> baseSize := Size(BaseOfGroup(grp)) );

>

> return List( Filtered( PrimitiveGroupsOfOrder(ord),

> IsPermGroup ),

> AnalyzePrimitivePermGroup );

> end;;

gap> #Define AnalyzePrimitivePermGroupsOfOrder on slaves

gap> BroadcastMsg(

> PrintToString("AnalyzePrimitivePermGroupsOfOrder := ",

> AnalyzePrimitivePermGroupsOfOrder ) );

gap> ParList( [2..256], AnalyzePrimitivePermGroupsOfOrder );

[ [ rec( order := 2, degree := 2, baseSize := 1 ) ],

[ rec( order := 3, degree := 3, baseSize := 1 ),

<...many lines of output omitted...>

As one expects, the answer is computed in parallel in a time that decreases linearly with the number of
processors. Hence a Beowulf cluster of 16 processors (1 ParGAP master and 15 ParGAP slaves) will return this
information approximately 15 times as fast as a single processor, greatly facilitating interactive exploration
of the properties of various groups.

If each single case can be executed quickly, then the execution time for ParList() can be dominated by
the network overhead imposed by message passing between the master and slaves. In this case, an optional
third parameter to ParList() specifies the number of cases to be submitted to a slave in a single message
(modulo how many cases are left, of course). As an example, suppose we are interested in finding those of
the first 100,000 integers that have many distinct prime factors, but to reduce the network overhead we wish
to batch 1000 cases at a time to the slaves. Then one is able to execute the following.

gap> ParList([1..100000],

> i -> Length(PrimePowersInt(i))/2, 1000);

4.2 Using ParGAP interactively

Having seen an example where ParGAP can be useful, one next needs to know what is involved in setting up
and using ParGAP. ParGAP runs only on UNIX, due to its dependence on an MPI subset (included in the
distribution) that calls UNIX sockets. It should be possible to port ParGAP to Windows, either through the
use of Cygwin (UNIX emulation on Windows) or through a native Windows MPI implementation. Similarly,
the code has been written in a “vanilla” manner, so that in principle, it should be easy to port to another
interactive language, such as MAGMA or LISP. An older version was in fact written in LISP [Coo95],
although the current version is not implemented in LISP. In the following, recall that ParGAP employs a
master-slave architecture, with the local process being the “master” process, and all others being “slaves”.

ParGAP is installed in the same way as other GAP share packages. After extracting the ParGAP files, one
invokes configure and make. (See Section 1.2 for the details.) One next writes a file with a list of slave
processors to attach, and an indication of where ParGAP is located on that processor; the usual way is to
name this file procgroup and have it in the directory one starts up ParGAP (see Section 1.3 for details). An
example procgroup file is:

# This is a sample ParGAP procgroup file.

# Lines starting with a # are comments.

# Blank lines are also treated as comments.

# The following line generates the MASTER process

local 0



Section 2. Using ParGAP interactively 31

# Each of the following ‘localhost’ lines generates

# a SLAVE process on the same machine as the MASTER

localhost 1 /proj/sparc/gap4r3/pkg/pargap/bin/pargap.sh

localhost 1 /proj/sparc/gap4r3/pkg/pargap/bin/pargap.sh

# The following line generates a SLAVE process on a remote

# machine: ‘iron.ccs.neu.edu’ (called via rsh or ssh or ...)

iron.ccs.neu.edu 1 /proj/alpha/gap4r3/pkg/pargap/bin/pargap.sh

Next, instead of invoking gap, one then invokes the supplied shell script, pargap.sh, (possibly modified
and/or renamed; again see Section 1.3 for the details). Observe that unlike most other GAP share packages,
one should not call RequirePackage() function from within a GAP session to start ParGAP. As usual,
master and slave processes read a .gaprc file in the home directory, if present. ParGAP looks for a file
named procgroup file in the current directory, but can be directed to use a different file through the -p4pg

switch.

The following example assumes that pargap is a symbolic link or alias for the full pathname of pargap.sh.
Hence, if one always uses ParGAP with the slave processes specified in myprocgroup.big, one may wish to
set up an alias or else a symbolic link to a script containing the equivalent of:

pargap.sh -p4pg PATH /myprocgroup.big

Observe also that heterogeneous computing is supported, in that each slave machine may be a different
dialect of UNIX running under different hardware.

Within ParGAP, the standard message-passing commands (send, receive, probe, etc.) are available. The slaves
are numbered consecutively starting at 1. If no slave parameter is supplied for SendMsg() or SendRecvMsg(),
then the default slave is 1. Most other commands take a default slave parameter, MPI ANY SOURCE (meaning
“ANY SLAVE”). PingSlave() sends a “null message”, and waits for an acknowledgement that the slave is
alive.

The command SendMsg(string, i); sends the (string) message string to slave i . Slave i then evaluates
string as a GAP command, and returns an answer. If a command has no answer, (such as "x:=3;"), then
the string "no return val" is returned. If multiple commands are sent, such as "x:=3; y:=4; x+y;", then
only the last return value is returned. Note that the final semicolon, normally required by GAP, is optional
in a command string for a message.

Most of the other commands are clear from context. Every SendMsg() to a slave must be balanced by a
RecvMsg(), except where the commands FlushAllMsgs() and ParReset() are used to flush any pending
messages from a slave. A SendRecvMsg(string, i) command is equivalent to the consecutive commands
SendMsg(string, i) and RecvMsg(i). The command BroadcastMsg() sends its string argument to each
slave, and there is no reply message. ParEval() is like BroadcastMsg(), but it also evaluates on the master
process. If one is unsure whether there is a pending message, one can invoke ProbeMsgNonBlocking() or
ProbeMsg(); if no slave parameter is provided, the default is MPI ANY SOURCE. The command ParRead() is
a parallel version of GAP’s Read() command; it is useful for ensuring that the slaves and master share a
similar environment. Other examples of commands that are analogous to GAP’s built-in commands include:
ParReread, ParEval, ParInstallGlobalFunction and ParInstallGlobalFunction. See Section 2.1 for
more complete descriptions of the above commands.

An illustration of the usage of the commands mentioned above with a sample ParGAP session, for which a
procgroup file has defined two slaves is the first example given in Section 1.4. It’s recommended that you
review that example at this point.
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4.3 Streaming

Next, we demonstrate a simple implementation of “streaming” as an example of how easy it is to use the
ParGAP tools to provide new functionality. To the best of this author’s knowledge, the term “streaming”
originated with Charles Leedham-Green at the conference on which this proceedings is based, where he
made a general request for streaming functionality to be implemented in some software system.

The idea of streaming is that one may have two algorithms for solving a problem. One would like to to
solve the problem simultaneously on two processors, each using a distinct algorithm. Whichever processor
finds the solution first should report back to the master process. The master process should then interrupt
the other slave, so as to make it available for further computation. This is useful when one has a heuristic
available that may finish early with the correct answer, or may continue for a very long time. The heuristic
can then be “streamed” alongside the standard algorithm, in full confidence that the standard algorithm
will provide a reasonable upper bound on the time to compute an answer.

One way to provide “streaming” functionality is by the implementation of a function we describe below that
is inspired by GAP’s First() function (see 21.16.19 in the GAP Reference Manual). The function First()

takes a list and boolean function as arguments, and returns the first element of the list for which the boolean
function returns true. In contrast, we define a corresponding ParGAP function, ParFirstResult(), which
takes a list and a (general) function as arguments. Messages are sent to the slaves causing the ith slave to
evaluate the function on the ith list element. The value returned is the value obtained from whichever slave
finishes first. Note that in consistency with the goal of streaming, the function signals an error if asked to
evaluate a list with more entries than the number of slaves.

gap> ParFirstResult := function( list, fnc )

> local i, result;

> if Length(list) > TOPCnumSlaves then

> Error("too few slaves");

> fi;

> for i in [1..Length(list)] do

> SendMsg( PrintToString(

> "fnc :=", fnc, "; fnc(", list[i], ");"),

> i );

> od;

> result := RecvMsg(); # default is MPI_ANY_SOURCE

> ParReset(); # Interrupt all other slaves

> return result;

> end;;

We now demonstrate the use of ParFirstResult() in “streaming”. For our example we need the FactInt
package by Stefan Kohl. To get this package if you don’t have it, visit

http://www-gap.dcs.st-and.ac.uk/gap/Share/factint.html

or the equivalent at one of GAP’s mirror sites, and follow the easy installation instructions.

If one hasn’t already included a RequirePackage("factint"); statement in one’s .gaprc file then it is
necessary to do:

gap> ParEval("RequirePackage(\"factint\")");

Loading FactInt 1.1 (Routines for Integer Factorization),

by Stefan.Kohl@cip.mathematik.uni-stuttgart.de

true

so that each slave (not just the master) is aware of the FactInt functions.
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Above we defined ParFirstResult() on the master process. We will assume that we have two slaves.

gap> StreamingFactInt := function(i, x)

> local alg;

> alg :=

> [ x -> [ "MPQS ALGORITHM", FactorsMPQS(Factorial(x)+1) ],

> x -> [ "CFRAC ALGORITHM", FactorsCFRAC(Factorial(x)+1) ]

> ];

> return alg[i](x);

> end;;

Both StreamingFactInt(1, x); and StreamingFactInt(2, x); factor an integer, but one uses the
multiple polynomial quadratic sieve algorithm (MPQS), and the other uses the continued fraction algorithm
(CFRAC); the functions FactorsMPQS and FactorsCFRAC that perform these algorithms are defined by the
FactInt package. We demonstrate the “streaming” of these algorithms in determining the factorization of
35! + 1.

gap> # Now, define StreamingFactInt() on each of the slaves.

gap> BroadcastMsg( PrintToString( "StreamingFactInt :=",

> StreamingFactInt ) );

gap> ParFirstResult([1,2], i->StreamingFactInt(i, 35) );

... resetting ...

[ "MPQS ALGORITHM", [ 137, 379, 17839, 340825649, 32731815563800396289317 ] ]

4.4 TOP-C model for non-trivial parallelism

There are many examples where trivial parallelism does not suffice. Typically, this happens either when
there are global variables that must be “read” by each slave process, and possibly updated, or else when
the input for the next slave process depends on the result that arrived from the last slave process. Here we
provide only the basics of the parallel model. The parallel model was described in more detail in [Coo97],
and a still more detailed description is contained in Chapter 3.

For non-trivial parallelism, ParGAP uses the TOP-C model [Coo96]. ParGAP typically invokes the TOP-C
model via a command such as

MasterSlave( GenerateTaskInput, DoTask, CheckTaskResult,
UpdateSharedData );

The four arguments, GenerateTaskInput , DoTask , CheckTaskResult , and UpdateSharedData are “callback”
functions written by the application programmer, and the names of those callback functions are arbitrary.
(The manual for ParGAP/MPI, the earlier incarnation of ParGAP used slightly different names for its
examples, but the purpose of the arguments of MasterSlave() has not changed – only the naming convention
has.)

The only ParGAP command above is MasterSlave(). A task is an arbitrary function (here called DoTask())
executed on a slave process, that takes input from the master process and returns its output to the master
process. The diagram in Section 3.2 gives some idea of the flow of control as a task is processed. The diagram
there is meant to represent the three main abstractions of the TOP-C model: (1) the task, (2) the shared
data, and (3) the action. The shared data consists of any globally shared data (which should be readable
by all processes). The task is a procedure executed on a slave process that takes a task input, and the
shared data, and produces a task output, which depends only on the task input and shared data. Finally,
the task input and task output are sent to the master process, which must then decide upon an action.

Typical actions are NO ACTION (and the master process might save the task output in a private list of results),
UPDATE SHARED DATA (send a message to all slaves to update the local copy of the globally shared data),
and REDO (re-do the computation in case the shared data was changed by another slave process). (Earlier
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incarnations of ParGAP used UPDATE. Now the alternative UPDATE SHARED DATA is offered and we standardize
on this here.)

An example invocation of MasterSlave() is shown below, where we pass the four application functions as
direct arguments of MasterSlave(). The routine below implements a simplified version of the ParList()

function described in Section 4.1.

ParInstallTOPCGlobalFunction( "MyParList",

function( list, fnc )

local result, iter;

result := [];

# Each invocation of GAP’s iterator

# returns next element of list.

iter := Iterator(list);

MasterSlave(

# GenerateTaskInput():

function() if IsDoneIterator(iter) then return NOTASK;

else return NextIterator(iter); fi; end,

# DoTask():

fnc,

# CheckTaskResult():

function(input,output) result[input] := output;

return NO_ACTION; end,

# UpdateSharedData():

Error # We never see action: UPDATE_SHARED_DATA

);

return result;

end );

The function ParInstallTOPCGlobalFunction() installs MyParList on all ParGAP processes. It also defines
the version of MyParList() on the master differently from on a slave, so that a call, MyParList([1..100],
x->x^2);, on the master automatically causes MyParList([1..100], x->x^2); to be invoked on the
slave with the same arguments. This is required for the TOP-C model. Note that the distinct function,
ParInstallGlobalFunction(), exists for the equivalent of BroadcastMsg( "InstallGlobalFunction(

MyParList, function ... end)");. Both functions should be called only from the master (possibly from
inside a Read() command).

The shared data consists only of the variable fnc, which is read by all processes, but in this case is never
“updated”. Note that one need not explicitly declare variables that are in the shared data. A TOP-C shared
data variable is defined as a variable whose value is read by more than one process, and which is modified
only through a call to the application routine UpdateSharedData(). If we would like to see the messages,
as they are passed back and forth between master and slave, we can optionally set the variable ParTrace

(see 6.1.1). We are then ready to execute our new parallel function.

gap> ParTrace := true;;

gap> MyParList([2..256], AnalyzePrimitivePermGroupsOfOrder);

The example above in fact requires only trivial parallelism. Hence the CheckTaskResult() parameter to
MasterSlave() is especially simple. Since the action is never REDO, we achieve the maximum concurrency
among slave processes, resulting in a speedup that is linear in the number of slaves.

In general, the parallel efficiency of an application, with its concommitant decisions about concurrency of
slave tasks are typically determined by the actions chosen by CheckTaskResult(). The sample below is a
standard ParGAP “idiom” that allows one to easily set up reasonable concurrency in a parallel application.
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CheckTaskResult := function( taskInput, taskOutput )

if taskOutput = fail then return NO_ACTION;

elif not IsUpToDate() then return REDO_ACTION;

else return UPDATE_ACTION;

fi;

end;

The function IsUpToDate() is a boolean function provided by ParGAP that returns true if there has been no
UPDATE SHARED DATA action since the time that the “corresponding” task input was generated by a call to the
user-provided function GenerateTaskInput(). Otherwise, IsUpToDate() returns false. The “corresponding”
task input is the task input associated with that task output which was most recently seen on the master
process. In the context of the user-provided function CheckTaskResult(), it is the first argument to that
function.
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This chapter assumes the background knowledge in section 3.1. ParGAP must be invoked through a script like
pargap.sh generated in ParGAP’s bin during installation. In addition, there must be a procgroup file in the
current directory when ParGAP is called, or alternatively, -p4pg FULL PATH /procgroup may be included
on the pargap.sh command line. See Section 1.3 for the details. You should find a sample procgroup file
in ParGAP’s bin directory after installation of ParGAP. See the section 1.6 for further details. Many of the
examples of this section can be found in ParGAP’s examples directory.

5.1 A simple example

A master-slave computation is invoked when a ParGAP program issues the command MasterSlave(). This
command is an example of what is called “collective communication” in MPI (although the command is not
part of MPI). It is also sometimes called SPMD (Single Program, Multiple Data), since all processes see
the same code, although different processes may execute different parts of the code. The MasterSlave()

command must be invoked on all processes before execution can begin. The following trivial example does
this. (Note that the final \ on a line that is still inside a string allows continuation of a string to the next
line.) We illustrate these principles first in their simplest form, making all variables global variables. Later,
we introduce additional ParGAP utilities that allow one to write in better style.

#Shared Data: none

#TaskInput: counter

#TaskOutput: counter^2 (square of counter)

#Task: compute counter^2 from counter

ParEval( "result := []" );

ParEval( "counter := 0; \

SubmitTaskInput := function() \

counter := counter + 1; \

if counter <= 10 then return counter; else return NOTASK; fi; \

end;");

ParEval( "DoTask := x->x^2" );

ParEval( "CheckTaskResultVers1 := function( input, output ) \

result[input] := [input, output]; \

return NO_ACTION; \

end;" );

ParEval( "MasterSlave( SubmitTaskInput, DoTask, CheckTaskResultVers1 )" );

Print(result);

By default, ParTrace = true (see 6.1.1), causing the execution to display each input, x, as it is passed from
the master to a slave, and each output, x^2, as it is passed from the slave back to the master. This behavior
can be turned off by setting: ParTrace := false; The fourth argument of MasterSlave(), Print, is a
dummy argument that is never invoked in this example.

Note that the result list is filled in only on the local process, and was never defined or modified on the slave
processes. To remedy this situation, we introduce the concept of shared data, a globally shared, application-
defined data structure. A central principle of the TOP-C model in ParGAP is that any routine may “read” the
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shared data, but it may be modified only by the application-defined routine, UpdateSharedData(). Hence,
if we wanted the result list to be recorded on all processes (perhaps as a lookup table), we would now write:

ParBroadcast(PrintToString("result = ", result));

5.2 ParSquare

Until now, we have been using global variables. It is better style to use local variables, where possible. We
rewrite the above routine in the improved style:

#Shared Data: result [ result is shared among all processes ]

#TaskInput: counter

#TaskOutput: counter^2 (square of counter)

#Task: compute counter^2 from counter

#UpdateSharedData: record [counter, counter^2] at index, counter, of result

MSSquare := function( range ) # expects as input a range, like [1..10]

local counter, result,

SubmitTaskInput, DoTask, CheckTaskResultVers2, UpdateSharedData;

counter := range[1]; # Reset counter for use in SubmitTaskInput()

result := [];

SubmitTaskInput := function()

counter := counter + 1;

if counter <= range[Length(range)] then return counter;

else return NOTASK;

fi;

end;

DoTask := x->x^2;

CheckTaskResultVers2 := function( input, output )

return UPDATE_ACTION;

end;

UpdateSharedData := function( input, output )

result[input] := [input, output];

end;

MasterSlave( SubmitTaskInput, DoTask, CheckTaskResultVers2, UpdateSharedData );

return result;

end;

#ParSquare() is the main calling function; It must define MSSquare on

# all slaves before calling it in parallel.

ParSquare := function( range ) # expects as input a range, like [1..10]

ParEval( PrintToString( "MSSquare := ", MSSquare ) );

return ParEval( PrintToString( "MSSquare( ", range, ")" ) );

end;

5.3 ParInstallTOPCGlobalFunction() and TaskInputIterator() (ParSquare revisited)

This example can be written more compactly by using some of the convenience functions provided by
ParGAP. Specifically, we would rewrite this as:

ParInstallTOPCGlobalFunction( "ParSquare", function( range )

local result;

result := [];

MasterSlave( TaskInputIterator( range ),
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x->x^2,

function( input, output ) return UPDATE_ACTION; end,

function( input, output ) result[input] := [input, output]; end

);

return result;

end );

The usage above demonstrates the use of two utilities.

1
�

ParInstallTOPCGlobalFunction( string, function ) F

This defines gvar as a function on the master and on the slaves. On each slave, the definition of gvar is given
by function. However, on the master, gvar is defined as a function that first calls gvar on all slaves with the
arguments originally passed to gvar , and then on the master, function is called with the original arguments.
This is exactly the behavior that is wanted in order to compress an invocation of MasterSlave() so that
the right things happen on both the master and on the slaves. This is exactly what we saw in the previous
definition of ParSquare, above.

2
�

TaskInputIterator( collection ) F

This function provides the functionality of a common case of SubmitTaskInput(), by turning it into a GAP
iterator (see 28.7 in the Reference Manual). Its meaning is best understood from its definition:

TaskInputIterator := function( collection )

local iter;

iter := Iterator( collection );

return function()

if IsDoneIterator(iter) then return NOTASK;

else return NextIterator(iter);

fi;

end;

end;

5.4 ParMultMat

Let us now write a matrix-matrix multiplication routine in this style. Since matrix multiplication for
dimension n requires n3 operations, we can afford to spend n2 time doing any sequential work. (A finer
analysis would also consider the number of slaves, k , resulting in up to k ∗ n2 time to send all messages,
depending on the MPI broadcast algorithm.) So, a sequential matrix multiplication program might be written
as follows. (The style emphasizes clarity over efficiency.)

SeqMultMat := function(m1, m2) # sequential code

local i, j, k, n, m2t, sum, result;

n := Length(m1);

result := [];

m2t := TransposedMat(m2);

for i in [1..n] do

result[i] := [];

for j in [1..n] do

sum := 0;

for k in [1..n] do

sum := sum + m1[i][k]*m2t[j][k];

od;

result[i][j] := sum;

od;
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od;

return result;

end;

We choose to define the task as the computation of a single row of the result matrix. This corresponds to
the body of the outermost loop.

#Shared Data: m1, m2t, result (three matrices)

#TaskInput: i (row index of result matrix)

#TaskOutput: result[i] (row of result matrix)

#Task: Compute result[i] from i, m1, and m2

#UpdateSharedData: Given result[i] and i, modify result on all processes.

ParInstallTOPCGlobalFunction( "ParMultMat", function(m1, m2)

local i, n, m2t, result, DoTask, CheckTaskResult, UpdateSharedData;

n := Length(m1);

result := [];

m2t := TransposedMat(m2);

DoTask := function(i) # i is task input

local j, k, sum;

result[i] := [];

for j in [1..n] do

sum := 0;

for k in [1..n] do

sum := sum + m1[i][k]*m2t[j][k];

od;

result[i][j] := sum;

od;

return result[i]; # return task output, row_i

end;

# CheckTaskResult executes only on the master

CheckTaskResult := function(i, row_i) # task output is row_i

return UPDATE_ACTION; # Pass on output and input to UpdateSharedData

end;

# UpdateSharedData executes on the master and on all slaves

UpdateSharedData := function(i, row_i) # task output is row_i

result[i] := row_i;

end;

# We’re done defining the task. Let’s do it now.

MasterSlave( TaskInputIterator([1..n]), DoTask, CheckTaskResult,

UpdateSharedData );

# result is defined on all processes; return local copy of result

return result;

end );

5.5 DefaultCheckTaskResult (as illustrated by ParSemiEchelonMatrix)

Now that the basic principles of the TOP-C model are clear, we investigate an example that requires most
of the basic features of ParGAP, including the use of IsUpToDate() and REDO ACTION. Recall the standard
idiom for CheckTaskResult(). These issues were discussed in the section 3.4.
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DefaultCheckTaskResult := function( taskOutput, taskInput )

if taskOutput = false then return NO_ACTION;

elif not IsUpToDate() then return REDO_ACTION;

else return UPDATE_ACTION;

fi;

end;

The next example is a parallelization of the function SemiEchelonMat() (a form of Gaussian elimination) in
the GAP library, lib/matrix.gi. Unlike the previous examples, parallelizing Gaussian elimination efficiently
is a non-trivial undertaking. This is because a naive parallelization has poor load balancing. A slave executing
a task in the middle will have to sift a row vector through many previous row vectors, while a slave executing
a task toward the beginning or end will have little work to do. We will begin with a naive parallelization
based on the sequential code, and then migrate the code in a natural manner toward a more efficient form,
by analyzing the inefficiencies and applying the TOP-C model.

The reader may wish to stop and read the original code in lib/matrix.gi first. The logic of SemiEchelon-
Mat() is to examine each row vector of an input matrix, in order, reduce it by a list of basis vectors stored
in vectors, and then add the row to vectors. Upon completion, the number of leading zeroes of the row
vectors in vectors may not increase monotonically, but each element of vectors will have a unique number
of leading zeroes. Some rows of the input matrix may reduce to the zero matrix, in which case they are not
added to vectors.

For the reader’s convenience, the original sequential code is reproduced here.

SemiEchelonMat := function( mat )

local zero, # zero of the field of <mat>

nrows, # number of rows in <mat>

ncols, # number of columns in <mat>

vectors, # list of basis vectors

heads, # list of pivot positions in ’vectors’

i, # loop over rows

j, # loop over columns

x, # a current element

nzheads, # list of non-zero heads

row; # the row of current interest

mat:= List( mat, ShallowCopy );

nrows:= Length( mat );

ncols:= Length( mat[1] );

zero:= Zero( mat[1][1] );

heads:= ListWithIdenticalEntries( ncols, 0 );

nzheads := [];

vectors := [];

for i in [ 1 .. nrows ] do

row := mat[i];

# Reduce the row with the known basis vectors.

for j in [ 1 .. Length(nzheads) ] do

x := row[nzheads[j]];

if x <> zero then

AddRowVector( row, vectors[ j ], - x );
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fi;

od;

j := PositionNot( row, zero );

if j <= ncols then

# We found a new basis vector.

MultRowVector(row, Inverse(row[j]));

Add( vectors, row );

Add( nzheads, j);

heads[j]:= Length( vectors );

fi;

od;

return rec( heads := heads,

vectors := vectors );

end;

Although GAP’s Gaussian elimination algorithm appears to be awkward to parallelize (since the next row
vector in vectors depends on row reduction by all previous vectors, we will see how the original code of
SemiEchelonMat() can be modified in a natural manner to produce useful parallelism. This illustrates the
general TOP-C paradigm for “naturally” parallelizing a sequential algorithm.

#Shared Data: vectors (basis vectors), heads, nzheads, mat (matrix)

#TaskInput: i (row index of matrix)

#TaskOutput: List of (1) j and (2) row i of matrix, mat, reduced by vectors

# j is the first non-zero element of row i

#Task: Compute reduced row i from mat, vectors, heads

#UpdateSharedData: Given i, j, reduced row i, add new basis vector

# to vectors and update heads[j] to point to it

ParInstallTOPCGlobalFunction( "ParSemiEchelonMat", function( mat )

local zero, # zero of the field of <mat>

nrows, # number of rows in <mat>

ncols, # number of columns in <mat>

vectors, # list of basis vectors

heads, # list of pivot positions in ’vectors’

i, # loop over rows

nzheads, # list of non-zero heads

DoTask, UpdateSharedData;

mat:= List( mat, ShallowCopy );

nrows:= Length( mat );

ncols:= Length( mat[1] );

zero:= Zero( mat[1][1] );

heads:= ListWithIdenticalEntries( ncols, 0 );

nzheads := [];

vectors := [];
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DoTask := function( i ) # taskInput = i

local j, # loop over columns

x, # a current element

row; # the row of current interest

row := mat[i];

# Reduce the row with the known basis vectors.

for j in [ 1 .. Length(nzheads) ] do

x := row[nzheads[j]];

if x <> zero then

AddRowVector( row, vectors[ j ], - x );

fi;

od;

j := PositionNot( row, zero );

if j <= ncols then return [j, row]; # return taskOutput

else return fail; fi;

end;

UpdateSharedData := function( i, taskOutput )

local j, row;

j := taskOutput[1];

row := taskOutput[2];

# We found a new basis vector.

MultRowVector(row, Inverse(row[j]));

Add( vectors, row );

Add( nzheads, j);

heads[j]:= Length( vectors );

end;

MasterSlave( TaskInputIterator( [1..nrows] ), DoTask, DefaultCheckTaskResult,

UpdateSharedData );

return rec( heads := heads,

vectors := vectors );

end );

The next section describes how to make this code more efficient.

5.6 Caching slave task outputs (ParSemiEchelonMat revisited)

The code above is inefficient unless nrows >> ncols. This is because if nrows is comparable to ncols,
it will be rare for DoTask() to return fail. If most slaves return a result distinct from fail, then
DefaultCheckTaskResult() will return an UPDATE ACTION upon receiving the output from the first slave,
and it will return a REDO ACTION to all other slaves, until those slaves execute UpdateSharedData(). The
inefficiency arose because a REDO ACTION caused the original slave process to re-compute DoTask() from the
beginning.

In the case of a REDO ACTION, we can fix this by taking advantage of information that was already computed.
To accomplish this, a global variable should be defined on all slaves:

ParEval("globalTaskOutput := [[-1]]");

the routine DoTask() in the previous example should be modified to:
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DoTask := function( i )

local j, # loop over columns

x, # a current element

row; # the row of current interest

if i = globalTaskOutput[1] then

# then this is a REDO_ACTION

row := globalTaskOutput[2]; # recover last row value

else row := mat[i];

fi;

# Reduce the row with the known basis vectors.

for j in [ 1 .. Length(nzheads) ] do

x := row[nzheads[j]];

if x <> zero then

AddRowVector( row, vectors[ j ], - x );

fi;

od;

j := PositionNot( row, zero );

# save row in case of new REDO_ACTION

globalTaskOutupt[1] := i;

globalTaskOutput[2] := row;

if j <= ncols then return [j, row]; # return taskOutput

else return fail; fi;

end;

(A perceptive reader will have noticed that it was not necessary to also save and restore row from
globalTaskOutput, since this can be found again based on the saved variable value i. However, the additional
cost is small, and it illustrates potentially greater generality of the method.)

The next section describes how to make this code more efficient.

5.7 Agglomerating tasks for efficiency (ParSemiEchelonMat revisited again)

A more efficient parallelization would partition the matrix into sets of adjacent rows, and send an entire set
as a single taskInput. This would minimize the communication overhead, since the network latency varies
only slowly with message sizxe, but linearly with the number of messages. To minimize network latency, one
adds an extra parameter to MasterSlave() in order to bundle, perhaps, up to 5 tasks at a time.

MasterSlave( TaskInputIterator( [1..n] ), DoTask, DefaultCheckTaskResult,

UpdateSharedData, 5 );

Now the task input will be a list of the next 5 tasks returned by GetTaskInput(), or in this case by
TaskInputIterator( [1..nrows] ). If fewer than 5 tasks are produced before NOTASK is returned, then
the task input will be correspondingly shorter. If the first input task is NOTASK (yielding a list of tasks of
length 0), then this will be interpreted as a traditional NOTASK. The task output corresponding to this task
input is whatever the application routine, DoTask() produces as task output. The routine DoTask() will
be unchanged, and MasterSlave() will arrange to repeatedly call DoTask(), once for each input task and
produce a list of task outputs.

Hence, this new variation requires us to rewrite UpdateSharedData() in the obvious manner, to handle a
list of input and output tasks. Here is one solution to patch the earlier code.
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1
�

TaskAgglomIndex V

This global variable is provided for use inside DoTask(). It allows the application code to inquire about the
index of the input task in the full list of tasks created when agglomTask is used. The variable is most useful
in the case of a REDO ACTION or CONTINUATION ACTION(), as illustrated below.

ParEval("globalTaskOutput := [[-1]]");

ParEval("globalTaskOutputs := []");

#Shared Data: vectors (basis vectors), heads, mat (matrix)

#TaskInput: i (row index of matrix)

#TaskOutput: List of (1) j and (2) row i of matrix, mat, reduced by vectors

# j is the first non-zero element of row i

#Task: Compute reduced row i from mat, vectors, heads

#UpdateSharedData: Given i, j, reduced row i, add new basis vector

# to vectors and update heads[j] to point to it

ParInstallTOPCGlobalFunction( "ParSemiEchelonMat", function( mat )

local zero, # zero of the field of <mat>

nrows, # number of rows in <mat>

ncols, # number of columns in <mat>

vectors, # list of basis vectors

heads, # list of pivot positions in ’vectors’

i, # loop over rows

nzheads, # list of non-zero heads

DoTask, UpdateSharedDataWithAgglom;

mat:= List( mat, ShallowCopy );

nrows:= Length( mat );

ncols:= Length( mat[1] );

zero:= Zero( mat[1][1] );

heads:= ListWithIdenticalEntries( ncols, 0 );

nzheads := [];

vectors := [];

DoTask := function( i )

local j, # loop over columns

x, # a current element

row; # the row of current interest

if IsBound(globalTaskOutputs[TaskAgglomIndex])

and i = globalTaskOutputs[TaskAgglomIndex][1] then

# then this is a REDO_ACTION

row := globalTaskOutputs[TaskAgglomIndex][2][2]; # recover last row value

else row := mat[i];

fi;

# Reduce the row with the known basis vectors.

for j in [ 1 .. Length(nzheads) ] do

x := row[nzheads[j]];

if x <> zero then

AddRowVector( row, vectors[ j ], - x );

fi;
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od;

j := PositionNot( row, zero );

# save [input, output] in case of new REDO_ACTION

globalTaskOutputs[TaskAgglomIndex] := [ i, [j, row] ];

if j <= ncols then return [j, row]; # return taskOutput

else return fail; fi;

end;

# This version of UpdateSharedData() expects a list of taskOutput’s

UpdateSharedDataWithAgglom := function( listI, taskOutputs )

local j, row, idx, tmp;

for idx in [1..Length( taskOutputs )] do

j := taskOutputs[idx][1];

row := taskOutputs[idx][2];

if idx > 1 then

globalTaskOutputs[1] := [-1, [j, row] ];

tmp := DoTask( -1 ); # Trick DoTask() into a REDO_ACTION

if tmp <> fail then

j := tmp[1];

row := tmp[2];

fi;

fi;

# We found a new basis vector.

MultRowVector(row, Inverse(row[j]));

Add( vectors, row );

Add( nzheads, j);

heads[j]:= Length( vectors );

od;

end;

MasterSlave( TaskInputIterator( [1..nrows] ), DoTask, DefaultCheckTaskResult,

UpdateSharedDataWithAgglom, 5 ); #taskAgglom set to 5 tasks

return rec( heads := heads,

vectors := vectors );

end );

Note that in this simple example, we were able to re-use most of the code from the previous version, at the
cost of adding an additional global variable, globalTaskOutputs. In fact, the last DoTask() is backward
compatible to the first version of the code, for which agglomTasks is not used. If we wanted to run the latest
code without agglomeration of tasks, it would suffice either to set the taskAgglom parameter to 1, or else
to remove it entirely and replace UpdateSharedDataWithAgglom() by UpdateSharedData().

It is useful to experiment with the above code by substituting a variable, taskAgglom, for the number
5, and trying it out with remote slaves on your own network for different values of taskAgglom and for
different size matrices. You can call MasterSlaveStats() to see the effect of different parameters. Suitable
pseudo-random matrices can be quickly generated via mat := PseudoRandom( GL( 30, 5 ) and similar
commands.
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The paper [Coo98] is suggested as further reading to see a still more efficient parallel implementation of
ParSemiEchelonMatrix (also known as Gaussian elimination) using the TOP-C model.

5.8 Raw MasterSlave (ParMultMat revisited)

Finally, we given an example of a variation of MasterSlave(), based on a “raw” MasterSlave(). These
versions are designed for the common case of legacy code that contains deeply nested parentheses. The
taskInput may be generated inside several nested loops, making it awkward and error-prone to produce a
function, SubmitTaskInput(), that will generate instances of taskInput in the appropriate sequence.

Effectively, when we wish to return successive values from several deeply nested loops, we are in the situation
of programming the “opposite of a GAP iterator” (see 28.7 in the Reference Manual). We are already
producing successive iterator values, and we wish to “stuff them back into some iterator”. Until GAP develops
such a language construct :-) , the following example of a “raws” MasterSlave() demonstrates a solution.
Before studying this example, please review the sequential version, SeqMultMat() near the beginning of
section 5.4.

We make use of the following three new ParGAP functions.

1
�

BeginRawMasterSlave( DoTask, CheckTaskResult, UpdateSharedData ) F
�

RawSubmitTaskInput( taskInput ) F
�

EndRawMasterSlave() F

Their use will be obvious in the next example. This time, we parallelize SeqMultMat() by defining the task
as the computation of a single entry in the result matrix. Hence, the task will be the computation of the
appropriate inner product. For dimension n, n2 tasks are now generated, and each task is generated inside
a doubly nested loop.

#Shared Data: m1, m2t, result (three matrices)

#TaskInput: [i,j] (indices of entry in result matrix)

#TaskOutput: result[i][j] (value of entry in result matrix)

#Task: Compute inner produce of row i of m1 by colum j of m1

( Note that column j of m1 is also row j of m2t, the transpose )

#UpdateSharedData: Given result[i][j] and [i,j], modify result everywhere

ParInstallTOPCGlobalFunction( "ParRawMultMat", function(m1, m2)

local i, j, k, n, m2t, sum, result, DoTask, CheckTaskResult, UpdateSharedData;

n := Length(m1);

m2t := TransposedMat(m2);

result := ListWithIdenticalEntries( Length(m2t), [] );

DoTask := function( input )

local i,j,k,sum;

i:=input[1]; j:=input[2];

sum := 0;

for k in [1..n] do

sum := sum + m1[i][k]*m2t[j][k];

od;

return sum;

end;

CheckTaskResult := function( input, output )

return UPDATE_ACTION;

end;
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UpdateSharedData := function( input, output )

local i, j;

i := input[1]; j := input[2];

result[i][j] := output;

# result[i,j] := sum;

end;

BeginRawMasterSlave( DoTask, CheckTaskResult, UpdateSharedData );

for i in [1..n] do

result[i] := [];

for j in [1..n] do

RawSubmitTaskInput( [i,j] );

# sum := 0;

# for k in [1..n] do

# sum := sum + m1[i][k]*m2t[j][k];

# od;

# result[i][j] := sum;

od;

od;

EndRawMasterSlave();

return result;

end );



6
Advanced Concepts

for TOP-C model
(MasterSlave)

This chapter may be safely skipped on a first reading. If you still want to read this chapter, it should mean
that you are familiar with the basics of the TOP-C model, and are looking for advice on how to use the
model more effectively. The first piece of advice is that the choice of task and shared data interact strongly
with the choice of parallel algorithm. We review those concepts more precisely here, in light of the overall
context of the TOP-C model.

task:
A task is a function that that takes a single argument, taskInput , reads certain globally shared
data, the shared data, and computes a result, the taskOutput . Hence, given the same task input
and the same shared data, a task should always compute the same task output. The TOP-C model
implements this concept through the DoTask() application routine. In the TOP-C model, this rule
is bent to accomodate caching of private data to efficiently handle a REDO ACTION (see Section 5.6),
or to accommodate a CONTINUATION ACTION() (see Section 3.6).

shared data:
The shared data is globally shared data. It should be initialized before entering MasterSlave().
The shared data is never explicitly declared. However, it is best for the application programmer
to include a comment specifying the shared data for his or her application. The TOP-C model
poses certain restrictions on what legally constitutes shared data. The shared data must include
enough of the global data (variables that occur free in the DoTask() procedure) so that the task
output of DoTask() is uniquely determined by the task input and the shared data. However, the
shared data must not include any variables whose values are modified outside of the application
routine UpdateSharedData(). Also, the shared data is updated non-preemptively, in the sense
that a slave process will always complete its current task before reading a newly arrived message
that invokes UpdateSharedData(). If a slave privately caches data for purposes of a REDO ACTION or
CONTINUATION ACTION(), such data is explicitly not part of the shared data.

6.1 Tracing and Debugging

In testing a program using MasterSlave(), a hierarchy of testing is suggested. The principle is to test the
simplest example first, and then iterate to more complex examples. When a stable portion of the program
is ready for testing, the following sequence of tests is suggested:

sequential
Replace MasterSlave() by SeqMasterSlave() (see definition below) and see if the program
performs correctly. SeqMasterSlave() will run only on the master, without sending any messages,
and so the full range of sequential debugging tools is available.
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one slave
Restore MasterSlave() and set up the procgroup file to have only one slave process (one line, local
0, and one line localhost ...). Initially test with no taskAgglom parameter for MasterSlave(),
and then test with the full set of parameters.

two slaves
Same advice as for one slave, but two lines: localhost ...

many slaves
Full scale test, both without and with taskAgglom.

1
�

ParTrace V

A second easy testing strategy is to set ParTrace to true. (This is the default value.) This causes all
taskInputs, taskOutputs, and non-trivial actions (actions other than NO ACTION) to be displayed at the
terminal. The information is printed in the same sequence as seen by the master process.

Another “cheap” debugging trick is to inspect the values of global variables on the slave after it has been
thrown out of the MasterSlave() procedure. The following code demonstrates by interrogating the sum of
the variables x and y on slave number 2.

gap> SendRecvMsg("x+y;\n", 2);

This is useful to inspect cached data on a slave used for a REDO ACTION or CONTINUATION ACTION(). It may
also be useful to verify if the shared data on the slave is the same as on the master. If the slave process is
still inside the procedure MasterSlave(), then from within a break loop on the master, you may also want
to interactively call DoTask( testInput ) to determine if the expected taskOutput is produced.

If the master process is still within MasterSlave(), then it is useful to execute DoTask() locally on the
master process, and debug this sequentially.

There is also the time-honored practice of inserting print statements. Print statements “work” both on the
master and on the slaves. If ParTrace produces too much output, or not the right kind of information, one
can add print statements exactly where one needs them. As with any UNIX debugging, it is sometimes
useful to include a call to fflush(stdout) to force any pending output. ParGAP binds this to:

2
�

UNIX FflushStdout() F

This has the same effect as the UNIX fflush(stdout). There may be pending output in a buffer,
that UNIX delays printing for efficiency. Printing any remaining output in the buffer is forced by this
command. A common sequence is: Print("information"); UNIX FflushStdout();. Note also that when
the slave prints, there are “two” standard outputs involved. You may also want to include a call to
UNIX FflushStdout() on the master to force any pending output that originated on a slave. Finally, you
should be conscious of network delays, and so a print statement in a slave process will typically take longer
to appear than a print statement in the master process.

3
�

SeqMasterSlave( SubmitTaskInput, DoTask[, CheckTaskResult[,UpdateSharedData[, taskAgglom ]]]

) F

If a bug is exhibited even in the context of a single slave, then the code is “almost” sequential. In this case,
one can test further by replacing the call to MasterSlave() by a call to SeqMasterSlave(), and debug in
a context that involves zero messages and no interaction with any slave. It can also be helpful to carry out
initial debugging in this context. Note that in the case of a single slave, which is what SeqMasterSlave

emulates, IsUpToDate() will always return true, and so most applications will not call for a REDO ACTION.
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6.2 Efficiency Considerations

There are two common reasons for loss of efficiency in parallel applications. One is a lack of enough tasks, so
that some slaves are starverd for work while waiting for the next task input. A second reson is that the ratio
of communication time to compilation time is too large. The second case, poor communication efficiency, is
the more common one.

The communication efficiency can be formally defined as the ratio of the time to execute a task by the time
taken for the master to send an initial task message to a slave plus the time for the slave to send back a
result message. A good way to diagnose your efficiency is to execute MasterSlaveStats() after executing
MasterSlave().

1
�

MasterSlaveStats() F

This function currently returns statistics in the form of a list of two records. The first record provides the
global information:

MStime

total runtime (as measured by Runtime()),

MSnrTasks

total number of tasks (not including REDO or UPDATE,

MSnrUpdates

total number of times action UPDATE was returned, and

MSnrRedos

total number of times action REDO was returned.

The second record provides per-slave information:

total

total time spent on tasks, not including UpdateSharedData(),

num

number of initial tasks, REDO and CONTINUATION() actions,

ave ms

the value of QuoInt(1000*total,num) in GAP, and

max

maximum time spent on a task, in seconds.

Note that for purposes of the per-slave statistics, separate time intervals are recorded for each initial task,
REDO action, and CONTINUATION() action. The time for UpdateSharedData() is not included in these
statistics. This is because after an UPDATE action, the slave does not reply to the master to acknowledge
when the update was completed.

Notes:

Poor communication efficiency is typically caused either by too small a task execution time (which would
be the case in the example of section or too large a message (in which case the communication time is too
long). We first consider execution times that are too small.

On many Ethernet installations, the communication time is about 0.01 seconds to send and receive small
messages (less than 1 Kb). Hence the task should be adjusted to consume at least this much CPU time. If the
naturally defined task requires less than 0.01 seconds, the user can often group together several consecutive
tasks, and send them as a single larger task. For example, in the factorization problem of section, one might
modify DoTask() to test the next 1000 numbers as factors and modify SubmitTaskInput() to increment
counter by 1000.
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There is another easy trick that often improves communication efficiency. This is to set up more than one
slave process on each processor. This improves the communication efficiency because during much of the
typical 0.01 seconds of communication time the CPU has off-loaded the job onto a coprocessor. Hence,
having a second slave process running its own task on the CPU while a first process is concerned with
communication allows one to overlap communication with computation.

We next consider the case of messages that are too large. In this case, it is important to structure the problem
appropriately. The task architecture is intended to be especially adaptable to this case. The philosophy is
to minimize communication time by duplicating much of the execution time on each processor.

After the initial data structure has been built, it will usually be modified as a result of the computation.
In order to again minimize communication, the result of a task, which is typically passed to UpdateShared-
Data(), should consist of the minimum information needed to update the global data structure. Each process
can then perform this update in parallel.

6.3 Checkpointing in TOP-C

Any long-running computation must be concerned with checkpointing. The TOP-C model also provides
a simple model for checkpointing. The key observation is that the master process always has the latest
state of the computation, and the information in the master process is sufficient to reconstruct any ongoing
computation. Any application may take advantage of this by checkpointing the necessary information either
in the application routine, SubmitTaskInput() or in CheckTaskResult().

A simple way to checkpoint is to record:

• the current data in the TOP-C shared data;

• any private global data residing only in the master process; and

• the inputs to any tasks that are still pending.

This model for checkpointing assumes that your program has no CONTINUATION() actions. If you use
CONTINUATION() actions, then you may require a more complex model for checkpointing.

1
�

MasterSlavePendingTaskInputs() F

This function returns a GAP list (with holes) of all pending task inputs. If slave i is currently working on a
task, index i of the list will record that task. If slave i is currently idle or executing UpdateSharedData(),
then there will be a hole at index i . This function is available for use within either the application routine
SubmitTaskInput(), or CheckTaskResult(), as specified in the parameters of your call to MasterSlave().
(Of course, your application may be using a name other than SubmitTaskInput() or CheckTaskResult() in
the parameters of MasterSlave().)

6.4 When Should a Slave Process be Considered Dead?

An important question for long-running computations, is when to decide that a slave process is dead. For
our purposes, dead is not a well-defined concept. If a user on the remote machine decides to re-boot, it is
clear that any slave processes residing on that machine should be declared dead. However, suppose there is
temporary congestion on the network making the slave unavailable. Suppose that another user on the remote
machine has started up many processes consuming many resources, and the TOP-C slave process is being
starved for CPU time or for RAM. Perhaps the most difficult case of all to decide is if one particular TOP-C
task requires ten times as much time as all other tasks. This last example is conceivable if, for example, each
task consists of factoring a different large integer.

Hence, our implementation of the TOP-C model will employ the following heuristic in a future version, to
decide if a task is dead. You may wish to employ this heuristic now, if you have a demanding application.
We use the ParGAP function, UNIX Realtime(), to keep track of how much time has been spent on a task
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(based on “wall clock time”, and not on CPU time). If a task has taken slaveTaskTimeFactor times as
much time as the longest task so far, then it becomes a candidate for being declared dead. The GAP variable
slaveTaskTimeFactor is initially set to the default value of 2.

Once a slave process becomes a candidate for being declared dead, MasterSlave() will create a second
version of the same task, with the same task input as the original task. MasterSlave() will then record
which task finishes first. If the original version finishes first, then the second version of the task is ignored,
and the slave process executing the original task is no longer considered a candidate for death.

If, however, the second version of the task finishes before the original version, then the time for the second
task is recorded. Further, the output from the second task will be used, and any output resulting from the
original task will be ignored. MasterSlave() then periodically checks until the ration of the time spent so far
on the original version of the task is at least slaveTaskTimeFactor times greater than the time spent on the
second version of the task, then the process executing the original version of the task is then declared dead.
No further messages from the process executing original task will be recognized and no further messages
will be sent to that slave process.

A future version of this distribution will include direct support for this heuristic. A customized version of
it may be used now, by taking advantage of the ParGAP routine, UNIX Realtime(). In addition, a future
version of this distribution may include the ability to start new slave processes in an ongoing computation.
The reference [CG98] describes how this was done in a C implementation, and why this concept fits naturally
with the TOP-C model.



7
MPI commands

and UNIX system
calls in ParGAP

This chapter can be safely ignored on a first reading, and maybe permanently. It is for application
programmers who wish to develop their own low-level message-based parallel application. The additional
UNIX system calls in ParGAP may also be useful in some applications.

7.1 Tutorial introduction to the MPI C library

This section lists some of the more common message passing commands, followed by a short MPI example.
The next section (7.2) contains more (but by no means all) of the MPI commands and some UNIX system
calls. The ParGAP binding provides a simplified form that makes interactive usage easier. This section
describes the original MPI binding in C, with some comments about the interactive versions provided in
ParGAP. (The MPI standard includes a binding both to C and to FORTRAN.)

Even if your ultimate goal is a standalone C-based application, it is useful to prototype your application
with equivalent commands executed interactively within ParGAP. Note that this distribution includes a
subdirectory mpinu, which provides a subset MPI implementation in C with a small footprint . It consists of
a C library, libmpi.a, and an include file mpi.h. The library is approximately 150 KB. The subdirectory
can be consulted for further details.

We first briefly explain some MPI concepts.

rank:
The rank of an MPI process is a unique ID number associated with the process. By convention,
the console (master) process has rank 0. The ranks of the process are guaranteed by MPI to form
a consecutive, ascending sequence of integers, starting with 0.

tag:
Each message has associated with it a non-negative integer tag specified by the application. Our
interface allows you to ignore tags by letting them take on default values. Typical application
uses for tags are either to choose consecutive integers in order to guarantee that all messages can
be re-assembled in sequence, or to choose a fixed set of constant tags, each constant associated
with another type of message. In the latter case, one might have integers for a QUIT TAG, an
INTEGER ARRAY TAG, START TASK2 TAG, etc. In fact, our implementation of the Slave Listener and
MasterSlave() specifically uses certain tags of value 1000 and higher for these purposes. Hence,
application routines that do use tags should restrict themselves to tags [0..999].

communicator:
A communicator in MPI serves the purpose of a namespace. Most MPI commands require
a communicator argument to specify the namespace. MPI starts up with a default namespace,
MPI COMM WORLD. The ParGAP implementation always assumes that single namespace. A namespace
is important in MPI to build modules and library routines, so that a thread may distinguish messages
meant for itself, or to catch errors of cross-communication between two modules.
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message:
Each message in MPI is typically implemented to include fields for the source rank, destination rank
(optional), tag, communicator, count, and an array of data. The count field specifies the length of
the array. MPI guarantees that messages are non-overtaking, in the sense that if two messages are
sent from a single source process to the same destination process, then it is guaranteed that the first
process sent will be the first one to arrive, and will be received or probed first from the queue.

other:
MPI also has concepts of datatype, derived datatype, group, topology , etc. This implementation
defaults those values, so that datatype is always a character (hence the use of strings in ParGAP), no
derived datatypes are implemented, group is always consistent with MPI COMM WORLD, and topology
is the fully connected topology.

communication:
This implementation implements only point-to-point communication (always blocking receives,
except for MPI Iprobe, and sends can be blocking or not, according to the default underlying
sockets).

collective communication:
The MPI standard also provides for collective communication, which sets up a barrier in which all
process within the named communicator must participate. One process is distinguished as the root
process in cases of asymmetric usage. ParGAP does not implement any collective communication
(although you can easily emulate it using a sequence of point-to-point commands). The MPI
subset distribution (in ParGAP’s mpinu directory) does provide some commands for collective
communication. Examples of MPI collective communication commands are MPI Bcast (broadcast),
MPI Gather (place an entry from each process in an array residing on the root process), MPI Scatter

(inverse of gather), MPI Reduce (execute a commutative, associative function with an entry from
each process and store on root; example functions are sum, and, xor, etc.

dynamic processes:
The newer MPI-2 standard allows for the dynamic creation of new processes on new processors in
an ongoing MPI computation. The standard is silent on whether an MPI session should be aborted
if one of its member processes dies, and the MPI standard provides no mechanism to recognize
such a dead process. Part of the reason for this silence is that much of the ancestry of MPI lies in
dedicated parallel computers for which it would be unusual for one process or processor to die.

Here is a short extract of MPI code to illustrate its flavor. It illustrates the C equivalents of the following
ParGAP commands. Note that the ParGAP versions noted here take fewer parameters than their C-based
cousins, and ParGAP includes defaults for some optional parameters.

1
�

MPI Init() [ called for you automatically when ParGAP is loaded ] F
�

MPI Finalize() [ called for you automatically when GAP quits ] F
�

MPI Comm rank() F
�

MPI Get count() F
�

MPI Get source() F
�

MPI Get tag() F
�

MPI Comm size() F
�

MPI Send( string buf , int dest[, int tag = 0 ] ) F
�

MPI Recv( string buf [, int source = MPI ANY SOURCE[, int tag = MPI ANY TAG ] ] ) F
�

MPI Probe( [ int source = MPI ANY SOURCE[, int tag = MPI ANY TAG ] ] ) F

Many of the above commands have analogues at a higher level in section 2.1 as GetLastMsgSource(),
GetLastMsgTag(), MPI Comm size() = TOPCnumSlaves + 1, SendMsg(), RecvMsg() and ProbeMsg().

#include <stdlib.h>

#include <mpi.h>
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#define MYCOUNT 5

#define INT_TAG 1

main( int argc, char *argv[] )

{

int myrank;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

if ( myrank == 0 ) {

int mysize, dest, i;

int buf;

printf("My rank (master): %d\n", myrank);

for ( i=0; i<MYCOUNT; i++ )

buf = 5;

MPI_Comm_size( MPI_COMM_WORLD, &mysize );

printf("Size: %d\n", mysize);

for ( dest=1; dest< mysize; dest++ )

MPI_Send( &buf, MYCOUNT, MPI_INT, dest, INT_TAG, MPI_COMM_WORLD );

} else {

int i;

MPI_Status status;

int source;

int count;

int *buf;

printf("My rank (slave): %d\n", myrank);

MPI_Probe( MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );

printf( "Message pending with rank %d and tag %d.\n",

status.MPI_SOURCE, status.MPI_TAG );

if ( status.MPI_TAG != INT_TAG )

printf("Error: Bad tag.\n"); exit(1);

MPI_Get_count( &status, MPI_INT, &count );

printf( "The count of how many data units (MPI_INT) is: %d.\n", count );

buf = (int *)malloc( count * sizeof(int) );

source = status.MPI_SOURCE;

MPI_Recv( buf, count, MPI_INT, source, INT_TAG, MPI_COMM_WORLD, &status );

for ( i=0; i<MYCOUNT; i++ )

if ( *buf != 5 ) printf("error: buf[%d] != 5\n", i);

printf("slave %d done.\n", myrank);

}

MPI_Finalize();

exit(0);

}

Even in this simplistic example, it was important to specify

MPI_Recv( buf, count, MPI_INT, source, INT_TAG, MPI_COMM_WORLD, &status );

and not to use MPI ANY SOURCE instead of the known source. Although this alternative would often work,
there is a danger that there might be a second incoming message from a different source that arrives between
the calls to MPI Probe() and MPI Recv(). In such an event, MPI would be free to receive the second message
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in MPI Recv(), even though the appropriate count of the second message is likely to be different, thus risking
an overflow of the buf buffer.

Other typical bugs in MPI programs are:

• Incorrectly matching corresponding sends and receives or having more or fewer sends than receives due
to the logic of multiple sends and receives within distinct loops.

• Reaching deadlock because all active processes have blocking calls to MPI Recv() while no process has
yet reached code that executes MPI Send().

• Incorrect use of barriers in collective communication, whereby one process might execute:

MPI_Send( buf, count, datatype, dest, tag, COMM_1 );

MPI_Bcast( buffer, count, datatype, root, COMM_2 );

and a second executes

MPI_Bcast( buffer, count, datatype, root, COMM_2 );

MPI_Recv( buf, count, datatype, dest, tag, COMM_1, status );

If the call to MPI Send() is blocking (as is the case for long messages in the case of many implementa-
tions), then the first process will block at MPI Send() while the second blocks at ’MPI Bcast()’. This
happens even though they use distinct communicators, and the send-receive communication would not
normally interact with the broadcast communication.

Much of the TOP-C method in ParGAP (see chapters 3 and 5) was developed precisely to make errors like
those above syntactically impossible. The slave listener layer also does some additional work to keep track
of the status that was last received and other bookkeeping. Additionally, the TOP-C method was designed
to provide a higher level, task-oriented “language”, which would naturally lead the application programmer
into designing an efficient high level algorithm.

7.2 Other low level commands

Here is a complete listing of the low level commands available in ParGAP. Some of these commands were
documented elsewhere. The remaining ones are not recommended for most users. Nevertheless, it may be
useful to others for more sophisticated applications.

For most of these commands, the source code is the ultimat documentation. However, you may be able to
guess at the meaning of many of them based on their names and their similarity UNIX system calls (in
the case of UNIX ...) or MPI commands (in the case of MPI...). Some of the commands will also show
you their calling parameters if called with the wrong number of arguments. Many of the MPI commands
have simplified calling parameters with certain arguments optional or set to defaults, making them easier
for interactive use.

1
�

UNIX MakeString( len ) F
�

UNIX DirectoryCurrent() [ Defined in ‘pkg/pargap/lib/slavelist.g’ ] F
�

UNIX Chdir( string ) F
�

UNIX FflushStdout() F
�

UNIX Catch( function, return val ) F
�

UNIX Throw() F
�

UNIX Getpid() F
�

UNIX Hostname() F
�

UNIX Alarm( seconds ) F
�

UNIX Realtime() F
�

UNIX Nice( priority ) F
�

UNIX LimitRss( bytes of ram ) [ = setrlimit(RLIMIT RSS, ...) ] F
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2
�

MPI Init() F
�

MPI Initialized() F
�

MPI Finalize() F
�

MPI Comm rank() F
�

MPI Get count() F
�

MPI Get source() F
�

MPI Get tag() F
�

MPI Comm size() F
�

MPI World size() F
�

MPI Error string( errorcode ) F
�

MPI Get processor name() F
�

MPI Attr get( keyval ) F
�

MPI Abort( errorcode ) F
�

MPI Send( string buf , int dest[, int tag = 0 ] ) F
�

MPI Recv( string buf [, int source = MPI ANY SOURCE[, int tag = MPI ANY TAG ] ] ) F
�

MPI Probe( [ int source = MPI ANY SOURCE[, int tag = MPI ANY TAG ] ] ) F
�

MPI Iprobe( [ int source = MPI ANY SOURCE[, int tag = MPI ANY TAG ] ] ) F

3
�

MPI ANY SOURCE V
�

MPI ANY TAG V
�

MPI COMM WORLD V
�

MPI TAG UB V
�

MPI HOST V
�

MPI IO V



8 Comments?

COMMENTS SOLICITED:

I welcome comments on how well the TOP-C parallel model fits other applications. I am also interested in
building up a library of ParGAP programs that can be made available to other users. Finally, one ingredient
in making a system usabe is a good choice of names that makes the purpose of various commands obvious
to a new user. I welcome suggestions. For example, ParEval, BroadcastMsg, SendRecvMsg, and SendMsg all
have related functionalities. The same can be said of RecvMsg, ProbeMsg, ProbeMsgNonBlocking. Hence, a
more orthogonal naming scheme might be easier.

If you are interested in “looking over my shoulder”, you might also want to inspect some of my random
scribbling in the ParGAP’s etc subdirectory.
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