
Twenty-Six Moves Suffice for Rubik’s Cube

Daniel Kunkle
∗

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
kunkle@ccs.neu.edu

Gene Cooperman
∗

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
gene@ccs.neu.edu

ABSTRACT
The number of moves required to solve any state of Rubik’s cube
has been a matter of long-standing conjecture for over 25 years
— since Rubik’s cube appeared. This number is sometimes called
“God’s number”. An upper bound of 29 (in the face-turn metric)
was produced in the early 1990’s, followed by an upper bound of 27
in 2006.

An improved upper bound of 26 is produced using 8000 CPU
hours. One key to this result is a new, fast multiplication in the
mathematical group of Rubik’s cube. Another key is efficient out-
of-core (disk-based) parallel computation using terabytes of disk
storage. One can use the precomputed data structures to produce
such solutions for a specific Rubik’s cube position in a fraction
of a second. Work in progress will use the new “brute-forcing”
technique to further reduce the bound.

Categories and Subject Descriptors: I.1.2 [Symbolic and Alge-
braic Manipulation]: Algebraic algorithms

General Terms: Algorithms, Experimentation

Keywords: Rubik’s cube, upper bound, permutation groups, fast
multiplication, disk-based methods

1. INTRODUCTION
Over the decades, short solutions to Rubik’s cube have provided

a fascination — both for researchers in techniques of search and
enumeration and for hobbyists. For researchers, Rubik’s cube serves
as a well-known challenge problem against which otherwise di-
verse methods can be compared. In 1982, Singmaster and Frey [2]
ended their book on Cubik Math with the conjecture that “God’s
number” is in the low 20’s.

No one knows how many moves would be needed for
“God’s Algorithm” assuming he always used the fewest
moves required to restore the cube. It has been proven
that some patterns must exist that require at least sev-
enteen moves to restore but no one knows what those
patterns may be. Experienced group theorists have

∗This work was partially supported by the National Science Foun-
dation under Grants ACIR-0342555 and CNS-06-19616.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

conjectured that the smallest number of moves which
would be sufficient to restore any scrambled pattern —
that is, the number of moves required for “God’s Al-
gorithm” — is probably in the low twenties.

This conjecture remains unproven today. At the time of this con-
jecture, the best known bounds were a lower bound of 17 and an
upper bound of 52 [2]. The current best lower bound is 20 [7]. Be-
fore this work, the best known upper bound was 27 [5]. Here, we
improve that bound to 26.

Note that in all cases, we consider a move to be any quarter or
half turn of a face of the cube, also known as the face-turn met-
ric. We do not consider the alternative quarter-turn metric, which
defines a half-turn to be two moves.

We present a new, algebraic approach that concentrates on anal-
ysis of cosets for the corresponding mathematical group. The nov-
elty is based on a combination of:

• a subgroup chain of length two based on the square subgroup
(order 663,552)

• a new fast multiplication (requiring less than 100 nanosec-
onds) of either a symmetrized coset or a symmetrized group
element by a generator (see Sections 3, 4.1 and 5 for defini-
tions);

• efficient parallel computation using the aggregate bandwidth
of parallel disks for 7 TB of intermediate storage. (The ag-
gregate bandwidth is comparable to the bandwidth of a single
RAM subsystem.)

• an efficiently computable perfect hash function of the set of
symmetrized cosets (see Section 4.1 for definitions), and ef-
ficient computation of its inverse; and

• a compact representation of the coset graph data structure
using four bits per state to encode 1.4 × 1012 states.

The foundation of the method is to determine the maximal dis-
tance from the identity in both the square subgroup and the corre-
sponding coset graph. At heart, the computation is simply breadth-
first search using the 18 generators of Rubik’s cube (including squares
and inverses of generators). The out-of-core computation is re-
quired for the construction of the coset graph involving over 65 tril-
lion cosets.

The problem is reduced in space and time through the use of the
48 symmetries of Rubik’s cube (generated by the 24 symmetries
of a geometric cube, plus a geometric inversion). These symme-
tries are generator-preserving automorphisms in their action on the
group of Rubik’s cube. We can define both equivalence classes
of group elements (symmetrized group elements) and equivalence
classes of cosets (symmetrized cosets) under the automorphism.
This reduces the size of the coset graph to approximately 1.4 tril-
lion symmetrized cosets.

The paper is organized as follows. Section 2 briefly reviews
some related work. Section 3 presents the overall algorithm from
a high level. Section 4 presents background and some basic con-
cepts. In particular, this includes the definitions of symmetrized
group element and symmetrized coset. Section 5 describes the fast
multiplication algorithm, along with the perfect hash function. Sec-
tion 6 presents the details of finding a relatively tight upper bound
on the distance to the identity element of all elements of a sym-
metrized coset. Section 7 presents details on the computations and
final results.

2. RELATED WORK
One approach to finding bounds on solutions to Rubik’s cube

would be to produce the entire Cayley graph for the corresponding
group. Cooperman, Finkelstein and Sarawagi used this method to
show that 11 moves suffice for Rubik’s 2× 2× 2 cube [1]. For the
full 3 × 3 × 3 Rubik’s cube, this is not feasible, since it has over
4.3 × 1019 states.

The first published upper bound was 52. Discovered by Thistleth-
waite [2], it was based on solving the cube in a series of four steps,
corresponding to a chain of subgroups of length four. The four
steps were proven to have worst case lengths of 7, 13, 15, and 17,
for the total of 52.

In 1992, this algorithm was improved by Kociemba [3] to use a
subgroup chain of length two. In 1995, Reid [6] proved the worst
case for the two steps was 12 and 18, for a total upper bound of
30. Further analysis showed that the worst case never occurs, and
so a bound of 29 was shown. This bound was further refined by
Radu [5] in 2006 to 27, which was the best upper bound before this
work.

Besides work into methods with provable worst cases, several
optimal solvers with no worst case analysis have been developed.
The method developed by Kociemba and analyzed by Reid has a
natural extension that guarantees optimal solutions. Korf [4] used
similar techniques to optimally solve ten random cube states, one
in 16 moves, three in 17 moves, and the remaining six in 18 moves.

3. OVERVIEW OF APPROACH
The group of Rubik’s cube is decomposed into a chain of length

two, using the square subgroup (the subgroup generated by using
only half-turns of the faces) as the intermediate subgroup. The
square subgroup has only 663, 552 elements, and there are approx-
imately 6.5 × 1013 cosets in Rubik’s group. This is in contrast to
previous related approaches, which used subgroups that provided
subproblems of nearly equal size.

The overall strategy for an improved upper bound for Rubik’s
Cube has the following three phases. First, in Section 3.1, we
produce a graph of the symmetrized subgroup (symmetrized Cay-
ley graph), with subgroup elements as nodes and the generators
as edges, and show that no element has a distance of more than 13
from the identity. Second, In Section 3.2, we produce a graph of the
symmetrized cosets (symmetrized Schreier coset graph), and show
that no coset has a distance more than 16 from the trivial coset.
These first two steps provide an initial upper bound of 29. Finally,
in Section 6, we efficiently find still tighter bounds, by examining
the distance from group elements in the symmetrized coset to the
trivial group element, yielding the final upper bound of 26.

3.1 Construction of symmetrized Cayley sub-
group graph

Because of the small size of the square subgroup, only 15,752
after reduction by symmetries, these computations are negligible
when compared to the corresponding computations for the cosets.

First, we constructed the Cayley graph of the square subgroup
by breadth-first search, using the square generators. This computa-
tions took only seconds, even using a simple implementation on a

single computer. Then, we found the optimal solution for all ele-
ments of the square subgroup, where we allowed any of the 18 gen-
erators to be used. This was done using a bidirectional search for
each of the subgroup elements, using a day of CPU time.

We chose to use bidirectional search for this case, which pro-
ceeds in two phases. First, we performed a forward search to depth
7 using all of the generators. Then, we performed one backward
search for each of the 15,752 elements of the square subgroup.
These backwards searches required anywhere from milliseconds to
a few hours in the worst case. Overall, this optimization took less
than one day, requiring no parallelization.

Table 1 in Section 7 shows the distribution of elements for the
square subgroup, both for just the square generators and when al-
lowing all generators of the cube group.

3.2 Construction of symmetrized Schreier coset
graph

The construction is essentially a queue-based implementation of
breadth-first search. The complexity in the algorithm is primarily
due to the necessity of reducing the search space by the 48 symme-
tries of the cube, and of using disk.

The primary data structure is an almost perfectly dense hash ar-
ray of 1.5 × 1012 entries, corresponding the the range of hash in-
dices for all symmetrized cosets. The entries hold a four bit value
describing the level at which the corresponding symmetrized coset
occurs, for a total array size of 685 GB.

Algorithm 1 describes how this array is filled with the level at
which every symmetrized coset occurs in the breadth-first search. It
uses an iterative process with two phases, generating and merging,
with one such iteration per level. As an optimization, the breadth-
first search is initially conducted using only main memory, as in
the traditional case, and switches to the parallel disk-based version
once RAM limitations are met (in this case, at level 9).

4. NOTATION AND BASIC CONCEPTS

4.1 Group theory definitions
We review the formal mathematical definitions. Recall that a

group G is a set with multiplication and an identity e (eg =
ge = g), inverse (gg−1 = g−1g = e), and an associative law
((gh)k = g(hk)). A permutation of a set Ω is a one-to-one and
onto mapping from Ω to Ω. Composition of mappings provides the
group multiplication, and the group inverse is the inverse mapping.
A permutation group G is a subset of the permutations of a set Ω
with the above operations. A subgroup H < G is a subset H that is
closed under group operations. A group G has generators S ⊆ G,
written G = 〈S〉, if any element of G can be written as a product
of elements of S and their inverses. The order of the group is the
number of elements in it, |G|.

Given a group G and a subgroup H < G, a coset of H is the set
Hg = {hg : h ∈ H}. A subgroup H < G partitions the group
into cosets. The set of all cosets is written G/H . The conjugate

of g by h is defined by hgdef
= g−1hg. N < G is normal in G if

∀n ∈ N, g ∈ G, ng ∈ N .
An automorphism α of a group G is a one-to-one and onto map-

ping of G such that for g1, g2 ∈ G, one has α(g1g2) = α(g1)α(g2).
The informal idea of symmetries of Rubik’s cube has its formal
analogue in automorphisms.

A Cayley graph of a group G with generators S is a directed
graph whose vertices are the elements of G and whose directed
edges, (g1, g2), satisfy g1s = g2 for some edge label s ∈ S. Since
our chosen generating set for Rubik’s cube is preserved under in-
verses, the Cayley graph of Rubik’s cube can also be considered
an undirected graph. A Schreier coset graph of a group G with
generators S and subgroup H < G is a graph whose vertices
are the elements of G/H and whose edges, (Hg1, Hg2), satisfy

Algorithm 1 Construct Symmetrized Schreier Coset Graph
1: Initialize array of symmetrized cosets with all levels set to un-

known (four bits per coset).
2: Add trivial coset to array; set level ` to 0.
3: while previous level had produced new neighbors, at next level

do
4: {Generate new elements from the current level}
5: Let a segment be those nodes at level ` among N consecutive

elements of the array.
6: Scan array starting at beginning.
7: while we are not at the end of the array, extract next segment

of array and do
8: for each node at level ` (representing a symmetrized

coset) do
9: for each generator do

10: Compute product by fast multiplication.
11: Compute hash index of product.
12: Save hash index in bucket b, where b is the high bits

of the hash index. Note, we only save the low or-
der bits of the hash index not encoded by the bucket
number. (This value fits in four bytes.)

13: If bucket b is full, transfer it (write it) to a disk file
for bucket b.

14: end for
15: end for
16: Transfer all buckets to corresponding disk files.
17: end while
18: {Now merge buckets into array of symmetrized cosets.}
19: for each bucket b on disk do
20: Load portion of level array corresponding to bucket b into

main memory.
21: for each buffered element on disk for this bucket (read in

large chunks) do
22: Look up corresponding level value in array.
23: If a value already exists for the element, it is a dupli-

cate. Otherwise, set its level to `.
24: end for
25: Write portion of level array back to disk.
26: end for
27: Increment level `.
28: end while

Hg1s = Hg2 for some edge label s ∈ S.

Symmetrized group elements and symmetrized cosets.
While the above definitions are standard, we extend them to sym-

metrized group elements and symmetrized cosets. Let A be a group
of automorphisms of a group G. A symmetrized group element gA

for g ∈ G is the set {α(g) : α ∈ A}.
Given a subgroup H < G, let A be a group of automorphisms

of G that also preserve H (∀h ∈ H, α ∈ A, α(h) ∈ H). The sym-
metrized coset HgA is the set of elements {hα(g) : h ∈ H, α ∈
A} = ∪α∈AHα(g). (Note α(HgA) = HgA ∀α ∈ A.)

Let A be a group of automorphisms of G. Assume that A pre-
serves the generating set S of G. Then the symmetrized Cayley
graph for (G, S, A) is the directed graph with vertices {gA : g ∈
G} and with edges (gA

1 , gA
2) satisfying for some edge label s ∈ S:

∀g′

1 ∈ gA
1 , g′

1s ∈ gA
2 .

Without loss of generality, it suffices to consider only edge labels
satisfying g1s ∈ gA

2 for a distinguished group element g1 ∈ gA
1 .

Note that the edge label in a symmetrized Cayley graph is not
unique since we could equally well consider α(g′

1)α(s) ∈ α(g2)
as defining that edge. Hence, the edge (gA

1 , gA
2) has edge label s

such that g1s = g2 and also edge label s′ = α(s) for some α ∈ A,
such that α(g1)α(s) = α(g2). For any element g′

1s ∈ gA
2 satisfy-

ing g′

1 ∈ gA
1 , there is an α ∈ A with α(g′

1) = g1 and so the edge
((g′

1)
A, (g′

1s)
A) = (gA

1 , (g1α(s))A).
Similarly, assuming that G = 〈S〉, H < G, and A preserves S,

one defines the symmetrized Schreier coset graph for (G, H, S, A)
as the directed graph with vertices {HgA : g ∈ G} and with edges
(gA

1 , gA
2) satisfying Hg′

1 ∈ HgA
1 and Hg1s ∈ HgA

2 . As before,
in order to find all neighbors of gA

1 in a symmetrized Cayley graph,
it suffices to choose any distinguished element g′ ∈ HgA

1 , and the
set of neighbors is

{(H(g′)A, H(g′s)A) : s ∈ S, g′s /∈ H(g′)A}.

Note that for identity e ∈ G, the trivial coset He = H and the
trivial symmetrized coset HeA = H are equal. For our work, we
require the following property:

Let g′ ∈ HgA. Then the distance from the sym-
metrized coset HgA to the trivial symmetrized coset H
in the symmetrized Schreier coset graph is the same as
the distance from the coset Hg′ to the trivial coset H
in the Schreier coset graph.

The property is easy to prove. If there is a word w′ with distin-
guished element g′′ ∈ HgA such that g′′w′ ∈ HeA = H , then
there is an α ∈ A with α(g′′) = g′, and therefore g′α(w′) =
α(g′′)α(w′) ∈ H . Since the automorphisms α preserve S, α(w′)
is a word in S of length d, from Hg′ to the trivial coset in the
Schreier coset graph.

Perfect hash function.
Next, a perfect hash function is a hash function that produces no

collisions. Hence it is one-to-one. Section 5 describes efficient per-
fect hash functions both for certain classes of symmetrized cosets
and for symmetrized group elements. There is an efficiently com-
putable perfect hash function for symmetrized cosets of our chosen
subgroup of Rubik’s group. While this perfect hash function is not
minimal, it is nearly so. Furthermore, it has an efficiently com-
putable inverse hash function.

4.2 Rubik’s cube definitions
We assume the reader has seen a Rubik’s cube, and we provide

this description solely to fix terminology according to standard con-
ventions [2].

A Rubik’s cube is built from 26 cubies, each able to make re-
stricted rotations about a core of Rubik’s cube. A face of Rubik’s
cube is a side. Each face is divided into 9 facelets, where each of the
9 facelets is part of a distinct cubie. A cubie is either an edge cubie
(two visible facelets), a corner cubie (three visible facelets), or a
center cubie (one visible face, in the center of a side). The facelets
are similarly edge facelets, corner facelets, or center facelets.

The states of Rubik’s cube can be considered as permutations on
48 facelets (the 24 corner facelets and the 24 edge facelets). The
center facelets are considered to be fixed, and all rotations of Ru-
bik’s cube are considered to preserve a fixed orientation of the cube
in 3 dimensions. The home position or solved position of Rubik’s
cube is one in which all facelets of a face are the same color, and
(for the sake of specificity) the blue face is downwards. We will
speak interchangeably about an element of Rubik’s group, a state,
or a position of Rubik’s cube. Similarly, we will speak interchange-
ably about the home position of Rubik’s cube or the identity element
of Rubik’s group. Hence, a position of the cube is identified with a
group element that permutes the facelets from the home position to
the given position.

The moves of Rubik’s group are conventionally denoted U , U−1,
U2, D, D−1, D2, R, R−1, R2, L, L−1, L2, F , F−1, F 2, B, B−1,
and B2. Mnemonically, U stands for a clockwise quarter turn of

the “up” face, and similarly, D, R, L, F and B stand for “down”,
“right”, “left”, “front” and “back”, respectively. Any of the above
moves will move exactly 20 facelets. These moves also make up the
generators of the Rubik’s cube group, G. Standard techniques, such
as Sims’s algorithm for group membership, show that the order of
Rubik’s group is |G| = 43, 252, 003, 274, 489, 856, 000 (approxi-
mately 4.3 × 1019).

The generators of the square subgroup are given by

Q =
〈

U2, D2, R2, L2, F 2, B2〉

Standard techniques show that the order of the square subgroup is
|S| = 663, 552 (approximately 6.6 × 105). The index, or number
of cosets, is [G : S] = |G|/|S| = 65, 182, 537, 728, 000 (approx-
imately 6.5 × 1013).

4.3 Symmetries (Natural Automorphisms) of
Rubik’s Cube

For Rubik’s cube, we desire a subgroup of 48 automorphisms
that preserve the set of generators: the natural automorphisms of
Rubik’s cube. Each automorphism can be identified with a symme-
try of a geometric cube: either one of 24 rotations of the entire cube
or a rotation followed by an inversion of the cube. An inversion of
the cube maps each corner of the cube to the opposite corner.

A rotation of the cube maps the natural generators of Rubik’s
cube to generators. An inversion of the cube maps generators to
inverse generators (clockwise quarter turns to counter-clockwise
quarter turns). These 48 symmetries of the cube are known to pre-
serve the natural generators of Rubik’s group, and no other auto-
morphisms of Rubik’s group do so.

5. FAST GROUP MULTIPLICATION IN THE
PRESENCE OF SYMMETRIES

Next, the method of fast multiplication is presented. The method
breaks up a group into smaller subgroups (called coordinates by
Kociemba [3]). The chosen subgroups are tailored for fast mul-
tiplication both within the square subgroup (group generated by
squares of generators) and multiplication of the cosets by genera-
tors. Each subgroup is small enough so that the derived table-based
computations fit inside CPU cache.

We will separately consider the edge group (the action on edge
facelets) and the corner group (the action on corner facelets). The
two actions are “linked”. This will be discussed in later subsec-
tions. First, we provide the fundamental basis for our result.

5.1 Decomposition into Smaller Subgroups and
Fast Multiplication

The following easy result provides the basis for our fast multi-
plication.

LEMMA 1. Let G be a group with G > H = QN and Q∩N =
{1}. Then given a set of canonical coset representatives of G/H ,
an element g ∈ G uniquely defines q, ḡ and n as follows.

g = qḡn, where q ∈ Q, ḡ is the canonical coset

representative of Hg, and n ∈ N .

PROOF. Clearly, g = hḡ for a uniquely defined h ∈ H and ḡ the
coset representative of Hg. The equation h = qn′ then uniquely
defines q and n′ for q ∈ Q and n ∈ N . Define n′ by n = n′ḡ .
Then g = hḡ = qn′ḡ = qḡn.

Lemma 1 provides the basis for a perfect hash function for G and
Q, since g and the corresponding coset Qg can be encoded by φ1

and φ2 as follows.

For g = qḡn as above , φ1(g) = (q, ḡ, n) (1)

and φ2(Qg) = (ḡ, n). (2)

Given perfect hash functions for Q, G/H and N , the above equa-
tions yield perfect hash functions for G and for G/Q through a
mixed radix encoding. The importance of this particular encoding
is that it adapts well to an algorithm for fast multiplication.

If the group N is also normal, then there is an efficient mul-
tiplication of a triple (q, ḡ, n) and a pair (ḡ, n). Recall that the
conjugate of a group element h by g is defined as hg = g−1hg.
Recall that a subgroup N < G is a normal subgroup if ∀n ∈ N ,
and g ∈ G, ng ∈ N . This immediately implies ng = gng and
ng

1n
g
2 = (n1n2)

g for n, n1, n2 ∈ N and g ∈ G.
Next, consider g = qḡn as above. In addition, assume that N

is a normal subgroup. Let ḡs decompose into q′ḡsn′ by Lemma 1,
where ḡs is the canonical coset representative of Hḡs. Note also
that Hḡs = Hgs implies ḡs = gs for gs the canonical coset
representative of Hgs. Then the product of g by a generator s can
be expressed as follows.

LEMMA 2. Let Q < G and let N be a normal subgroup of G.
Let Q ∩ N = {1}. Let g, s ∈ G. Assume the decompositions g =
qḡn and ḡs = q′gsn′, as given by Lemma 1. Then the following
holds.

If g = qḡn and ḡs = q′gsn′, then gs = (qq′)gs(n′ns)(3)

and Qgs = Qgs(n′ns). (4)

Providing that Q, N and G/(QN) are sufficiently small, Lemma 2
provides the foundation for precomputing small tables of all the re-
quired products, for any given s ∈ G. Typically, we choose s to
be a generator since there are few generators, and so the relatively
small size of the tables is maintained.

Fast multiplication by an arbitrary group element, while using
small tables, is also feasible. By Lemma 1, an arbitrary group ele-
ment can be written as g = qḡn. Assuming that g is represented as
the triple (q, ḡ, n), one can successively treat each of q, ḡ and n as
the generator s for purposes of multiplication on the right.

5.2 Fast Multiplication of Coset by Generator
for Edge Group

First, consider the edge group E, the restriction of Rubik’s group
to act only on edge facelets. Similarly, let ME be the restriction
of the generators of Rubik’s cube, M , to elements that act only
on the edges. Let QE be the restriction of the square subgroup
Q =

〈

{s2 | s ∈ M}
〉

to act only on the edges. Hence, QE =
〈

{s2 | s ∈ ME}
〉

.
Let NE be the normal subgroup of E that fixes the edge cubies

setwise, but allows the two facelets of an edge cubie to be trans-
posed. There are 12 edge cubies, but it is not possible in Rubik’s
cube to transpose the facelets of an odd number of edge cubies.
Group theoretic arguments then show the order of the group NE to
be 211.

It is easy to show that NE is normal in G since for n ∈ NE and
g ∈ G, g−1ng may permute the cubies according to g−1, but n
fixes the cubies, and g then brings the cubies back to their original
position. So, g−1ng ∈ N and so NE is normal.

We describe the method for fast multiplication of a coset of E/QE

by a generator from ME . We define HE = QENE . The method
depends on a subgroup chain

E > HE > NE , for NE normal in E,

HE
def
=QENE , and QE ∩ NE = {1}.

For the remainder of this section, we often omit the subscripts
of ME , HE , NE and QE , since we will always be concerned with
the action on edges.

By Lemma 1, for any coset Qg ∈ E/Q, Qg = Qr1r2. So, Qg is
represented as a pair (r1, r2) for r1 a canonical coset representative
in E/H and r2 ∈ N . Given a generator s of E, equation 4 is

Edge Tables Size Inputs Output
Table 1a 1564 × 18 × 2B r1, s Hr1s ∈ E/H for r1s a canonical coset representative of E/H

Table 1b 1564 × 18 × 2B r1, s r̄2
def
= nr1s ∈ N , where n is defined by setting h

def
= r1s(r1s)−1 ∈ H

and uniquely factoring h = q̄n for q̄ ∈ Q, n ∈ N
Table 2 2048 × 18 × 2B r2, s rs

2 ∈ N
Logical op’s r2, r′2 r2r′2 ∈ N (using addition mod 2 on packed fields)

Figure 1: Edge table for fast multiplication

Edge Tables Size Inputs Output
Table Aut 1564 × 18 × 1B r1,e, s α ∈ A for α(r1s) a canonical coset rep. of H in E

(We choose α such that α(r1s) = minβ∈A β(r1s).)
Table 1a 1564 × 18 × 2B r1,e, s Hα(r1s) ∈ E/H for α defined in terms of r1 and s by Table Aut.
(coset rep.) (Note that HA = H .)

Table 1b 1564 × 18 × 2B r1,e, s r̄2
def
= n′α(r1s) ∈ N , where h′def

= α(r1s)α(r1s)−1 ∈ H and h′ = q̄′n′

(N) for q̄′ ∈ Q, n′ ∈ N for α defined in terms of r1 and s by Table Aut
Table 2 2048 × 18 × 2B r2,e, s rs

2 ∈ N
Table 5 2048 × 48 × 2B ne ∈ N, α α(n) ∈ N , where α is the output of Table Aut

n is defined by n = rs2 (output of Table 2 for edges)
Logical op’s r2,e, r′2,e r2r′2 ∈ N (using addition mod 2 on packed fields)

Figure 2: Edge table for fast multiplication of symmetrized coset by generator

used below to multiply the pair (r1, r2) by s and return a new pair,
(r′1, r

′

2) = (r1s, r̄2(r
s
2)).

Let r1s = q̄ r1s r̄2,

where q̄ ∈ Q, r̄2 ∈ N, and r1s is the

canonical coset representative of Qr1s. (5)

Then Qr1r2s = Qr1s(r
s
2) = Qr1s(r̄2(r

s
2)) (6)

Given (r1, r2) and a generator s, one can compute (r′

1, r
′

2) such
that Qr1r2s = Qr′1r

′

2 primarily through table lookup. Figure 1
describes the necessary edge tables.

Note that the logical operations can be done efficiently, because
N is an elementary abelian 2-group. This means that the group N
is isomorphic to an additive group of vectors over a finite field of
order 2. In other words, multiplication in N is equivalent to addi-
tion in GF(2)11, the 11-dimensional vector space over the field of
order 2. Addition in the field of order 2 can be executed by “ex-
clusive or”. Hence, it suffices to use bitwise “exclusive or” over
11 bits for group multiplication in NE .

5.3 Extension to Group Action on Corners
For corners, we use the same logic as previously, but with the

corner group C, the restriction MC of the generators to corners,
and the restriction QC of the square group to corners. Let NC

be the subgroup of C that fixes in position the corner cubies, but
allows the facelets of the corner cubie to be permuted. There are
8 corner cubies, but a standard group-theoretic algorithm shows
that within the subgroup C, the number of group elements fixing
all corner cubies is only 37.

As before, we drop the subscripts for readability. Hence, the
tables of Figure 1 can be reinterpreted as pertaining to corners.
However, there is a small difference. Since NC is an elemen-
tary abelian 3-group, multiplication in NC is equivalent to addition
over GF(3)7.

5.4 Generalization to Fast Multiplication over
Symmetrized Cosets

Assume that the automorphism group A acts on edge facelets
and corner facelets, separately preserving edge and corner facelets.
Assume also that A preserves the subgroups Q, N and H = QN .
Therefore, A also maps the projections of Q, N and H = QN into
edges and into corners.

Assume that the symmetrized coset QgA is uniquely represented

as Q(r1r2)
A, where r1 is the canonical representative of a sym-

metrized coset HgA with H = QN , and r2 ∈ N , as described in
Lemma 1.

The subscript e, below, indicates the restriction of a permutation
to its action only on edges. Similarly, the subscript c is for corners.
The subscripts are omitted where the meaning is clear.

For edges,

Qα(r1,er2,es) = Qα(r1s)α(rs
2) = Qα(r1s)(r̄2α(rs

2)),

where α(r1s) defined by Table 1a for edges,

where α is chosen to minimize α(r1s),

r̄2 defined by Table 1b for edges, etc. (7)

However for corners,

Qα(r1,cr2,cs) = Qα(r1s (r̄2(r
s
2))) =

Qα(r1s)α(r̄2(r
s
2)) = Qα(r1s)n

α(r1s)α(r̄2(r
s
2)),

where α is chosen as in equation 7,

where r1s defined by Table 1a,

α(r1s) defined by Table 4a,

nα(r1s) defined by Table 4b for corners,

r̄2 defined by Table 1b,

rS
2 by Table 2 for corners, etc. (8)

Note that the choice of α ∈ A for edges above depends on there
being a unique such automorphism that minimizes α(r1s). In fact,
this is not true in about 5.2% of cases for randomly chosen r1 and s.
These unusual cases can be easily detected at run-time, and addi-
tional tie-breaking logic is generated. We proceed to describe ta-
bles for fast multiplication for the common case of unique α ∈ A

minimizing α(r1s), and discuss the tie-breaking logic later.
The tables that implement the above formulas follow. While it is

mathematically true that we can simplify α(r1s) into α(r1s), we
often maintain the longer formula to make clear the origins of that
expression, which is needed for an implementation. As before, the
subscripts e and c indicate the restriction of a permutation to its
action only on edges and only on corners. Figures 2 and 3 describe
the following edge tables, among others.

Ideally, one would use only the simpler formula and tables for
edges, and copy that logic for corners. Unfortunately, this is not

Corner Tables Size Inputs Output
Table 1a 420 × 18 × 2B r1,c, s Hr1s ∈ C/H for r1s a canonical rep. of a coset of C/H

Table 1b 420 × 18 × 2B r1,c, s r̄2
def
= n′r1s ∈ N , where n′ is defined by setting h

def
= r1sr1s −1 ∈ H

and uniquely factoring h = q̄n′ for q̄ ∈ Q, n′ ∈ N
Table 2 2187 × 18 × 2B r2,c, s rs

2 ∈ N

Table 4a 420 × 48 × 2B Hr1,cs ∈ C/H, α Hα(r1s) ∈ C/H , where Hr1s is the output of Table 1a,
(coset rep.) and α is the output of Table Aut on edges

Table 4b 420 × 48 × 2B Hr1,cs ∈ C/H, α nα(r1s) ∈ N , where Hr1s is the output of Table 1a,
(N) and n is defined by setting h = α(r1s) α(r1s)−1 ∈ H ,

and uniquely factoring h into qn for q ∈ Q, n ∈ N
Table 5 2187 × 48 × 2B nc ∈ N, α α(n) ∈ N , where α is the output of Table Aut on edges

n defined by computing r̄2 = n′r1s (as in Table 1b),
and rs

2 computed as in Table 2,
and r̄2rs

2 computed by logical op’s on corners
Logical op’s r2,c, r′2,c r2r′2 ∈ N (using addition mod 3 on packed fields)

Figure 3: Corner table for fast multiplication of symmetrized coset by generator

possible. We must choose a representative automorphism α ∈ A
for purposes of computation. We choose α based on the projec-
tion r1,e of r1 into E (action of r1 on edges). Hence, Tables 1a
and 1b for edges take input r1 and s, then compute α as an inter-
mediate computation, then return Hα(r1s). A similar computation
for corners is not possible, because the intermediate value α de-
pends on r1,e and not on the corresponding element of the corner
group r1,c.

Tie-breakers: when the minimizing automorphism is
not unique.

Table Aut in the previous table for edges defines an automor-
phism α that minimizes α(r1s). Unfortunately, there is not always
a unique such α. In such cases, one needs a tie-breaker, since dif-
ferent choices of α will in general produce different encodings (dif-
ferent hash indices).

For each possible value of α(r1s), with α chosen to minimize the
expression, we precompute the stabilizer subgroup B ≤ A defined
by

B = {β ∈ A : β(α(r1s)) = α(r1s)}

we use the formulas and additional table below to find the unique
β ∈ B such that the product αβ minimizes the edge pair re-
sult (r′1,e, r

′

2,e). Where even this is not enough to break ties, we
compute the full encoding, while trying all possible tying automor-
phisms. This latter situation arises in only 0.23% of the time, and
does not contribute significantly to the time. The tables of Figure 4
suffice for these computations.

For edges,

Qβ(α(r1,er2,es)) = Qβ(α(r1s))β(α(rs
2)) =

Qβ(α(r1s)) (β (r̄2α(rs
2))) = Qα(r1s)r̄

′

2 (β (r̄2α(rs
2))) ,

where α(r1s) defined by Table 1a for edges,

where α is chosen to minimize α(r1s),

and β ∈ A satisfies Qβ(α(r1s)) = Qα(r1s)

and β(α(r1s)) = α(r1s)r̄
′

2 (r′2 defined in Table 3) ,

and r̄2 defined by Table 1b for edges. (9)

However for corners,

Qβ(α(r1,cr2,cs)) = Qβ(α(r1s (r̄2(r
s
2)))) =

Qβ(α(r1s))β(α(r̄2(r
s
2))) =

Qβ(α(r1s))n
β(α(r1s))β(α(r̄2(r

s
2)))

where α and β are chosen as in equation 9,

and other quantities based on

the previous Corner Tables using αβ. (10)

Table 1c is implemented more efficiently by storing the elements
of each of the possible 98 subgroups of the automorphism group,
and having Table 1c point to the appropriate subgroup B ≤ A,
stabilizing r1,e, s.

5.5 Optimizations
In the discussion so far, we produce the encoding or hash index

of a group element based on an encoding of the action of the group
element on edges, along with an encoding of the action of the group
element on corners. We can cut this encoding in half due to parity
considerations.

Consider the action of Rubik’s cube on the 12 edge cubies and
the 8 corner cubies, rather than on the facelets. We define the edge
parity of a group element to be the parity (even or odd) in its action
on edge cubies. (Recall that the parity of a permutation is odd or
even according to whether the permutation is expressible as an odd
or even number of transpositions.) The corner parity is similarly
defined.

The edge and corner parity of a symmetrized coset, HgA, are
well-defined, and are the same as the edge and corner parity of g.
This is so because H = QN , and elements of Q and N have
even edge parity and even corner parity. Parity is unchanged by the
action of an automorphism.

For Rubik’s cube, the natural generators have the edge parity
equal to the corner parity. So this property extends to all group el-
ements, and hence to all symmetrized cosets HgA. Therefore, our
encoding can assume that edge and corner parities of symmetrized
cosets are equal. The size of the corresponding hash table is thus
reduced by half.

Nearly Minimal Perfect Hash Function.
If we were to only use cosets instead of symmetrized cosets (no

automorphism), then the perfect hash function that we have de-
scribed implicitly would also be a minimal perfect hash function.
However, there are examples for which Qα(g) = Qg for α not the
identity automorphism.

A computation demonstrates that the perfect hash function of
Section 5.4 with the addition of the parity optimization has an effi-
ciency of 92.3%. In fact, we compute that there are

1, 471, 074, 877, 440 ≈ 1.5 × 1012 ≈ |G|/|Q|/44.3

symmetrized cosets. The ratio 44.3/48 yields our efficiency ratio of
92.3%. Further details are omitted due to lack of space.

5.6 Fast Multiplication in Square Subgroup
There is a similar algorithm for fast multiplication in the square

subgroup, which is omitted due to lack of space.

Edge Tables Size Inputs Output
Table Mult Aut 48 × 48 × 1B α, β the product αβ ∈ A

Table 1c (A) 1564 × 18 × 1B r1,e, s {β ∈ A : β(α(r1s)) = α(r1s)}

Table 3 (N) 2048 × 48 × 2B Hr1,cs ∈ C/H , α r̄′2
def
= n′′β(r1) ∈ N , where β taken from Table 1c, and

where h′′def
= β(r1)β(r1)−1 ∈ H , and h′′ = q̄′′n′′, for q̄′′ ∈ Q, n′′ ∈ N

Figure 4: Edge table for fast multiplication of symmetrized coset by generator, adjusted to break ties

6. “BRUTE FORCE” UPPER BOUNDS ON
SOLUTIONS WITHIN A COSET

6.1 Goal of Brute Forcing Cosets
Having constructed the Schreier coset graph, one wishes to test

individual cosets, and prove that all group elements of that coset are
expressible as words in the generators of length at most u. Hence,
u is the desired upper bound we wish to prove.

Recall that G is the group of Rubik’s cube, and Q is the square
subgroup. Consider a coset Qg at a level ` (distance ` from the
home position, or identity coset, in the coset graph). Let d be the di-
ameter of the subgroup Q. For any group element h ∈ Qg, clearly
its distance from the identity element is at least ` and at most `+d.
We describe a computation to produce a finer upper bound on the
distance of any h ∈ Qg from the identity element.

Because our subgroup Q (the square subgroup) is of such small
order, it is even feasible to simply apply an optimal solver to each
element of a coset. If the optimal length words for each element is
always less than or equal to u, then we are done. However, we will
present a more efficient technique, which can scale to millions of
cosets.

For simplicity, we first assume that we are not applying any sym-
metry reductions using the automorphism group. So, each coset
contains 663,552 elements, just as does the square subgroup.

6.2 Basic Algorithm
Note that for the coset Qg, there can be many paths in the coset

graph from the identity coset to Qg. In terms of group theory, there
are multiple words, w1, w2, . . ., where each word is a product of
generators of Rubik’s group, and Qw1 = Qw2 = . . . = Qg. Note
that in general, the words are distinct group elements: w1 6= w2,
etc. Nevertheless, w1w

−1
2 ∈ Q. This is the key to finding a refined

upper bound.
Next, suppose our goal is to demonstrate an upper bound u, for

` ≤ u < ` + d. Let dist(q) denote the distance from an element
q ∈ Q to the identity element in the Cayley graph of G with the
original Rubik generators. Let Qu be {q ∈ Q | dist(q) ≤ u}, the
subset of Q at distance from the identity at most u.

Next, consider Qkg
def
= {qg | q ∈ Qk}. Assume that the words

wi are of length d in the generators of Rubik’s group, and that
Qw1 = Qw2 = . . . = Qg. Note that for all elements of Qkw1,
there is an upper bound, k + d. Similarly, for all elements of
Qkw2, there is an upper bound, k + d. Therefore, the elements
of Qkw1 ∪Qkw1 have an upper bound of k + d. More compactly,

dist(Qkw1 ∪ Qkw2) ≤ k + d

More generally, for wi a word in the generators of G, let len(wi)
be the length of that word. Then

dist(Qk+d−len(w1)w1 ∪ Qk+d−len(w2)w2) ≤ k + d

since the length of any word in Qk+d−len(w1)w1 is at most (k +
d − len(w1)) + len(w1) = k + d and similarly for w2.

Define the complement Q′

j
def
=Q \ Qj . We can now write:

Q′

k+d−len(w1)w1∩Q′

k+d−len(w2)w2 ⊇ {h ∈ Qg | dist(hg) > k+d}

Clearly, the above equation can be generalized to the intersection
of multiple words, w1, w2,

∩iQ
′

k+d−len(wi)wi = ∅ =⇒ ∀i, dist(Qwi) = dist(Qg) ≤ k + d

Finally, for purposes of computation, Algorithm 2, below, cap-
tures these insights.

Algorithm 2 Coset Upper Bound
Input: a subgroup Q of a group G, a coset Qg; a desired upper

bound `; and a set of words h1, h2, . . . in generators of G such
that Qghi = Q.

Output: a demonstration that all elements of Qg have solutions of
length at most ` or else a subset S ⊆ Qg such that all elements
of Qg \ S are known to have solutions of length at most `.

1: Let k = ` − len(g). Let U0 = {q ∈ Q | len(q) > k} ⊆ Q.
Then (Q\U0)g is the subset of elements in the coset Qg which
are known to have solutions of length at most `. The set U0g
is the “unknown set”, for which we must decide if they have
solutions of length ` or less.

2: For each i ≥ 1, let Ui = Ui−1\{q ∈ Ui−1 | dist(qghi) ≤ `−
len(hi)}. (Note that qghi ∈ Q). By dist(qghi), we mean the
shortest path in the full set of generators of G. If dist(qghi) ≤
` − len(hi), then qg has a solution of length at most `. The
solution for qg is given by a path length len(hi) followed by a
path of length ` − len(hi) = dist(qghi).

3: If Ui = ∅ for some i ≤ j, then we have shown that all elements
of Qg have solutions of length at most `. If Uj 6= ∅, then we
have shown that all elements of (Q\Uj)g have solution length
at most `.

For purposes of implementation, note that ghi ∈ Q. So, for
q ∈ Q, qghi can be computed by fast multiplication within the
subgroup Q.

6.3 Using Symmetries
We now generalize the method of the previous section to take

account of reductions through symmetries.
First, note that for a symmetrized coset with representative coset Qg

and for a natural automorphism α, dist(Qg) = dist(Qα(g)). (This
was demonstrated in Section 3.2). Furthermore, for any h ∈ Qg,
dist(h) = dist(α(h)).

From this, it is clear that any upper bound on the distance of
elements in Qg from the identity will also hold for Qα(g). So,
it suffices to determine upper bounds for a single representative of
each automorphism class.

Finally, one must determine whether hw−1
i /∈ Q′

k+d−len(wi)
.

This can be done by maintaining a hash table mapping all elements
q ∈ Q to dist(q).

7. EXPERIMENTAL RESULTS
Our experimental results have proven that 26 moves suffice for

any state of Rubik’s cube. This was achieved in three steps: proving
that all elements of the square subgroup are within 13 of the iden-
tity; proving that all cosets are within 16 of the trivial coset; and,

refining the bound on the farthest cosets by brute force, reducing
the bound by 3.

7.1 Square Subgroup Elements are within 13
of the Identity

Recall, from Section 3.1, the following two-step process for this
computation. First, we constructed the Cayley graph of the sub-
group by breadth-first search, using the square generators. Then,
the distance for each of these elements from the identity, when al-
lowing all generators of the full group, were determined using bidi-
rectional search. All of these computations were done on a single
computer in under a day.

Table 1 shows the distribution of element distances in the square
subgroup, using either the square generators or the full set of gen-
erators.

Square Generators All Generators
Dist. Elts Dist. Elts Dist. Elts Dist. Elts

0 1 8 1258 0 1 8 1871
1 1 9 2627 1 1 9 4093
2 2 10 4094 2 2 10 5394
3 5 11 4137 3 5 11 2774
4 18 12 2231 4 18 12 620
5 56 13 548 5 62 13 4
6 162 14 114 6 214
7 482 15 16 7 693

Total 15752 Total 15752

Table 1: Distribution of elements in the square subgroup, after
reduction by symmetries.

7.2 Cosets are within 16 of the Trivial Coset
The dominant time for our computations was in producing the

symmetrized Schreier coset graph for the square subgroup in the
group of Rubik’s cube, as described in Section 3.2.

The computation used the DataStar cluster at the San Diego Su-
percomputer Center (SDSC). We used 16 compute nodes in par-
allel, each with 8 CPUs and 16 GB of main memory. For out-
of-core storage, we used DataStar’s attached GPFS (IBM General
Parallel File System). We used up to 7 terabytes of storage at any
given time, as a buffer for newly generated states in the breadth-
first search. The final data structure, associating a 4-bit value with
each symmetrized coset, used approximately 685 GB.

The computation required 63 hours, or over 8000 CPU hours.
The fast multiplication algorithm allowed us to multiply a sym-
metrized coset by a generator at a rate between 5 and 10 million
times per second, depending on the size of available CPU caches.

Table 2 shows the distribution of distances for cosets in the sym-
metrized Schreier coset graph.

Dist. Elements Distance Elements
0 1 9 80741117 ≈ 8.1 × 107

1 1 10 1028869318 ≈ 1.0 × 109

2 3 11 12787176355 ≈ 1.3 × 1010

3 23 12 140352357299 ≈ 1.4 × 1011

4 241 13 781415318341 ≈ 7.8 × 1011

5 3002 14 421980213679 ≈ 4.2 × 1011

6 38336 15 330036864 ≈ 3.3 × 108

7 490879 16 17
8 6298864

Total 1357981544340 ≈ 1.36 × 1012

Table 2: Distribution of symmetrized cosets of the square sub-
group.

7.3 Brute Forcing of 3 Levels
Kociemba’s Cube Explorer software [3] was used to show that

all cosets at level 3 have solutions of length at most 14. To do
this, it sufficed to analyze the elements at levels 12 and 13 from the
square subgroup. Denoting the set of those subgroup elements S,
and denoting all of the elements at level 3 in the cosets by T , we
considered all pairwise products S × T . There are (620 + 4) ×
23 = 14,352 such elements. Cube Explorer was run on each such
element. This proves that for a coset at coset level x > 3, (x −
2) + 13 moves suffice. Combining this with the expected depth of
x = 16 for the symmetrized Schreier coset graph yields an upper
bound of (x − 2) + 13 ≤ 27 moves for solutions to Rubik’s cube.

We similarly showed that none of the elements in any of the
17 cosets at level 16 required more than 26 moves, again using
Cube Explorer. In combination with the above, this demonstrates
an upper bound of 26 moves for solutions to Rubik’s cube.

7.4 Further Brute Forcing
Our continuing work is using the efficient brute forcing tech-

niques given in Section 6 to further reduce the upper bound from
26 to 25 moves. We plan to achieve this by brute forcing all cosets
at some early level by three moves.

Our current experiments indicate that there exist elements that
can not be brute forced by three moves out to level 8. Directly
considering all cases at level 9 is computationally expensive, as
there are over 80 million level 9 cosets, each with 3398 unproven
elements (corresponding to the last three levels of the square sub-
group). Instead, we use the new brute forcing techniques for cosets
at earlier levels, and “project” the remaining unproven elements to
later levels.

So far, we have removed over 95% of the elements across all
cosets at level 8. However, only about 10% of the cosets at level 8
have no remaining cases, and require additional brute forcing. We
anticipate that, by using our efficient brute forcing technique, and
significant computing power, we will be able handle the remaining
cases at levels 8 and 9, and therefore prove that 25 moves suffice
for Rubik’s cube.

8. REFERENCES
[1] Gene Cooperman, Larry Finkelstein, and Namita Sarawagi.

Applications of Cayley graphs. In AAECC: Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes,
International Conference, pages 367–378. LNCS,
Springer-Verlag, 1990.

[2] Alexander H. Frey, Jr. and David Singmaster. Handbook of
Cubik Math. Enslow Publishers, 1982.

[3] Herbert Kociemba. Cube Explorer.
http://kociemba.org/cube.htm, 2006.

[4] Richard Korf. Finding optimal solutions to Rubik’s cube using
pattern databases. In Proceedings of the Workshop on
Computer Games (W31) at IJCAI-97, pages 21–26, Nagoya,
Japan, 1997.

[5] Silviu Radu. Rubik can be solved in 27f.
http://cubezzz.homelinux.org/drupal/?q=
node/view/53, 2006.

[6] Michael Reid. New upper bounds.
http://www.math.rwth-aachen.de/˜Martin.
Schoenert/Cube-Lovers/michael_re%id__new_
upper_bounds.html, 1995.

[7] Michael Reid. Superflip requires 20 face turns.
http://www.math.rwth-aachen.de/˜Martin.
Schoenert/Cube-Lovers/michael_re%id_
_superflip_requires_20_face_turns.html,
1995.

