
A Comparative Analysis of Parallel Disk-Based Methods
for Enumerating Implicit Graphs

Eric Robinson
College of Computer Science

Northeastern University
Boston, MA 02115 / USA
tivadar@ccs.neu.edu

Daniel Kunkle
College of Computer Science

Northeastern University
Boston, MA 02115 / USA
kunkle@ccs.neu.edu

Gene Cooperman
College of Computer Science

Northeastern University
Boston, MA 02115 / USA
gene@ccs.neu.edu

ABSTRACT
It is only in the last five years that researchers have begun
to use disk-based search techniques on a large scale. The
primary examples of its use come from symbolic algebra
and from artificial intelligence. In the field of parallel search,
disk-based search has been forced on researchers because the
historical growth in the amount of RAM per CPU core has
now stopped. Indeed, the current trend toward multi-core
CPUs now threatens to take us backwards.

This article makes an original contribution to the design
of disk-based parallel search algorithms. It presents a sur-
vey of disk-based techniques side-by-side, for the first time.
This allows researchers to choose from a menu of techniques,
and also to create new hybrid algorithms from the building
blocks presented here.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic algorithms, I.2.8
[Artificial Intelligence]: Graph and tree search strategies

General Terms: Algorithms

Keywords: parallel, disk-based, search, enumeration, im-
plicit graphs

1. INTRODUCTION
Search techniques are at the heart of many problems in

symbolic algebra. As search problems grow, they require
both more time and more space. There has been much work
in the use of parallelism to enable larger search. However,
there has been considerably less work on managing the ex-
plosion of search states that occur. In symbolic algebra, this
is usually known as intermediate swell, and it is a problem
that occurs throughout the field.

Examples of large search-type problems with intermedi-
ate swell occur in Gröbner bases, in theorem proving, and
in applications using heuristic search. In addition, the area
of computational group theory provides an especially rich
selection of applications. This includes the constructions of
permutation group representations from matrix group repre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO’07, July 27–28, 2007, London, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-741-4/07/0007 ...$5.00.

sentations, condensation methods for representation theory,
and variations of Sims’s method of base and strong generat-
ing set for high degree permutations. These methods of com-
putational group theory are often applied to the sporadic
simple groups, a natural ladder of challenge problems [2, 4,
5, 6, 7, 13, 18, 21, 22]. (The finite simple groups form the
building blocks from which all other finite groups can be
constructed.)

By an implicit graph we mean the graph of the state space
that is produced during search and enumeration problems.
Typically, the search begins with a single state and a set
of generators. The generators are functions that produce a
new state from a known one. Each state is a node of the
graph. If a state S1 is generated from an old state S2, then
we include an edge (S1, S2). The state S2 can be the same
as a previously seen state, and so the implicit graph will
usually have many cycles. The search continues through
repeated application of the generators to new states, until
no additional new states are discovered.

One critical aspect in search-type problems is determin-
ing, as one arrives at a search state, whether that search
state has been seen previously or not. In the case of depth-
first search, one backtracks upon seeing an old state, and
in the case of breadth-first search, one eliminates previously
seen states from the current frontier.

The problem of deciding whether one has previously seen
a state is known as duplicate elimination. This requires a
table of previously seen states. A common technique to
implement duplicate elimination is the use of hash tables.
However, while hash tables are efficient RAM-based data
structures, they are notoriously inefficient as disk-based data
structures. Hash tables incur many random accesses, which
require one to load random disk blocks, for the purpose of
accessing a single search state within that disk block.

This situation has traditionally led researchers to look for
clever techniques to compress the table of previously seen
states. This allows them to fit larger search spaces purely
within RAM. However, the historical growth in RAM per
CPU core has now halted. Other approaches must be used
if we are to conquer ever larger search applications.

Further, the trend toward multi-core CPUs also poten-
tially limits this approach of compressing tables of previ-
ously seen states to fit in RAM. As more CPU cores request
more random accesses to a single RAM subsystem, the band-
width of the RAM subsystem no longer keeps up with the
increasing pressure on memory.

Figure 1 demonstrates this issue by illustrating several
of the available search techniques, which are described in

78

Figure 1: Search and enumeration methods and
their tradeoffs

detail in the body. Recall that a perfect hash function is
a hash function that has no collisions. The search tech-
niques provide a natural time-space tradeoff. (Such time-
space tradeoffs are well-known in a variety of algorithms.)
The methods near the top typically use less memory, but re-
quire additional computation, or have additional constraints
(such as certain hash functions, or constraints on the set of
generators).

In practice, a given computer has limited RAM and disk
space. The shaded regions illustrate the regions of feasibility
in pure RAM and in a disk-based algorithm. These regions
of feasibility are dependent on the scale of the problem, and
the available computing resources. Due to time-space trade-
offs, the use of additional space from disk will often make
an algorithm faster (even though disk is slower than RAM).

To further motivate the use of disk, note that the ag-
gregate bandwidth of 50 local disks is about 50 × 50 MB/s
= 2.5 GB/s. Thus 50 local disks provide an aggregate band-
width similar to that of a single extremely large RAM sub-
system. Of course, this refers only to streaming access, and
not to random access. Much of the body of this paper is con-
cerned with presenting disk-based algorithms that capture
this emphasis on streaming access.

2. UNDERLYING TECHNIQUES
All of the methods we analyze here lend themselves to

parallel implementations, which are often necessary to ef-
fectively address problems of very large scale. Though the
algorithm descriptions may not explicitly state the nature of
that parallelism, it is usually the case that the parallelism
is a natural extension of a few fundamental techniques, par-
ticularly parallel breadth-first search and distributed hash
tables. We briefly review these techniques, as a foundation
for the survey that follows.

2.1 Parallel Breadth-First Search
Parallel breadth-first search requires a master node to per-

form a piece of the breadth-first search to some shallow
depth. Once finished, the current frontier is evenly par-
titioned amongst the nodes in the cluster and each node
generates the children of the values it receives. After this
has been done, duplicates in the computed values are re-
moved and the values at the next level in the breadth-first

search are generated. This is repeated until all nodes have
no new values for which to generate children. At this point,
the frontier is empty and the breadth-first search has been
completed.

Load balancing can be performed during the computation
if a single node gets too large or small of a piece of the
current frontier.

2.2 Distributed Hash Tables
A distributed hash table is one in which the hash function

is divided into two components. The upper bits of the hash
for a value determine the machine on which the value resides,
the lower bits determine where in that machine’s hash that
value occurs. Since passing single values across the network
incurs a latency penalty, typically hash checks are batched
and performed when there are a sufficient number of values
to be checked by the node in question.

Distributed hash tables work particularly well with paral-
lel breadth-first search, as the entire frontier is checked for
duplicates at the same time.

3. ALGORITHM SURVEY
Here we present a range of techniques for the search and

enumeration of very large implicit graphs. These graphs
exceed the size of main memory, and require a more compact
representation, the use of disk, or both. Typical graph sizes
range from billions to trillions.

Table 1 lists each method, along with certain properties
of those methods, including: whether duplicate detection is
done immediately or delayed; restrictions the method places
on the set of appropriate problems; and, the extent to which
states are compressed.

3.1 Landmarks
Instead of storing all states in the graph being gener-

ated, one can instead store only a small fraction of states, a
method known as landmarks [4, 7]. These landmark states
are typically chosen using a hash function. For example, to
store only one-eighth of the space, only those states that
have a hash value where the lower three bits are all zero are
saved.

Non-landmark states are stored as a shortest path from
that state to the closest landmark state (a more compact
representation). The closest landmark state, and a path
to it, are typically determined though a small breadth-first
search.

When a new state is generated, it is compared to the
known states for its closest landmark to determine if it is a
duplicate. Duplicate states are ignored, and non-duplicates
are saved in the open list.

This method is especially effective when the state repre-
sentation is very large, and when there are few generators.
In this case, a word from any state to its closest landmark
will be much smaller than the associated state itself, saving
a large amount of space. This comes at the cost of addi-
tional generator applications when determining a path to
the closest landmark. Therefore, this technique is also most
applicable in cases where generator application is relatively
fast.

3.2 Storing Level Modulo 3
This method was introduced by Cooperman and Finkel-

stein as a compact representation for Cayley graphs, along

79

Table 1: Search and Enumeration Techniques

Method Goal
Duplicate
Detection Restrictions Compression References

Landmarks Reduce space to fit in
memory

Immediate Works best with large
states and fewer gener-
ator

Save a fraction of states
in full, the rest com-
pressed as words

[4, 7, 21, 22]

Level mod 3 Compact representa-
tion of whole search
space

Immediate Needs a perfect hash
function

All states as 2-bit value [3]

Structured DD Check new states
against small subset of
previous states in-core

Immediate Needs definition of sub-
spaces based on graph
locality

No compression [23, 24]

Sorting-based DDD Works for any graph Delayed Entire space fits on
disk

No compression [1, 9, 20]

Hash-based DDD Avoid sorting in DDD Delayed Needs perfect hash
function

No compression [9, 10]

Tiered DD Reduce the number
of duplicate detection
passes

Immediate and
Delayed

Needs (imperfect) hash
function in memory

No compression [18, 19]

Frontier Search Only check for dupli-
cates at current level

Delayed Needs all inverse gener-
ators as generators

No compression [9, 11]

Implicit Open List Reconstruct open list
from hash table instead
of saving it explicitly

Delayed Needs a perfect invert-
ible hash function

All states as 2-bit value [12]

with a generalization to Schreier coset graphs [3]. It is sim-
ilar in ways to landmarks, but uses an even more compact
representation of states.

The method uses a perfect hash function to associate ev-
ery state with a single two-bit value. While performing a
breadth-first search of the graph, we store for each state its
level modulo three. So, the home state has a level of zero,
its neighbors a value of one, etc. The fourth possible value
of the two bits is used to identify states which have not been
seen before.

Typically, this hash table fits entirely within memory, and
acts as both a method for duplicate detection, as well as
a compact representation of the entire graph. Once the
breadth-first search has been completed, we can quickly find
a shortest path from any given state to the home state in
the following way. First, apply all generators to the given
state. Find the first generator that leads one level earlier
(modulo three). This is the first generator in the word be-
ing computed. By iteratively applying this process, a word
leading back to the home state can be found.

3.3 Sorting-based DDD
Sorting-based delayed duplicate detection was the first

technique developed specifically to allow the use of disk,
which has been traditionally avoided because the high la-
tency of disk does not allow for random access patterns.

Roscoe [20] demonstrated the efficiency of this technique
for in-core methods where the search overflows into virtual
memory. Korf [9] used an explicitly disk-based version to
solve sliding tile puzzle and Towers of Hanoi type problems.

Rather than immediately determining if a newly gener-
ated state is a duplicate, that state is instead appended to
a buffer on disk. Once an entire level of of the breadth-first
search is completed, the buffer is sorted, using standard ex-
ternal sorting methods [1]. Once sorted, the new states are
compared to all existing states by linearly scanning through

the two sorted lists. The non-duplicate states then represent
the open list from which the search is continued.

This method is one of the most general for handling very
large graphs. Unlike many other methods, it does not place
any restrictions on the problem (such as the need for inverse
generators, or graph locality), and does not require a hash
function.

3.4 Hash-based DDD
Korf [9, 10] introduced hash-based delayed duplicate de-

tection to avoid the cost of externally sorting states. This
savings can be significant, as sorting can often dominate the
search time for sorting-based DDD.

The method uses two hash functions, often implemented
by by splitting a single perfect hash into its high-order and
low-order bits. As new states are generated they are placed
into separate files, based on the first hash function. This
guarantees that all duplicate nodes will occur within the
same file. Then, instead of sorting these buffered states, the
existing and new states are compared using the second hash
function. Each hash value is associated with a single bit
in memory that denotes whether or not that corresponding
state has been previously generated. The non-duplicate new
states are written back to disk as the open list, and the
search continues.

3.5 Structured Duplicate Detection
Zhou and Hanson [23] introduced this method and ini-

tially applied it to the problem of finding shortest paths in
sliding tile puzzles.

Unlike previous methods developed specifically to utilize
disk as the primary means of storage, structure duplicate
detection allows duplicates to be identified immediately, in-
stead of delaying this decision.

The method works by exploiting the structure of the graph
to localize the detection of duplicates to a small portion of

80

the previously generated states. For example, consider the
problem of the eight-puzzle: a sliding tile puzzle containing
the numbers one through eight in a 3 × 3 grid, with one
space blank, where the goal is to restore the natural order of
the tiles. While enumerating the graph associated with this
puzzle, the application of a generator (i.e. sliding one tile)
can only produce a state where the location Of the blank
space differs by only one row or one column. Therefore, we
need only check for duplicates in those sets of states with
the blank in one of these positions. The partitioning of
the graph is defined such that the set of states required for
duplicate detection fit in main memory.

This method requires that the graph have sufficient local-
ity. Without such locality, it would be impossible to parti-
tion the graph in such a way that the set of possible suc-
cessor states fit in memory. Zhou and Hansen [24] give an
automatic method for determining a suitable partitioning,
assuming the graph has sufficient locality.

3.6 Tiered Duplicate Detection
Robinson and Cooperman [18] introduced tiered dupli-

cate detection as a method to speedup the enumeration of
the Baby Monster sporadic simple group, and more recently
applied it to the problem of the Fischer23 group [19].

Instead of automatically storing all generated states for
delayed duplicate detection, an in-core imperfect hash func-
tion is used as a first pass. If the new state hashes to an
unseen value, it is not a duplicate and can be immediately
placed in the open queue for further generation. If, on the
other hand, the hash value results in a collision, the value
may be a duplicate. Because the hash function is imperfect,
non-duplicate states may collied. States producing such a
collision are stored for delayed duplicate detection as neces-
sary.

This method speeds the search because it does not stop to
do delayed duplicate detection for each level of the breadth-
first search. Instead, it can continue until the open list is
emptied, which typically results in generating many levels
in one pass.

This method is especially applicable to problems where
there is no efficient perfect hash, or when such a hash would
exceed the size of memory.

3.7 Frontier Search
Korf [9, 11] introduced frontier search as a means for re-

ducing the scope of duplicate detection to only the current
level of a breadth-first search, instead of all existing states.

This method requires that the inverses of all generators be
generators themselves. With this restriction, newly gener-
ated states can occur at one of three levels in a breadth-first
search, relative to the parent state: one level previous; the
same level; or, one level later. This implies that we need
only check for duplicates in those three levels, and we can
safely ignore all previous levels.

Frontier search goes one step further, eliminating the need
to check against the previous level as well. This is accom-
plished by storing a set of used operator bits for every state.
There is one such bit for every generator, where a set bit
represents a generator that is known to return to the pre-
vious level. These bits are set by marking the inverse of
the generator that was used to generate that state. Further,
when duplicate states are found, the states are combined

into a single state with the union of the used operator bits
of the duplicates.

3.8 Implicit Open List
Kunkle and Cooperman introduced this method to make

feasible a large breadth-first search for proving an upper
bound of 26 for all solutions to Rubik’s Cube [12].

In general, all of the search methods above explicitly store
the open list, i.e. the newly generated non-duplicate states.
For some very large graphs, especially with large branching
factors, this open list will exceed available disk space. This
technique avoids storing this open list, and allows a breadth-
first search that includes levels that do not fit on available
disk.

Using a perfect invertible hash function, we associate two
frontier bits with each state. These two bits will track which
states are in the open list. Because the hash function is in-
vertible, we can reconstruct the open list by scanning the
table. We require two bits instead of one because we are us-
ing delayed duplicate detection, and the open list produced
by a single level of the BFS may not fit on disk. The algo-
rithm proceeds iteratively in the following way:

1. Scan through the table of frontier bits, generating new
states from states with the first frontier bit set. Store
the states on disk, continuing until an entire level is
generated, or the disk is full.

2. Read states from disk and eliminate duplicates (usu-
ally using another bit from the same hash function).
Non-duplicate states have their second frontier bit set.

3. If an entire level has been generated, rotate the fron-
tier bits by assigning the value of the second frontier
bit to the first and clearing the second bit. If only
a partial level has been generated, return to Step 1
without rotating the frontier bits.

For even greater efficiency, the algorithm can dynamically
switch between using an explicit or implicit open list. If the
explicit representation of the open list is smaller than the
hash table of frontier bits, it is faster to save those states. If
the explicit open list becomes larger, it is more efficient to
scan the table and reconstruct the open list.

Note that an implicit open list can also be achieved by
storing the level in the BFS for each state, and generating
children marked with the level. This hash table will also
act as a compact representation of the entire graph once the
search is complete. However, it requires increasing space
with deeper searches, whereas the method presented above
uses only two bits, regardless of the structure and scale of
the graph.

4. THEORETICAL ANALYSIS
While previous works have examined all of the search

space enumeration techniques presented in Section 3, they
fail to provide a comparison between these techniques. In
cases where a comparison can be found, this comparison is
rarely fair. Generally these comparisons do not look at the
complete space of techniques or problem instances. This
leads to one technique appearing to be superior, when in
reality, it may just be the case that not all methods have
been examined, or that the technique is only superior for a
certain class of problems.

81

We seek a fair and uniform method for comparing search
space enumeration techniques. In order to find this, we de-
fine a “Big Oh” for search space enumeration. The tech-
niques examined generally fall into one of two categories.
Either the technique tries to reduce the space used to fit
in aggregate RAM (or even disk), increasing the number
of generator applications in the process, or the technique
uses disk for the additional storage requirements, forcing
out-of-core value accesses (typically streamed). Given this,
the two key elements in any search technique are the time
spent streaming disk, along with the time spent applying
generators.

To compute these times, three different classes of param-
eters are considered. Architectural parameters are those
specific to the cluster on which the computation is being
performed. Search space parameters are those specific to
the enumeration being performed (though they may have
some dependence on the architecture as well). Finally, algo-
rithmic parameters are those specific to algorithm used to
perform the enumeration. The algorithmic parameters, in
many cases, are derived from parameters of the other two
classes. Table 2 shows a listing of all such parameters of
each class.

While some of these parameters are self-explanatory, oth-
ers require an explanation. The list below defines each pa-
rameter in the context of search space enumeration:

Search Size The expected number of values to be enumer-
ated, or found, in the search space.

Branching Factor The average out-degree of a node in the
graph, typically the number of generators.

Value Size The size of an individual value in the search in
bytes.

Edge Bandwidth The number of edges that can be gener-
ated, or generator applications that can be performed
in a second.

Disk Bandwidth The number of bytes that can be streamed
from disk in a second.

Number of Nodes The number of machines in the cluster,
or number of machines performing the enumeration.

Memory Size The size of available memory on an individual
machine in the cluster.

Disk Size The size of available disk on an individual ma-
chine in the cluster.

Generator Apps The number of generator applications per-
formed during the life of the algorithm.

Data Access The amount of data streamed during the life
of the algorithm.

Memory Required The memory required by the algorithm
per machine.

Storage Required The total amount of storage required by
the algorithm. In most cases, this can be either mem-
ory or disk.

Once the values of these parameters are known, the over-
all runtime for an individual enumeration can be predicted,
with accuracy sufficient to compare methods.

Time =
XG

BWG ×N
+

XA

BWD ×N

Assuming the search space and architectural parameters are
fixed (you’re looking to solve a particular problem given a
particular cluster), the runtime for the search given each
algorithm can be predicted by swapping parameters. From

here, determining the best algorithm for a particular search
space and cluster becomes an easy matter.

While determining the search space and architectural pa-
rameters is a straightforward matter, finding the algorithmic
parameters is not always as simple. As mentioned before,
these parameters are typically derived, rather than constant.
Here we look at each enumeration technique and solve for
the value of each parameter for each technique. Many of
these methods have tunable components as well, meaning
the more memory that is available, the faster they will per-
form. This is specified per method and a new variable is
typically used to denote the tunable component.

4.1 Level Sizes in Breadth-First Search
For many of these techniques, it is important to know the

number of values at each depth in the breadth first search.
If a random graph is assumed, one in which each node goes
to BF other random nodes, the size of each level can be
defined recursively as follows,

L1 = 1

Li = BF × Li−1 ×
|S|−

Pi−1
j=1 Lj−

Li
2

|S|

= 2×BF × Li−1 ×
N−

Pi−1
j=1 Lj

2×|S|+BF×Li−1

While at first glance, it looks as if this equation will ap-
proach |S| values in all levels, this is not the case. This is
because the assumptions we made about a random graph are
not true of search spaces in general. While it is the case that
the out degrees behave as they would in a random graph,
no guarantee is made that each node has an in degree of
at least one. This leads to the above algorithm terminating
(Li < 1) when the connected components of the graph are
found. This is easily remedied by artificially raising |S| until
the algorithm terminates with the correct number of points.
In addition, a more exact (and more complex) formulation
is being worked on for this algorithm, but it is not complete
at the current time.

4.2 Implicit Open List
As described above, the implicit open list uses only two

bits to both determine if an element in the search has been
seen previously as well as determine what is on the frontier.
It requires a perfect invertible hash.

4.2.1 Storage Required
The implicit open list technique utilizes just 2 bits per

element, assuming a perfectly dense hash is available. It
may also use a near-perfectly dense hash at the cost of more
storage. Where a perfectly dense hash is available, the basic
implicit open list technique requires

R =
2

8
× |S|.

If the space is to be stored using level modulo three tech-
nique, then the representation for the values and the open
list requires

R =
3

8
× |S|.

If the space is to be stored using the level technique, then
the representation for the values and the open list requires

R =
logBF (|S|)

8
× |S|.

82

Table 2: The Classes and Parameters

Search Space Architectural Algorithmic
parameter name parameter name parameter name
Search Size |S| Disk Bandwidth BWD Generator Apps XG

Branching Factor BF Number of Nodes N Data Access XA

Value Size |V | Memory Size |M | Memory Required RM

Edge Bandwidth BWG Disk Size |D| Storage Required R

The remaining space is typically used as a value buffer in
this technique. This technique can be performed either in
memory or on disk, depending on the size of your search.
For the remainder of the analysis, it is assumed that the
basic implicit open list technique is used. The other values
can be easily substituted if needed.

4.2.2 Data Access
Assuming the hash is disk-based, there are three compo-

nents to the data access portion of the implicit open list
method. The first component is the base reads/writes re-
quired for a breadth-first search,

X ′
A =

read/writez}|{
2 ×

data generatedz }| {
|S| ×BF × |V | .

The second component is the scans through the hash table
at each level in the BFS to find elements on the frontier,

X ′′
A =

size of hashz }| {
2

8
× |S| ×

search depthz }| {
logBF (|S|) .

The final component is the merging of the full values with
the hash when there is no longer any room to store those
values on disk,

X ′′′
A =

read/writez}|{
2 ×

size of hashz }| {
2

8
× |S| ×

number of scansz }| {
|S| ×BF × |V |

N × |D| − 2
8
× |S|

.

The number of scans is computed by determining what por-
tion of the data generated in the search will fit on disk at
one time.

The total data access for the implicit open list technique
is therefore

XA = X ′
A + X ′′

A + X ′′′
A .

4.2.3 Generator Apps
This method requires the base number of generator appli-

cations,

XG =

BFS componentz }| {
BF × |S|

4.3 Landmarks
The landmarks technique does not require a perfect hash,

but it does require that the inverses of the generators are
present (though they need not be generators themselves).

4.3.1 Storage Required
The amount of memory used is tunable. With increased

memory usage, more landmarks can be stored, resulting in

fewer generator applications. Where the landmark ratio is
LM, the amount of memory required is

RM = (

landmarksz }| {
LM × |V | +

non-landmarksz }| {
(1− LM)× logBF (L))× |S|.

The landmarks technique can be performed on disk as
well as in memory, however, the landmarks themselves must
always fit in memory and there must be reasonably few of
them.

4.3.2 Data Access
If performed on disk, this technique requires accessing the

non-landmarks repeatedly, once for each subsequent level in
the breadth-first search tree. This implies

X ′
A =

value accessesz }| {
|L|X
c=1

((|L| − c)× Lc)×

non-LM sizez }| {
logBF (L) .

In addition, during the standard BFS, all values, even
duplicates are written to and read from disk to be checked
as duplicates, but only non-duplicates are written back and
read later to be processed. This component requires

X ′′
A = (2× logBF (L)×BF × |S|)+ (sorting)

(2× logBF (L)×BF × |S|)+ (duplicate detection)

(logBF (L)× |S|) . (BFS write)

This leads to a total disk access component of

XA = X ′
A + X ′′

A.

4.3.3 Generator Apps
At each edge, the node generated by that edge must be

traced to the closest landmark to determine if it is a du-
plicate. For each new node, the path must be followed in
reverse to reproduce that value later as well when its children
are to be computed. The number of generator applications
for this technique is

XG =

duplicate detectionz }| {
(|S| ×BF)× LM−1 +

expansionz }| {
|S| × LM−1 .

4.4 Sorting-Based DDD
When all the values are able to be stored on disk, even if

no perfect hash is available, sorting-based delayed duplicate
detection can enumerate the entire space without perform-
ing any additional generator applications.

4.4.1 Storage Required
This method, while capable of being performed in main

memory, was intended for disk. The amount of memory per

83

machine required is relatively small. There are two compo-
nents to consider, the buffer of frontier values to be sent to
each machine along with the memory required in the exter-
nal sort.

For the frontier values, the size selected must be large
enough to prevent a bottleneck in message passing due to
the latency of sending small packets. Typically, a reason-
able message size is around 100KB. More generally, where
messages must be at least |M | bytes to avoid latency,

R′
M = N × |M |.

Though external sorting can operate with any amount
of memory, it performs best when each file to be merged
fits fully into memory. Typically an individual machine can
have 100-200 files open at once. More generally, where the
total number of files that can be open at a single time on a
machine is limited to F ,

R′′
M =

|S| × |V |
N × F

.

Since these two memory components are used at different
times during the enumeration and are not persistent, they
can overlap,

RM = max(R′
M , R′′

M).

In terms of disk usage, all of the values in the search space
must fit on disk. This requires a disk usage of

R′ = |S| × |V |.

In addition, the largest level in the breadth-first search
(including duplicates) must also fit on disk at the same time.
This requires a disk usage of

R′′ = max(L)×BF × |V |.

These two terms combine to form the total disk usage for
the method,

R = R′ + R′′.

4.4.2 Data Access
This technique requires accessing the values discovered in

the search repeatedly, once for each subsequent level in the
breadth-first search tree. This implies

X ′
A =

value accessesz }| {
|L|X
c=1

((|L| − c)× Lc)×|V |.

In addition, during the standard BFS, all values, even
duplicates are written to and read from disk to be checked
as duplicates, but only non-duplicates are written back and
read later to be processed. This component requires

X ′′
A =

sortingz }| {
2× |V | ×BF × |S|+

duplicate detectionz }| {
2× |V | ×BF × |S|+

BFS writez }| {
|V | × |S| .

This leads to a total disk access component of

XA = X ′
A + X ′′

A.

4.4.3 Generator Apps
This method applies only one generator per edge in the

graph. The number of generator applications is

XG = |S| ×BF.

4.5 Hashing-Based DDD
Hashing-based delayed duplicate detection operates in the

same manner as sorting-based DDD. However, it reduces the
number of passes through disk, but relies on a reasonably
compact hash in order to do this. Pieces of hash must be
brought into memory as well during the computation.

4.5.1 Storage Required
This method was also intended for disk. On top of the

memory required for frontier values, the amount of mem-
ory per machine depends on the number of elements in the
perfect hash, |H|.

For the frontier values, the same equation used in sorting-
based delayed duplicate detection is used for hashing-based
delayed duplicate detection,

R′
M = N ×MS.

For the hashing component, H will denote the hash with
|H| 1 bit entries. In order to perform well, the individual
blocks of entries for each hash block must be large enough to
obtain disk streaming rather than random access. We will
assume that each block must be at least |B| bytes before
being written to a file. If this is the case, the amount of
memory required by the hash is

R′′
M =

|B| × |H|
8× |M | .

These two components are both used during the gener-
ation of neighbors and not the duplicate detection phase.
Therefore the total memory usage is

RM = R′
M , +R′′

M .

Hashing-based delayed duplicate detection requires the
same amount of disk as sorting-based delayed duplicate de-
tection.

4.5.2 Data Access
Just as in sorting-based delayed duplicate detection, hashing-

based delayed duplicate detection also requires repeatedly
accessing previously discovered elements.

X ′
A =

value accessesz }| {
|L|X
c=1

((|L| − c)× Lc)×|V |.

Hashing-based delayed duplicate detection also requires
reading and writing for duplicate detection, however, it elim-
inates the sorting component. This requires

X ′′
A =

duplicate detectionz }| {
2× |V | ×BF × |S|+

BFS writez }| {
|V | × |S| .

This leads to a total disk access component of

XA = X ′
A + X ′′

A.

4.5.3 Generator Apps
This technique applies only one generator per edge in the

graph. The number of generator applications is

XG = |S| ×BF.

84

4.6 Structured DDD
Structured delayed duplicate detection is not examined

here. Its performance depends on the structure and locality
of the search space. In addition, it does not lend itself to
being easily parallelized. While it is of use when only a
single machine is available and the search space has a lot of
locality, it is not a general enough method for our purposes.

4.7 Frontier Search
Frontier search takes advantage of inverse generators to

guarantee that all duplicates seen will occur in at most the
two previous iterations in the breadth-first search.

4.7.1 Storage Required
This method requires the exact same amount of memory

as either sorting-based or hashing-based delayed duplicate
detection, depending on which underlying method is used.

Rather than storing all levels in the breadth-first search,
this method requires storage of at most the previous level,
the current level, and the current frontier. This leads to a
total storage component of

|L|−2
max
j=1

(Lj + Lj+1 + BF × Lj+2) .

4.7.2 Data Access
This method reduces the number of passes through pre-

vious elements to a constant (3). This leads to this portion
of the access component being

X ′
A = 3× |S| × |V | − 2× Li − Li−1.

The access component for sorting/hashing is dependent
on the method used in frontier search. It uses the same
component as either sorting-based or hashing-based delayed
duplicate detection. This leads to a total access component
of

XA = X ′
A + X ′′

A.

4.7.3 Generator Apps
While this method performs the standard number of gen-

erator applications, it is important to note that this number
may be higher due to the forced use of generator inverses
increasing the branching factor. The number of generator
applications for this method is

XG = BF × |S|.

4.8 Tiered Duplicate Detection
This technique uses delayed duplicate detection with a

form of immediate duplicate detection that can produce false
positives, indicating things are duplicates when they are not.
By doing this, it discovers more points at each level in the
search, requiring fewer passes through disk. However, more
memory is used in the computation. Rather than the stan-
dard equations for levels presented above, this method using
the following formulas, where HM is the hash multiple used,

Lai =
“
|S| −

Pi−1
j=1(Laj)−

Pi−1
j=1(Lbj)

”
× (unseen points)„

|S|×HM−
Pi−1

j=1(Laj)−Lai
2

|S|×HM

«
(hash emptiness)

Lb0 = 1
Lbi = (Lai × (BF − 1) + Lbi−1)× (collisions in Lai)„

|S|−
Pi−1

j=1(Laj+Lbj)−Lai−
Lbi
2

N

«
(unseen percent)

Once again, here the |S| used in the computation of Lb
must be augmented to compensate for disconnected nodes.
The exact formulas for this are currently being worked on.

4.8.1 Storage Requirement
This technique can use either sorting-based or hashing-

based duplicate detection. It uses the memory required by
those techniques. On top of this, an imperfect hash must
be stored in memory. The size of this hash is a tunable
parameter, HM ≥ 1. Given this parameter, the memory
usage for the hash can be determined,

R′′′
M =

HM × |S|
8×N

.

This leads to a total memory usage of

RM = R′
M + R′′

M + R′′′
M .

In terms of disk, this method must also store all values in
full on disk. This requires a disk usage of

R′ = |S| × |V |.

In addition, the largest frontier must be stored, including
duplicates. However, frontiers are computed differently in
this approach. The amount of data requires is

R′′ =
|La|
max
j=0

(Laj × (BF − 1)× Lbj−1).

This leads to a total disk usage of

R = R′ + R′′.

4.8.2 Disk Access
This technique reduces the number and size of each level

in the search, the levels generated in La are not counted
toward the total in this approach. However, the points there
do need to be scanned each pass.

X ′
A =

value accessesz }| {
|La|X
c=1

((|La| − c)× Lbc + (|La| − c + 1)× Lac)×|V |.

This method requires a duplicate detection access compo-
nent as well. This component is the same as that required
by either hashing-based or sorting-based delayed duplicate
detection, depending on which is used. This leads to a total
disk access component of This leads to a total disk access
component of

XA = X ′
A + X ′′

A.

4.8.3 Generator Apps
This method applies only one generator per edge in the

graph. The number of generator applications is

XG = |S| ×BF.

5. PROBLEM SURVEY
Here we give three examples of problems that the au-

thors have applied parallel disk-based search and enumer-
ation techniques to. These include: enumerating the Baby
Monster group; enumerating the Fischer23 group; and prov-
ing an upper bound of 26 on solutions to Rubik’s Cube.

85

5.1 Point Stabilizer Subgroup Chains
For many very large mathematical groups, it is infeasi-

ble to work with the group as a whole. For these groups
a well-known divide and conquer algorithm exists that de-
fines the group in terms of a point stabilizer subgroup chain.
This algorithm works by computing a chain of subgroups,
starting with the full group, and finishing with the identity.
Typically, the largest portion of this chain of subgroups is
the first subgroup along the chain. The computation of this
first subgroup, however, can be performed using search space
enumeration.

5.2 Baby Monster Enumeration
The Baby Monster is a mathematical group with 4.1 ×

1033 elements. For the Baby Monster, the first subgroup
in the point stabilizer subgroup chain must contain at least
1.4 × 1010 elements. Given that the size of an individual
element in the smallest representation is around 550 bytes,
the storage for this subgroup requires around 8 terabytes
of space. Up until recently, it was thought that dealing
with this large amount of data was infeasible. Now, with
many disk-based techniques available, this initial subgroup
has been discovered.

The enumeration of the first subgroup [18] in the point
stabilizer subgroup chain was performed using Tiered Du-
plicate Detection with a hash multiple of 2. It was done
on a cluster of 32 nodes with just 8 terabytes of aggregate
disk (250 gigabytes per node) and 16 gigabytes of aggre-
gate RAM (500 megabytes per node). Because the size of
the search was approaching disk limits, a compression tech-
nique was used that reduced the size of an element from
550 bytes to around 30 bytes. This technique required the
recomputation of values during the delayed duplicate detec-

tion phase, resulting in an additional
P|Lb|

i=1 (Lb)×logBF (|S|)
generator applications. The branching factor for the Baby
Monster problem was around 1.75. Tiered Duplicate De-
tection was used primarily because generator applications
were performed through vector-matrix multiplications over
very large matrices, and were for that reason very slow. The
generator bandwidth for this problem was around 1250 gen-
erators per second.

With an assumed disk bandwidth of 50 megabytes per
second, this computation was bound by the time to com-
pute generators. Given the cluster information along with
the problem size and branching factor, the time spent com-
puting generators for the algorithm is 20 days. The actual
computation time was 14 days, the decrease in time was the
result of optimizing out some of the generator applications
during the recomputation of values.

5.3 Fischer23 Enumeration
Fischer23 is another mathematical group, this time with

8.6× 1019 elements. As in the Baby Monster Enumeration,
a divide and conquer algorithm was used. The first sub-
group in the point stabilizer subgroup chain, in this case, has
1.2×1010 elements. However, the elements in this case were
only 100 bytes, and the generator bandwidth was around
2000 generators per second. Here, a cluster of 32 nodes with
640 gigabytes of aggregate disk (20 gigabytes per node) and
32 gigabytes of aggregate RAM (1 gigabyte per node) was
used.

Once again, because the entire search space, which would
typically take up 1.2 terabytes, was so close to fitting on

disk, a compression technique was used on the values to al-
low them to take on average only 20-30 bytes. While this
technique required some additional computation time, it al-
lowed the entire search space to be stored on disk. This
allowed for the enumeration of the first subgroup [19] to be
performed using Tiered Duplicate Detection as well. The
branching factor was again around 1.75.

With an assumed disk bandwidth of 50 megabytes per
second, this computation was bound by the time to com-
pute generators. Given the cluster information along with
the problem size and branching factor, the time spent com-
puting generators for the algorithm is 6 days. The actual
computation time was 2 days, after optimizing out some of
the generator applications.

5.4 Rubik’s Cube
Proving bounds on the number of moves that suffice to

solve any state of Rubik’s Cube is a long standing challenge
problem [8]. Cooperman and Finkelstein used the method
“Level Mod 3” to show that the number of moves needed to
solve Rubik’s 2× 2× 2 is 11 [3].

For the full Rubik’s cube, previous work has proved a
lower bound of 20 [17] and an upper bound of 27 [16, 14,
15]. Using some of the techniques presented here, Kunkle
and Cooperman proved an improved upper bound of 26 [12].
All bounds are in the traditional face-turn metric. (A half
turn and quarter turn each count as a single move.)

Rubik’s Cube has approximately 4.3×1019 possible states.
The most common approach for proving an upper bound on
number of moves sufficing to solve any of these states is
to define a chain of subgroups for the group corresponding
to Rubik’s Cube. Then, an upper bound for each of these
subproblems is achieved by performing a breadth-first search
for each of the subgroups, and corresponding cosets. These
upper bounds can then be combined to produce an overall
upper bound.

In previous work, subgroup chains have been chosen to
minimize the size of the largest breath-first search that must
be performed. For example, the work that proved an upper
bound of 27 was based on a single subgroup of size near
the square-root the size of the entire group. This resulted
in two breadth-first searches on graphs with approximately
6.6 × 109 states each, which can be done within the limits
of RAM on a cluster.

This recent work instead chose a relatively small sub-
group, generated by using only the “squared” generators,
which turn a face of the cube by 180 degrees. This sub-
groups is of size 663, 552, yielding over 65 trillion cosets.
Using the 48 symmetries of the cube, this was reduced to
approximately 1.5 trillion states to search over.

Using a perfect invertible hash function, a breadth-first
search was performed using hash-based delayed duplicate
detection and an implicit open list. The states were stored
as four-byte values, yielding over 100 terabytes of data, with
the disk usage at any given time being at most 7 terabytes.
Generator application was highly optimized, to make effi-
cient use of CPU cache, and was performed up to 10 million
times per second. Given this, the computation was bound
by I/O bandwidths. The entire computation used sixteen
nodes with eight processors each (128 CPUs) and took ap-
proximately 65 hours total, or over 8000 CPU hours. It was
shown that the diameter of the graph is 16.

86

6. CONCLUSION
We have presented a comparative analysis of methods for

search and enumeration of very large implicit graphs. While
earlier methods typically focused on using a more compact
representation, allowing the search to fit within available
RAM, newer techniques tend to focus on the efficient use of
disk. This shift has arisen because the amount of available
RAM per CPU has plateaued. With the advent of multi-
core CPUs, this trend can be expected to continue, in fact,
the amount of RAM per CPU may even decrease.

With an increase in the number and variety of enumer-
ation algorithms comes a need for a framework to analyze
their relative efficiency. The framework we provide here al-
lows for this kind of analysis, taking into account the nature
of the problem, the target computer architecture, and the
algorithms themselves. With this framework, we can accom-
plish several related tasks:

• Determine which method, or combination of methods,
is the best for a given problem and computer architec-
ture.

• Predict the runtime of a method for a given problem
and computer architecture.

• Determine what classes of problems are best approached
with a given method and available computing resources.

• Guide the development of new methods, with respect
to some target problems or computer architectures.

7. REFERENCES
[1] D. Bitton and D. J. DeWitt. Duplicate record

elimination in large data files. ACM Trans. Database
Syst., 8(2):255–265, 1983.

[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker,
and R.A. Wilson. Atlas of finite groups. Clarendon
Press, Oxford, 1985.

[3] G. Cooperman and L. Finkelstein. New methods for
using Cayley graphs in interconnection networks.
Discrete Applied Mathematics, 37/38:95–118, 1992.
(special issue on Interconnection Networks).

[4] G. Cooperman, L. Finkelstein, M. Tselman, and
B. York. Constructing permutation representations for
matrix groups. J. Symbolic Comput., 1997.

[5] G. Cooperman, W. Lempken, G. Michler, and
M. Weller. A new existence proof of Janko’s simple
group j4. In Progress In Mathematics, volume 173,
pages 161–175. Birkhauser, 1999.

[6] G. Cooperman and E. Robinson. Memory-based and
disk-based algorithms for very high degree
permutation groups. In Proc. of International
Symposium on Symbolic and Algebraic Computation
(ISSAC ’03), pages 66–73. ACM Press, 2004.

[7] G. Cooperman and M. Tselman. New sequential and
parallel algorithms for generating high dimension
Hecke algebras using the condensation technique. In
Proc. of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’96), pages 155–160.
ACM Press, 1996.

[8] A. H. Frey Jr. and D. Singmaster. Handbook of Cubik
Math. Enslow Publishers, 1982.

[9] R. E. Korf. Best-first frontier search with delayed
duplicate detection. In AAAI, pages 650–657, 2004.

[10] R. E. Korf and P. Schultze. Large-scale parallel
breadth-first search. In AAAI, pages 1380–1385, 2005.

[11] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald.
Frontier search. J. ACM, 52(5):715–748, 2005.

[12] D. Kunkle and G. Cooperman. Twenty-six moves
suffice for Rubik’s cube. In Proc. of International
Symposium on Symbolic and Algebraic Computation
(ISSAC ’07). ACM Press, 2007.

[13] F. Lübeck and M. Neunhöffer. Enumerating large
orbits and direct condensation. Experiment. Math,
10:197–206, 2001.

[14] S. Radu. Solving Rubik’s cube in 28 face turns. http:
//cubezzz.homelinux.org/drupal/?q=node/view/37,
2005.

[15] S. Radu. Rubik can be solved in 27f. http:
//cubezzz.homelinux.org/drupal/?q=node/view/53,
2006.

[16] M. Reid. New upper bounds. http:
//www.math.rwth-aachen.de/∼Martin.Schoenert/

Cube-Lovers/michael reid new upper bounds.html,
1995.

[17] M. Reid. Superflip requires 20 face turns.
http://www.math.rwth-aachen.de/∼Martin.

Schoenert/Cube-Lovers/

michael reid superflip requires 20 face turns.

html, 1995.

[18] E. Robinson and G. Cooperman. A parallel
architecture for disk-based computing over the Baby
Monster and other large finite simple groups. In Proc.
of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’06), pages 298–305.
ACM Press, 2006.

[19] E. Robinson, G. Cooperman, and J. Müller. A
disk-based parallel implementation for direct
condensation of large permutation modules. In Proc.
of International Symposium on Symbolic and Algebraic
Computation (ISSAC ’07). ACM Press, 2007.

[20] A. W. Roscoe. Model-checking CSP. A classical mind:
essays in honour of C. A. R. Hoare, pages 353–378,
1994.

[21] M. Weller. Construction of large permutation
representations for matrix groups. In W. Jäger
E. Krause, editor, High Performance Computing in
Science and Engineering ’98, pages 430–. Springer,
1999.

[22] M. Weller. Construction of large permutation
representations for matrix groups ii. Applicable
Algebra in Engineering, Communication and
Computing, 11:463–488, 2001.

[23] R. Zhou and E. A. Hansen. Structured duplicate
detection in external-memory graph search. In AAAI,
pages 683–689, 2004.

[24] R. Zhou and E. A. Hansen. Domain-independent
structured duplicate detection. In AAAI, 2006.

87

