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a b s t r a c t

The number ofmoves required to solve any configuration of Rubik’s
cube has held a fascination for over 25 years. A new upper bound of
26 is produced. More important, a new methodology is described
for finding upper bounds. The novelty is two-fold. First, parallel
disks are employed. This allows 1.4 × 1012 states representing
symmetrized cosets to be enumerated in seven terabytes. Second,
a faster table-based multiplication is described for symmetrized
cosets that attempts to keep most tables in the CPU cache. This
enables the product of a symmetrized coset by a generator at a rate
of 10 million moves per second.

© 2008 Published by Elsevier Ltd

1. Introduction

Twenty-five years ago, Frey and Singmaster (1982) conjectured at the end their book, Cubik Math,
that ‘‘God’s number’’ is in the low 20’s:

No one knows how many moves would be needed for ‘‘God’s Algorithm’’ assuming he always
used the fewestmoves required to restore the cube. It has been proven that some patternsmust
exist that require at least seventeenmoves to restore but no one knowswhat those patternsmay
be. Experienced group theorists have conjectured that the smallest number of moves which
would be sufficient to restore any scrambled pattern – that is, the number of moves required
for ‘‘God’s Algorithm’’ – is probably in the low twenties.

This conjecture remains unproven today. At the time of this conjecture, the best known bounds were
a lower bound of 17 and an upper bound of 52 (Frey and Singmaster, 1982). The current best lower
bound is 20 (Reid, 1995b). In Kunkle and Cooperman (2007), the authors demonstrated a new upper
bound of 26.
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Note that in all cases, we consider a move to be any quarter or half turn of a face of the cube, also
known as the face-turn metric. We do not consider the alternative quarter-turn metric, which defines
a half-turn to be two moves.

We present a new, algebraic approach based on the analysis of cosets for mathematical groups.
Rubik’s cube can be viewed as a mathematical group with each group element a permutation of the
facelets of Rubik’s cube. A facelet is one of the 54 tiles, with 9 facelets per face. The 18 naturalmoves are
taken as the generators of the group. Since the generators always fix in place the center facelet of a face,
Rubik’s cube can be viewed as a permutation group acting on the 48 movable facelets. Multiplication
of moves or generators is simply composition of moves. Hence, multiplication is identified with
permutation multiplication for permutation groups.

Like previous efforts,we decompose Rubik’s groupGusing a subgroupH . As iswell-known in group
theory, the elements of Rubik’s group G are partitioned into cosets Hg = {hg : h ∈ H}, where g ∈ G.
Hence, there are |G|/|H| cosets. The set of cosets of H in G is denoted as G/H .

This allows a divide-and-conquer strategy. The number of configurations of Rubik’s cube is |G| ≈
4.3 × 1019. Given an unsolved state or permutation g ∈ G, one can identify the coset Hg containing
g . One searches for a shortest sequence of generators τ such that the product gτ ∈ H . One then
searches for a shortest sequence of generators of H , σ , such that gτσ is the identity permutation (the
home position). After finding upper bounds on the length of τ and on the length of σ , the sum of the
two is then an upper bound for the number of moves to solve Rubik’s cube. Traditionally, one chooses
a particular subgroup R, such that |R| ≈ 2 × 1010 and |G|/|R| ≈ 2.2 × 109. This makes the search
feasible in RAM for both problems (after the number of states is reduced by symmetries).

Unlike previous efforts, we choose the square subgroup Q , the group generated by squares of
generators (or 180◦ turns), as our subgroup. Since |Q | ≈ 6.6×105, |G|/|Q | ≈ 6.5×1013 (or 1.4×1012

after reduction by symmetries).

1.1. Paper organization

The paper is organized as follows. In the rest of the introduction, we provide an overview of the
three primary contributions of this work: a new upper bound on solutions to Rubik’s Cube; the use of
parallel disk-based computation; and methods for producing small, fast tables for group multiplica-
tion. Then, Section 2 briefly reviews some related work in these areas. Section 3 presents background
and somebasic concepts. In particular, this includes the definitions of symmetrized group element and
symmetrized coset. Section 4 describes the fast multiplication algorithm, along with the perfect hash
function. Section 5 shows that all elements of the square subgroup are solvable in 13moves. Section 6
shows that all cosets are within 16 moves of the trivial coset. Finally, Section 7 presents methods for
further reducing the upper bound on solutions, providing the final upper bound of 26 moves.

1.2. Upper bounds

We choose this very small subgroup for three reasons: in the limit, with a subgroup equal to the
identity of the entire group, this method would produce exactly optimal results; the square subgroup
is the only non-trivial subgroup that preserves all 48 symmetries of the cube; and, the use of a small
subgroup allows us tomore efficiently prove nearly optimal upper bounds on any coset (see Section 7).

The search for theworst case inG/Q produces 17 symmetrized cosets (equivalence classes of cosets
under symmetries of the cube) that each require 16 moves to return to the subgroup Q . Any element
in the subgroup Q can be ‘‘solved’’, using only generators of Q , in 15moves. However, by allowing one
to use any generators of Rubik’s group G, an easy computation shows that 13 moves always suffice to
solve for any element of Q . This immediately produces a bound of 16 + 13 = 29 moves.

We further reduce the upper bound from 29 to 26 in two steps. First, a refinement strategy is used
to analyze all group elements that are members of a symmetrized coset at level 9. The refinement
computation shows that the optimal solution for any such group element is bounded above by only
20 moves, instead of the expected 13 + 9 = 22 moves, giving elements at the furthest level a bound
of (16 − 9) + 20 = 27. Finally, that bound of 27 is reduced to 26 by directly analyzing the 17 worst
case symmetrized cosets.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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1.3. Parallel disks

We briefly review the use of the parallel disks in proving that all cosets are within 16 moves
of the square subgroup. The computation was parallelized using a library developed by the second
author called TOP-C (Task Oriented Parallel C/C++) (Cooperman, 1996). Initially, the computation was
carried out in 63 cluster hours using a high-end SAN (storage area network). Later, we duplicated the
computation in 183 cluster hours using only the local disks of a commodity cluster.

To find bounds on the length of solutions among the symmetrized cosets, we use a parallel disk-
based version of breadth-first search. A standard algorithmmaintains a current frontier corresponding
to all states at a given level #. For each state of the frontier, onemakes allmoves (applies all generators)
to produce a list of neighbors. Those neighbors that have already been seen at level # or # − 1 are
eliminated. The remaining neighbors form the next frontier at level # + 1.

The primary difficulty with creating a disk-based version of this algorithm is in the duplicate de-
tection phase, wherewemust compare newly generated states to those previously seen. This typically
makes use of random access data structures, such as hash tables, which are not efficient on disk. To
solve this problem we delay duplicate detection and use a method similar to that of bucket sort, es-
sentially breaking the task into RAM-sized pieces that can make use of random access efficiently.

A second issue arises when the search frontier exceeds the capacity of disk, as it does in our case.
We solve this problem using an implicit open list. This method works by encoding the search frontier
in the hash table and reconstructing it with an inverse hash function, instead of explicitly saving the
non-duplicate states.

Further background on disk-based computation can be found in Section 2, and details of our
method can be found in Section 6.

1.4. Small fast multiplication tables

One additional technique we employ is a fast multiplication routine that accepts the hash index
of a symmetrized coset and a generator, and directly produces the hash index of the product. This
allows us to avoid the costly step of working with the original representation of a symmetrized coset.
While the fast multiplication has some complexity, it is conceptually simple, and based on the group
theoretic decomposition of a groupG into a subgroupH such thatH further decomposes into a product
QN , forN a normal subgroup ofH . The definition of normal subgroup is given in Section 3.1 and further
details of the fast multiplication are provided in Section 4.

1.5. Extensions to previous work

This paper is an extension of thework presented in Kunkle and Cooperman (2007),which originally
proved26moves sufficient for Rubik’s cube. Alongwithmore general enhancements,weprovide three
specific contributions over that previous work.

First, we provide a more thorough analysis of the square subgroup, including the distribution of
depths of the elements and a visual representation of the group structure.

Second, we include additional experimental results for the disk-based computation in Section 6.
These new results compare the results using two different cluster computing architectures, using
either global shared disk or locally attached disks. We find that the relatively cheap local disk
architecture can be used to efficiently perform computations that previously were performed on a
much larger supercomputer.

Finally, we present an analysis of three techniques for refining the upper bound on the group
radius, including: optimal solvers; image intersection; and projection. We also provide experimental
results detailing additional computations that correct an omission in the previous result, which did
not provide shortened solutions for all of the necessary group elements.

2. Related work

One approach to finding bounds on solutions to Rubik’s cubewould be to produce the entire Cayley
graph for the corresponding group. This approach was used to show that 11moves suffice for Rubik’s
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2×2×2 cube (Isaacs, 1981). This smaller cube problemhas also proven useful for the testing of newer
methods, such as a graph representation using only two bits per element, described in Cooperman
et al. (1990). For the full 3 × 3 × 3 Rubik’s cube, these methods are not feasible, since it has over
4.3 × 1019 states.

The first lower bound, of 17, was shown using a simple counting argument, i.e. the number of
possible states achievable in 16 moves is less than the total number of possible states, so there must
be some states requiring at least 17 moves (Frey and Singmaster, 1982).

It was then conjectured that a specific cube position, super-flip, would be a position requiring a
near-maximum number of moves to solve. The super-flip position is of interest because it is the only
element, other than the identity, in the center of Rubik’s group. A solution of length 20 was found by
Winter (1992), which was later proven optimal by Reid (1995b).

The first published upper boundwas 52. Discovered by Thistlethwaite (Frey and Singmaster, 1982),
it was based on solving the cube in a series of four steps, corresponding to a chain of subgroups of
length four. The four steps were proven to have worst case lengths of 7, 13, 15, and 17, for the total
of 52.

This algorithm was improved by Kociemba (2007) to use a subgroup chain of length two. Reid
(1995a) proved the worst case for the two steps was 12 and 18, for a total upper bound of 30. Further
analysis showed that the worst case never occurs, and so a bound of 29 was shown. This bound was
further refined by Radu (2006) to 27, which was the best upper bound before our working showing
26 moves suffice (Kunkle and Cooperman, 2007). Recently, between the acceptance and publication
of this paper, Rokicki (2008b) reduced the upper bound to 23 using 7.8 core-years of CPU time, an
extension of the method described in Rokicki (2008a).

Besides work into methods with provable worst cases, several optimal solvers with no worst
case analysis have been developed. The method developed by Kociemba and analyzed by Reid has a
natural extension that guarantees optimal solutions. Korf (1997) used similar techniques to optimally
solve ten random cube states, one in 16 moves, three in 17 moves, and the remaining six in 18
moves.

One key to our result is the use of disk-based methods for performing search and enumeration,
and specifically the disk-based breadth-first search described in Section 6. Several disk-based search
methods have been introduced in recent years. The common difficulty each of these methods must
overcome is the significant latency of disk, which disallows the random access patterns typically used
when detecting duplicate states.

Korf (2004) used sorting-based delayed duplicate detection to to solve sliding tile puzzle and
Towers of Hanoi type problems. Korf and Schultze (2005) also introduced hash-based delayed
duplicate detection, which can be used to avoid external sorting in some applications (we use a
hash-based method for our computation). Zhou and Hansen (2004) introduced structured duplicate
detection, which can utilize disk without delaying the detection of duplicates. Robinson and
Cooperman (2006) introduced tiered duplicate detection as a method to speedup the enumeration of
the Baby Monster sporadic simple group, and more recently applied it to the problem of the Fischer23
group (Robinson et al., 2007b). A comparative analysis of each of these methods, among other search
techniques, can be found in Robinson et al. (2007a).

3. Notation and basic concepts

3.1. Group theory definitions

We review the formal mathematical definitions. Recall that a group G is a set with multiplication
and an identity e (eg = ge = g), inverse (gg−1 = g−1g = e), and an associative law ((gh)k = g(hk)).
A permutation of a set Ω is a one-to-one and onto mapping from Ω to Ω . Composition of mappings
provides the groupmultiplication, and the group inverse is the inversemapping. A permutation groupG
is a subset of the permutations of a set Ω with the above operations. A subgroup H < G is a subset H
that is closed under group operations. A group G has generators S ⊆ G, written G = 〈S〉, if any element
of G can be written as a product of elements of S and their inverses. The order of the group is the
number of elements in it, |G|.
Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Given a group G and a subgroup H < G, a coset of H is the set Hg = {hg : h ∈ H}. A subgroup
H < G partitions the group into cosets. The set of all cosets is written G/H . The conjugate of h by g is
defined by hgdef=g−1hg . N < G is normal in G if ∀n ∈ N, g ∈ G, ng ∈ N .

An automorphism α of a group G is a one-to-one and ontomapping of G such that for g1, g2 ∈ G, one
has α(g1g2) = α(g1)α(g2). The informal idea of symmetries of Rubik’s cube has its formal analogue
in automorphisms.

A Cayley graph of a group G with generators S is a directed graph whose vertices are the elements
of G and whose directed edges, (g1, g2), satisfy g1s = g2 for some edge label s ∈ S. Since our chosen
generating set for Rubik’s cube is preserved under inverses, the Cayley graph of Rubik’s cube can
also be considered an undirected graph. A Schreier coset graph of a group G with generators S and
subgroup H < G is a graph whose vertices are the elements of G/H and whose edges, (Hg1,Hg2),
satisfy Hg1s = Hg2 for some edge label s ∈ S.

3.1.0.1. Symmetrized group elements and symmetrized cosets. While the above definitions are
standard, we extend them to symmetrized group elements and symmetrized cosets. Let A be a group
of automorphisms of a group G. A symmetrized group element gA for g ∈ G is the set {α(g) : α ∈ A}.

Given a subgroupH < G, let A be a group of automorphisms of G that also preserveH (∀h ∈ H, α ∈
A, α(h) ∈ H). The symmetrized coset HgA is the set of elements {hα(g) : h ∈ H, α ∈ A} = ∪α∈AHα(g).
(Note α(HgA) = HgA ∀α ∈ A.)

Let A be a group of automorphisms of G. Assume that A preserves the generating set S of G. Then
the symmetrized Cayley graph for (G, S, A) is the directed graph with vertices {gA : g ∈ G} and with
edges (gA

1 , gA
2 ) where ∀g ′

1 ∈ gA
1 , ∃s ∈ S such that g ′

1s ∈ gA
2 .

Without loss of generality, it suffices to consider only edge labels satisfying g1s ∈ gA
2 for a

distinguished group element g1 ∈ gA
1 . Note that the edge label in a symmetrized Cayley graph is not

unique since we could equally well consider α(g ′
1)α(s) ∈ α(g2) as defining that edge. Hence, the edge

(gA
1 , gA

2 ) has edge label s such that g1s = g2 and also edge label s′ = α(s) for some α ∈ A, such that
α(g1)α(s) = α(g2). For any element g ′

1s ∈ gA
2 satisfying g ′

1 ∈ gA
1 , there is an α ∈ A with α(g ′

1) = g1
and so the edge ((g ′

1)
A, (g ′

1s)
A) = (gA

1 , (g1α(s))A).
Similarly, assuming that G = 〈S〉, H < G, and A preserves S, one defines the symmetrized Schreier

coset graph for (G,H, S, A) as the directed graph with vertices {HgA : g ∈ G} and with edges (gA
1 , gA

2 )

satisfying Hg ′
1 ∈ HgA

1 and Hg1s ∈ HgA
2 . As before, in order to find all neighbors of gA

1 in a symmetrized
Cayley graph, it suffices to choose any distinguished element g ′ ∈ HgA

1 , and the set of neighbors is
{(H(g ′)A,H(g ′s)A) : s ∈ S, g ′s /∈ H(g ′)A}.

Note that for identity e ∈ G, the trivial coset He = H and the trivial symmetrized coset HeA = H
are equal. For our work, we require the following property: Let g ′ ∈ HgA. Then the distance from
the symmetrized coset HgA to the trivial symmetrized coset H in the symmetrized Schreier coset
graph is the same as the distance from the coset Hg ′ to the trivial coset H in the Schreier coset graph.
The property is easy to prove. If there is a word w′ with distinguished element g ′′ ∈ HgA such that
g ′′w′ ∈ HeA = H , then there is an α ∈ A with α(g ′′) = g ′, and therefore g ′α(w′) = α(g ′′)α(w′) ∈ H .
Since the automorphisms α preserve S, α(w′) is a word in S of length d, from Hg ′ to the trivial coset
in the Schreier coset graph.

3.1.0.2. Perfect hash function. Next, a perfect hash function is a hash function that produces no
collisions. Hence, it is one-to-one. Section 4 describes efficient perfect hash functions both for certain
classes of symmetrized cosets and for symmetrized group elements. This function is nearly minimal,
and has an efficiently computable inverse hash function.

3.2. Rubik’s cube definitions

We assume the reader has seen a Rubik’s cube, and we provide this description solely to fix
terminology according to standard conventions (Frey and Singmaster, 1982).

A Rubik’s cube is built from 26 cubies, each able tomake restricted rotations about a core of Rubik’s
cube. A face of Rubik’s cube is a side. Each face is divided into 9 facelets, where each of the 9 facelets

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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is part of a distinct cubie. A cubie is either an edge cubie (two visible facelets), a corner cubie (three
visible facelets), or a center cubie (one visible face, in the center of a side). The facelets are similarly
edge facelets, corner facelets, or center facelets.

The states of Rubik’s cube can be considered as permutations on 48 facelets (the 24 corner facelets
and the 24 edge facelets). The center facelets are considered to be fixed, and all rotations of Rubik’s
cube are considered to preserve a fixed orientation of the cube in 3 dimensions. The home position
or solved position of Rubik’s cube is one in which all facelets of a face are the same color, and (for
the sake of specificity) the blue face is downwards. We will speak interchangeably about an element
of Rubik’s group, a state, or a position of Rubik’s cube. Similarly, we will speak interchangeably about
the home position of Rubik’s cube or the identity element of Rubik’s group. Hence, a position of the cube
is identified with a group element that permutes the facelets from the home position to the given
position.

Themoves of Rubik’s group are conventionally denoted U , U−1, U2, D, D−1, D2, R, R−1, R2, L, L−1, L2,
F , F−1, F 2, B, B−1, and B2. Mnemonically, U stands for a clockwise quarter turn of the ‘‘up’’ face, and
similarly, D, R, L, F and B stand for ‘‘down’’, ‘‘right’’, ‘‘left’’, ‘‘front’’ and ‘‘back’’, respectively. Any of the
above moves will move exactly 20 facelets. These moves also make up the generators of the Rubik’s
cube group, G. Standard techniques, such as Sims’s algorithm for group membership, show that the
order of Rubik’s group is |G| = 43, 252, 003, 274, 489, 856, 000 (approximately 4.3 × 1019).

The generators of the square subgroup are given by Q =
〈
U2,D2, R2, L2, F 2, B2

〉
. Standard

techniques show that the order of the square subgroup is |Q | = 663, 552 (approximately 6.6 × 105).
The index, or number of cosets, is [G : Q ] = |G|/|Q | = 65, 182, 537, 728, 000 (approximately
6.5 × 1013).

3.3. Symmetries (natural automorphisms) of Rubik’s cube

For Rubik’s cube, we desire a subgroup of 48 automorphisms that preserve the set of generators:
the natural automorphisms of Rubik’s cube. Each automorphism can be identified with a symmetry
of a geometric cube: one of 24 rotations of the entire cube; or a rotation followed by an inversion of
the cube (mapping each corner of the cube to the opposite corner). A rotation of the cube maps the
natural generators of Rubik’s cube to generators. An inversion of the cube maps generators to inverse
generators (clockwise quarter turns to counter-clockwise quarter turns). These 48 symmetries of the
cube are known to preserve the natural generators of Rubik’s group, and no other automorphisms of
Rubik’s group do so.

4. Fast group multiplication in the presence of symmetries

Next, the method of fast multiplication is presented. The method breaks up a group into smaller
subgroups (called coordinates by Kociemba (2007)). The chosen subgroups are tailored for fast
multiplication both within the square subgroup (group generated by squares of generators) and
multiplication of the cosets by generators. Each subgroup is small enough so that the derived table-
based computations fit inside CPU cache.

We will separately consider the edge group (the action on edge facelets) and the corner group (the
action on corner facelets). The two actions are ‘‘linked’’. This will be discussed in later subsections.
First, we provide the fundamental basis for our result.

4.1. Decomposition into smaller subgroups and fast multiplication

The following easy result provides the basis for our fast multiplication.
Lemma 1. Let G be a group and N a normal subgroup of G with G > H = QN and Q ∩ N = {1}. Then
given a set of canonical coset representatives of G/H, an element g ∈ G uniquely defines q, ḡ and n as
follows.

g = qḡn, where q ∈ Q , ḡ is the canonical coset representative of Hg, and n ∈ N.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Proof. Clearly, g = hḡ for a uniquely defined h ∈ H and ḡ the coset representative of Hg . The
equation h = qn′ then uniquely defines q and n′ for q ∈ Q and n′ ∈ N . Define n by n = n′ḡ . Then
g = hḡ = qn′ḡ = qḡn. !

Lemma 1 provides the basis for a perfect hash function for G and Q , since g and the corresponding
coset Qg can be encoded by φ1 and φ2 as follows.

For g = qḡn as above , φ1(g) = (q, ḡ, n) and φ2(Qg) = (ḡ, n). (1)

Given perfect hash functions for Q , G/H and N , the above equations yield perfect hash functions for G
and for G/Q through a mixed radix encoding. The importance of this particular encoding is that it
adapts well to an algorithm for fast multiplication.

If the group N is also normal, then there is an efficient multiplication of a triple (q, ḡ, n) and a
pair (ḡ, n). Recall that the conjugate of a group element h by g is defined as hg = g−1hg . Recall that
a subgroup N < G is a normal subgroup if ∀n ∈ N , and g ∈ G, ng ∈ N . This immediately implies
ng = gng and ng

1n
g
2 = (n1n2)

g for n, n1, n2 ∈ N and g ∈ G.
Next, consider g = qḡn as above. In addition, assume that N is a normal subgroup. Let ḡs

decompose into q′ḡsn′ by Lemma 1, where ḡs is the canonical coset representative of Hḡs. Note also
that Hḡs = Hgs implies ḡs = gs for gs the canonical coset representative of Hgs. Then the product of
g by a generator s can be expressed as follows.

Lemma 2. Let Q < G and let N be a normal subgroup of G. Let Q ∩ N = {1}. Let g, s ∈ G. Assume the
decompositions g = qḡn and ḡs = q′gsn′, as given by Lemma 1. Then the following holds.

If g = qḡn and ḡs = q′gsn′, then gs = (qq′)gs(n′ns) and Qgs = Qgs(n′ns). (2)

Providing that Q , N and G/(QN) are sufficiently small, Lemma 2 provides the foundation for
precomputing small tables of all the required products, for any given s ∈ G. Typically, we choose
s to be a generator since there are few generators, and so the relatively small size of the tables is
maintained.

Fast multiplication by an arbitrary group element, while using small tables, is also feasible. By
Lemma 1, an arbitrary group element can be written as g = qḡn. Assuming that g is represented as
the triple (q, ḡ, n), one can successively treat each of q, ḡ and n as the generator s for purposes of
multiplication on the right.

4.2. Fast multiplication of coset by generator for edge group

First, consider the edge group E, the restriction of Rubik’s group to act only on edge facelets.
Similarly, let ME be the restriction of the generators of Rubik’s cube, M , to elements that act only
on the edges. Let QE be the restriction of the square subgroup Q =

〈
{s2 | s ∈ M}

〉
to act only on the

edges. Hence, QE =
〈
{s2 | s ∈ ME}

〉
.

Let NE be the normal subgroup of E that fixes the edge cubies setwise, but allows the two facelets
of an edge cubie to be transposed. There are 12 edge cubies, but it is not possible in Rubik’s cube to
transpose the facelets of an odd number of edge cubies. Group theoretic arguments then show the
order of the group NE to be 211.

It is easy to show that NE is normal in G since for n ∈ NE and g ∈ G, g−1ng may permute the cubies
according to g−1, but n fixes the cubies, and g then brings the cubies back to their original position.
So, g−1ng ∈ N and so NE is normal.

Wedescribe themethod for fastmultiplication of a coset of E/QE by a generator fromME .We define
HE = QENE . The method depends on a subgroup chain

E > HE > NE, for NE normal in E, HE
def=QENE, and QE ∩ NE = {1}.

For the remainder of this section, we often omit the subscripts of ME , HE , NE and QE , since we will
always be concerned with the action on edges.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
Symbolic Computation (2008), doi:10.1016/j.jsc.2008.04.013



ARTICLE  IN  PRESS
8 D. Kunkle, G. Cooperman / Journal of Symbolic Computation ( ) –

Fig. 1. Edge tables for fast multiplication.

By Lemma 1, for any coset Qg ∈ E/Q , Qg = Qr1r2. So, Qg is represented as a pair (r1, r2) for r1 a
canonical coset representative in E/H and r2 ∈ N . Given a generator s of E, Eq. (2) is used below to
multiply the pair (r1, r2) by s and return a new pair, (r ′

1, r
′
2) = (r1s, r̄2(rs2)).

Let r1s = q̄ r1s r̄2, where q̄ ∈ Q , r̄2 ∈ N, and r1s is the canonical coset rep. of Qr1s.
Then Qr1r2s = Qr1s(rs2) = Qr1s(r̄2(rs2)). (3)

Given (r1, r2) and a generator s, one can compute (r ′
1, r

′
2) such that Qr1r2s = Qr ′

1r
′
2 primarily

through table lookup. Fig. 1 describes the necessary edge tables.
Note that the logical operations can be done efficiently, becauseN is an elementary abelian 2-group.

This means that the group N is isomorphic to an additive group of vectors over a finite field of order 2.
In other words, multiplication in N is equivalent to addition in GF(2)11, the 11-dimensional vector
space over the field of order 2. Addition in the field of order 2 can be executed by ‘‘exclusive or’’.
Hence, it suffices to use bitwise ‘‘exclusive or’’ over 11 bits for group multiplication in NE .

4.3. Extension to group action on corners

For corners, we use the same logic as previously, but with the corner group C , the restrictionMC of
the generators to corners, and the restrictionQC of the square group to corners. LetNC be the subgroup
of C that fixes in position the corner cubies, but allows the facelets of the corner cubie to be permuted.
There are 8 corner cubies, but a standard group-theoretic algorithm shows thatwithin the subgroup C ,
the number of group elements fixing all corner cubies is only 37. As before, we drop the subscripts for
readability. Hence, the tables of Fig. 1 can be reinterpreted as pertaining to corners. However, there
is a small difference. Since NC is an elementary abelian 3-group, multiplication in NC is equivalent to
addition over GF(3)7.

4.4. Generalization to fast multiplication over symmetrized cosets

Assume that the automorphism group A acts on edge facelets and corner facelets, separately
preserving edge and corner facelets. Assume also that A preserves the subgroups Q , N and H = QN .
Therefore, A also maps the projections of Q , N and H = QN into edges and into corners.

Assume that the symmetrized coset QgA is uniquely represented as Q (r1r2)A, where r1 is the
canonical representative of a symmetrized coset HgA with H = QN , and r2 ∈ N , as described in
Lemma 1.

The subscript e, below, indicates the restriction of a permutation to its action only on edges.
Similarly, the subscript c is for corners. The subscripts are omitted where the meaning is clear.

For edges,

Qα(r1,er2,es) = Qα(r1s)α(rs2) = Qα(r1s)(r̄2α(rs2)), where α(r1s) is defined by

Table 1a, α is chosen to minimize α(r1s), r̄2 defined by Table 1b, etc. (4)
However for corners,

Qα(r1,c r2,c s) = Qα(r1s (r̄2(rs2))) = Qα(r1s)α(r̄2(rs2)) = Qα(r1s)nα(r1s)α(r̄2(rs2)),

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Fig. 2. Edge tables for fast multiplication of symmetrized coset by generator.

Fig. 3. Corner tables for fast multiplication of symmetrized coset by generator.

where α is chosen as in Eq. (4), r1s defined by Table 1a, α(r1s) defined by Table 4a,

nα(r1s) defined by Table 4b, r̄2 defined by Table 1b, rS2 by Table 2, etc. (5)

Note that the choice ofα ∈ A for edges above depends on there being a unique such automorphism
thatminimizesα(r1s). In fact, this is not true in about 5.2% of cases for randomly chosen r1 and s. These
unusual cases can be easily detected at run-time, and additional tie-breaking logic is generated. We
proceed to describe tables for fast multiplication for the common case of unique α ∈ A minimizing
α(r1s), and discuss the tie-breaking logic later.

The tables that implement the above formulas follow. While it is mathematically true that we can
simplify α(r1s) into α(r1s), we often maintain the longer formula to make clear the origins of that
expression, which is needed for an implementation. As before, the subscripts e and c indicate the
restriction of a permutation to its action only on edges and only on corners. Figs. 2 and 3 describe the
following edge tables, among others.

Ideally, one would use only the simpler formula and tables for edges, and copy that logic for
corners. Unfortunately, this is not possible. We must choose a representative automorphism α ∈ A
for purposes of computation. We choose α based on the projection r1,e of r1 into E (action of r1 on
edges). Hence, Tables 1a and 1b for edges take input r1 and s, then compute α as an intermediate

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Fig. 4. Edge tables for fast multiplication of symmetrized coset by generator, adjusted to break ties.

computation, then return Hα(r1s). A similar computation for corners is not possible, because the
intermediate value α depends on r1,e and not on the corresponding element of the corner group r1,c .

4.4.0.3. Tie-breakers:When theminimizing automorphism is not unique. Table Aut in the previous table
for edges defines an automorphism α that minimizes α(r1s). Unfortunately, there is not always a
unique such α. In such cases, one needs a tie-breaker, since different choices of α will in general
produce different encodings (different hash indices).

For each possible value of α(r1s), with α chosen to minimize the expression, we precompute the
stabilizer subgroup B ≤ A defined by B = {β ∈ A : β(α(r1s)) = α(r1s)} and use the formulas and
additional table below to find the unique β ∈ B such that the product αβ minimizes the edge pair
result (r ′

1,e, r
′
2,e). Where even this is not enough to break ties, we compute the full encoding, while

trying all possible tying automorphisms. This latter situation arises only 0.23% of the time, and does
not contribute significantly to the time. The tables of Fig. 4 suffice for these computations.

For edges,

Qβ(α(r1,er2,es)) = Qβ(α(r1s))β(α(rs2)) = Qβ(α(r1s))
(
β

(
r̄2α(rs2)

))
=

Qα(r1s)r̄ ′
2
(
β

(
r̄2α(rs2)

))
,

where α(r1s) is defined by Table 1a, α is chosen to minimize α(r1s),

β ∈ A satisfies Qβ(α(r1s)) = Qα(r1s), β(α(r1s)) = α(r1s)r̄ ′
2 (r ′

2 defined in Table 3) ,

and r̄2 defined by Table 1b for edges. (6)
However for corners,

Qβ(α(r1,c r2,c s)) = Qβ(α(r1s (r̄2(rs2)))) = Qβ(α(r1s))β(α(r̄2(rs2))) =
Qβ(α(r1s))nβ(α(r1s))β(α(r̄2(rs2))), where α and β are chosen as in Eq. (6),

and other quantities based on the previous Corner Tables using αβ . (7)

Table 1c is implemented more efficiently by storing the elements of each of the possible
98 subgroups of the automorphism group, and having Table 1c point to the appropriate subgroup B ≤
A, stabilizing r1,e, s.

4.5. Optimizations

In the discussion so far, we produce the encoding or hash index of a group element based on an
encoding of the action of the group element on edges, along with an encoding of the action of the
group element on corners. We can cut this encoding in half due to parity considerations.

Consider the action of Rubik’s cube on the 12 edge cubies and the 8 corner cubies, rather than
on the facelets. We define the edge parity of a group element to be the parity (even or odd) in its
action on edge cubies. (Recall that the parity of a permutation is odd or even according to whether the
permutation is expressible as an odd or even number of transpositions.) The corner parity is similarly
defined.

The edge and corner parity of a symmetrized coset, HgA, are well-defined, and are the same as the
edge and corner parity of g . This is so because H = QN , and elements of Q and N have even edge
parity and even corner parity. Parity is unchanged by the action of an automorphism.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Fig. 5. Breadth-first enumeration of the symmetrized Cayley graph of the square subgroup.

For Rubik’s cube, the natural generators have the edge parity equal to the corner parity. So this
property extends to all group elements, and hence to all symmetrized cosets HgA. Therefore, our
encoding can assume that edge and corner parities of symmetrized cosets are equal. The size of the
corresponding hash table is thus reduced by half.

4.5.0.4. Nearly minimal perfect hash function. If we were to only use cosets instead of symmetrized
cosets (no automorphism), then the perfect hash function that we have described implicitly would
also be aminimal perfect hash function. However, there are examples for which Qα(g) = Qg for α not
the identity automorphism.

A computation demonstrates that the perfect hash function of Section 4.4, with the addition of the
parity optimization, has 1471074877440 ≈ 1.5 × 1012 possible values. In Section 6, we show that
there are 1357981544340 ≈ 1.4×1012 symmetrized cosets. So, the ratio of these two values give the
hash function an efficiency of 92.3%.

5. Square subgroup elements are within 13 moves of the identity

Because of the small size of the square subgroup (663,552 elements, or 15,752 after reduction by
symmetries) these computations are small when compared to the corresponding computations for
the cosets.

First, we constructed the Cayley graph of the square subgroup by breadth-first search, using the
square generators. This computation took only seconds, even using a simple implementation on a
single computer. It was found that all elements of the subgroup are within 15 moves of the identity.

Fig. 5 presents a visual representation of this breadth-first search. Each dot represents a
symmetrized element and each line represents one of the six squared generators. The dot in the
center is the identity element, and elements are grouped into concentric circles based on their distance
from the identity. The plot shows a certain structure of the group, where initial moves away from the
identity help dictate the maximum depth of large branches of the tree.

Next, we found an optimal solution for all elements of the square subgroup when any of the
18 generators are allowed to be used. Performing a breadth-first search to depth 15 using all 18
generators would be computationally expensive: an increase from enumerating 615 to 1815 states
(both numbers are smaller in practice due to duplicate detection). Because of this, we chose to use
bidirectional search when allowing all 18 generators.

The computation is performed in two phases. First, we performed a forward search to depth 7,
starting from the identity. Then, we performed one backward search for each of the 15,752 elements
of the square subgroup, halting when the search frontier intersected the forward search. These

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Fig. 6. Distribution of elements in the square subgroup.

backwards searches required anywhere from milliseconds to a few hours in the worst case. Overall,
this optimization took less than one day, requiring no parallelization.

This showed that all elements of the square subgroup have a solution of 13 or fewer moves. Fig. 6
shows the distribution of distances of (symmetrized) elements in the square subgroup, using either
just the square generators or the full set of generators.

6. Cosets are within 16 moves of the trivial coset

We constructed the symmetrized Schreier coset graph, with respect to the square subgroup,
through breadth-first search. However, the computation is significantly more complex than typical
breadth-first search due to the scale of the computation: approximately 1.4 trillion symmetrized
cosets. To handle this large scale computationwe developed fastmultiplication of symmetrized cosets
by generators (see Section 4), and developed new methods for disk-based search and enumeration.

Robinson et al. (2007a) presents a comparative analysis of several different methods for parallel
disk-based search and enumeration. The two methods from that comparison which we use here are
hash-based delayed duplicate detection (hash-based DDD) with an implicit open list.

The primary data structure is an almost perfectly dense hash array of approximately 1.5 × 1012

entries, corresponding to the range of hash indices for all symmetrized cosets. The hash function is
provided by ourmethod of fast multiplication. Each entry of the table holds a four bit value describing
the depth at which the corresponding symmetrized coset occurs in the breadth-first search, for a total
array size of 685 GB.

Note that we could have used only two bits per state, encoding which of the states are on the
current search frontier, instead of representing the exact depth of each element. We chose to use the
more detailed representation to allow for efficient post-processing of the data (such as extracting all
of the states at a given level).

Algorithm 1 describes how this array is used to perform the search. It uses an iterative processwith
two phases, generating and merging.

The generating phase produces new states, buffering them to disk, and continues until either an
entire level of the breadth-first search is complete, or until available disk space is exhausted. The
merge phase reads the buffered states, and uses the hash values to do duplicate detection in RAM.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Fig. 7. Distribution of symmetrized cosets of the square subgroup.

Note that the non-duplicate values are not saved, but are encoded directly in the hash table and
reconstructed using the efficient inverse hash function provided by our fast multiplication.

6.0.1. Parallelization and optimizations
In each phase, the computation is split into buckets, based on contiguous ranges of hash values. By

doing so, the computation can be performed in parallel, with each parallel process handling a separate
bucket.We call each of these bucket-based computations a task. Because of this natural task structure,
we parallelized the computation using a library developed by the second author called TOP-C (Task
Oriented Parallel C/C++) (Cooperman, 1996).

As an optimization, the breadth-first search is initially conducted using only main memory, as in
the traditional case, and switches to the parallel disk-based version once RAM limitations are met (in
this case, at depth 9).

Further, when storing new states on disk, we must store the associated hash index, which is 41
bits long. However, we store all of the states that fall into a particular bucket into a separate file or
directory. So, the highest 11 bits of the hash value are stored implicitly, and only 30 bits per statemust
be stored explicitly, which fits into a single 4-byte value.

For efficiency, wherever possible, we use double buffering for reading or writing large amounts of
data on disk. Basically, this involves transferring half of the data, while continuing computations with
the other half.

For a long-running computation, checkpointing is essential. Notice that the end of phase two, the
merging phase, is a natural time to checkpoint. At this point, all data is contained in the level array
(on disk). We simply record the last level completed and the portions of the level array which have
already been generated from (in the first phase). Given this, we can restart the computation after a
failure, losing only the work since the end of the last merge phase. Notice that the update of the level
array is idempotent, so that re-doing some generating and merging does not effect correctness.

6.1. Experimental results

The breadth-first search showed that all coset are within 16moves of the trivial coset. Fig. 7 shows
the distribution of depths for cosets in the symmetrized Schreier coset graph.

Wehave nowperformed this computation twice. The primary reason for repeating this experiment
was to compare two different cluster computing architectures, namely: those using shared disk, such
as a SAN (Storage Area Network); and those using distributed disk, with one or more disks locally
attached to each compute node. Secondarily, repeating the computation gives more assurance of the
correctness of the result.

For the shared disk architecture, we used the DataStar cluster at the San Diego Supercomputer
Center (SDSC).We used 16 compute nodes in parallel, eachwith 8 computing cores and 16 GB ofmain
memory. For external storage, we used DataStar’s attached GPFS (IBM General Parallel File System).
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Algorithm 1 Construct Symmetrized Schreier Coset Graph
1: Initialize array of symmetrized cosets with all levels set to unknown (four bits per coset).
2: Add trivial coset to array; set level # to 0.
3: while previous level had produced new neighbors, at next level do
4: {Generate new elements from the current level}
5: Let a segment be those nodes at level # among N consecutive elements of the array.
6: Scan array starting at beginning.
7: whilewe are not at the end of the array, extract next segment of array and do
8: for each node at level # (representing a symmetrized coset) do
9: for each generator do

10: Compute product by fast multiplication.
11: Compute hash index of product.
12: Save hash index in bucket b, where b is the high bits of the hash index. Note, we only save

the low order bits of the hash index not encoded by the bucket number. (This value fits
in four bytes.)

13: If bucket b is full, transfer it (write it) to a disk file for bucket b.
14: end for
15: end for
16: Transfer all buckets to corresponding disk files.
17: end while
18: {Now merge buckets into array of symmetrized cosets.}
19: for each bucket b on disk do
20: Load portion of level array corresponding to bucket b into main memory.
21: for each buffered element on disk for this bucket do
22: Read value into RAM and delete from disk (in large chunks).
23: Look up corresponding level value in array.
24: If a value already exists for the element, it is a duplicate. Otherwise, set its level to #.
25: end for
26: Write portion of level array back to disk.
27: end for
28: Increment level #.
29: end while

We used up to 7 terabytes of storage at any given time, as a buffer for newly generated states in the
breadth-first search.

The fast multiplication algorithm allowed us to multiply a symmetrized coset by a generator at a
rate of approximately 5 million times per second.

The computation using shared disk required 63 cluster hours, or approximately 8000 CPU hours.
For the distributed disk architecture, we use a recently purchased cluster at Northeastern

University, called TeraCluster. Here, we used 30 nodes, using one computing core per node. For
external storage, we used up to 80 GB per node, on a locally attached disk (or up to 2.3 TB of aggregate
storage).

We used just one core per node because we found experimentally that executing more than one
task simultaneously on a single node could significantly reduce performance. We hypothesize that
this occurs when the two tasks disrupt the large contiguous disk accesses of the other, reducing them
to smaller, less efficient disk operations. This was not seen in the shared disk architecture, where the
SAN was composed of hundreds or thousands of disks. As future work, we intend to examine the use
of multiple disks per node, in hopes that each additional disk could be used by a separate task.

The fact that we were using fewer CPUs in the distributed disk architecture is somewhat offset
by the fact that the fast multiplication algorithm was twice as fast, performing approximately 10
million multiplications per second per computing core. This speed differential is likely due in part
to the different cache architecture of the two CPUs.
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The computation using distributed disk required 183 cluster hours, or around 5500 CPU hours. So,
even though the total computation took longer, it was faster per CPU. This is because the computation
is bound by the speed of the network and disks, not by CPU speed. It is encouraging that the distributed
disk timewaswithin a factor of three of the shared disk time, considering that our local cluster ismore
modest, and less expensive, than the large supercomputer at SDSC.

7. Refining the upper bound

Here, we present three separate methods for further reduction of the upper bound on the radius
of Rubik’s group, and of groups in general when using a two stage solution.

So far, we have shown that, from an arbitrary cube position, one can reach the square subgroup in
nomore then 16moves, and can then solve the cube in nomore than 13moves, for an upper bound of
29 moves. The methods we present here were used to show that all cube configurations that require
27 ormoremoves by thismethod have an alternate solution of length 26 or less. Often, these alternate
solutions require taking non-optimal paths in the first phase (reaching the square subgroup), in trade
for a reduced solution length in the second phase.

The three methods we present are:

(1) Optimal solvers: used on a single group element and guaranteed to find the shortest possible
solution. This operation is typically expensive, and can only be used on relatively few positions.

(2) Image Intersection: acts on an entire coset, but does not guarantee optimal results.
(3) Projection: uses the structure of breadth-first search to refine the upper bound on all cosets based

on refinement at earlier depths.

7.1. Goal of refinement of coset upper bound

First, we define the process of refinement, and fix our terminology for this section.
Having constructed the Schreier coset graph, one wishes to test individual cosets, and prove that

all group elements of that coset are expressible as words in the generators of length at most u.
Recall that G is the group of Rubik’s cube, and Q is the square subgroup. Consider a coset Qg at a

depth # (distance # from the home position, or trivial coset, in the coset graph). Let d = 13 be the
diameter of the subgroup Q . For any group element h ∈ Qg , clearly its distance from the identity
element is at least # and at most # + d. We describe a computation to produce a finer upper bound on
the distance of any h ∈ Qg from the identity element.

Note that in the original computation proving bounds of 13 for the square subgroup and 16 for the
cosets we reduced both of these spaces by the 48 symmetries of the cube. However, when refining
the upper bound, we cannot make use of both of these symmetry reductions. In general, for q ∈ Q ,
g ∈ G, and α1, α2, α3, α4 ∈ A, dist(α1(q)α2(g)) /= dist(α3(q)α4(g)), where dist(h) is the length of the
shortest path from h to the identity. So, to refine the upper bound on a coset Qg , we must refine the
bound on all elements in that coset, where Q is not reduced by symmetry. We still make use of the
symmetry reduction for the cosets, by refining only one canonical coset Qg from each symmetrized
coset QgA.

7.2. Refinement by optimal solver

Over the years since Rubik’s cube was introduced, many solvers have been introduced for the
puzzle, including a number of solvers that guarantee optimal solutions (given enough execution time).

The idea is straight forward: to refine the upper bound on a coset Qg , and prove that all elements
have a solution of length u or less, one applies the solver to all elements qg , where q ∈ Q and
dist(q) > u−#. If the resulting solution length for each of these elements is less than u, the refinement
has succeeded. Otherwise, the refinement is not possible.

When using an optimal solver, this method is guaranteed to prove the refinement if it is possible.
However, finding the optimal solution can take anywhere from seconds to hours or more, depending
on the speed of the solver and the distance of the element from the identity. Because of this, we
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Algorithm 2 Refinement by Image Intersection
Input: a subgroup Q of a group G, a coset Qg; a desired upper bound u; and a set of wordsw1, w2, . . .

in generators of G such that Qgwi = Q .
Output: a demonstration that all elements of Qg have solutions of length at most u or else a subset

S ⊆ Qg such that all elements of Qg \ S are known to have solutions of length at most u.
1: Let k = u−len(g). LetU0 = {q ∈ Q | dist(q) > k} ⊆ Q . Then (Q \U0)g is the subset of elements in

the coset Qg which are known to have solutions of length at most u. The set U0g is the ‘‘unknown
set’’, for which we must decide if they have solutions of length u or less.

2: For each i ≥ 1, let Ui = Ui−1 \ {q ∈ Ui−1 | dist(qgwi) ≤ u − len(wi)}. (Note that qgwi ∈ Q ). By
dist(qgwi), wemean the shortest path in the full set of generators ofG. If dist(qgwi) ≤ u−len(wi),
then qg has a solution of length at most u. The solution for qg is given by a path length len(wi)
followed by a path of length u − len(wi) = dist(qgwi).

3: If Ui = ∅ for some i ≤ j, then we have shown that all elements of Qg have solutions of length
at most u. If Uj /= ∅, then we have shown that all elements of (Q \ Uj)g have solution length at
most u.

typically only use optimal solvers whenwewish to refine the bound only on a small number of cosets
and/or when there are few elements to consider per coset.

We made use of two solvers previously developed by the community. The first is Cube Explorer,
developed by Kociemba (2007). This is currently the most efficient, and most developed solver for
Rubik’s cube.

The second solver we made use of is based on software developed by Winter (1992). This solver
uses amethod similar to Cube Explorer, but does not make use of some of themore advanced features
or the large precomputations performed by Cube Explorer. However, it is a simple C program, which
we relatively easily modified to run in parallel on our cluster computer.

7.3. Refinement by image intersection

The method we introduce here, image intersection, attempts to overcome the expense of
considering each individual element in a coset in isolation. It is typically much more efficient than
optimal solvers, especially when there are many elements to solve per coset.

Note that for the coset Qg , there can be many paths in the coset graph from the identity coset
to Qg . In terms of group theory, there are multiple words, w1, w2, . . ., where each word is a product
of generators of Rubik’s group, and Qw1 = Qw2 = · · · = Qg . Note that in general, the words are
distinct group elements: w1 /= w2, and qw1w

−1
2 /= q, for q ∈ Q . Nevertheless, w1w

−1
2 ∈ Q . The

different images of Q produced through multiplication with the different words is the key to finding
a refined upper bound.

Next, suppose our goal is to demonstrate an upper bound k + # for all of the elements in the coset
Qg (at depth #), where # ≤ k + # < d + #.

Let Qk
def={q ∈ Q | dist(q) ≤ k}, the subset of Q at distance from the identity at most k, and let

Qkg
def={qg | q ∈ Qk}. Let wi be words such that Qw1 = Qw2 = · · · = Qg . Assume the words are of

length # in the generators of Rubik’s group, i.e., they are shortest words for g .
Note that for all elements of Qkw1, there is an upper bound, k + #. Similarly, for all elements of

Qkw2, there is an upper bound, k + #. Therefore, the elements of Qkw1 ∪ Qkw1 have an upper bound
of k + #. More compactly,

dist(Qkw1 ∪ Qkw2) ≤ k + #.

More generally, forwi aword in the generators ofG of length len(wi), let xi = len(wi)−# represent
the number of additional moves used by wi beyond a shortest path. Then

dist(Qk−x1w1 ∪ Qk−x2w2) ≤ k + #

since the length of any word in Qk−x1w1 is at most (k − x1) + len(w1) = k + # and similarly for w2.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Define the complement Q ′
j
def=Q \ Qj. We can now write:

Q ′
k−x1w1 ∩ Q ′

k−x2w2 ⊇ {h ∈ Qg | dist(hg) > k + #}.
Clearly, the above equation can be generalized to the intersection of multiple words, w1, w2, . . ..

∩iQ ′
k−xiwi = ∅ =⇒ ∀i, dist(Qwi) = dist(Qg) ≤ k + #.

For purposes of computation, Algorithm 2 captures these insights.
Finally, a few notes on implementation details for the above algorithm:

• Note that gwi ∈ Q . So, for q ∈ Q , qgwi can be computed by fast multiplication within the
subgroup Q .

• Determining whether dist(qgwi) ≤ u− len(wi) can be done by maintaining a hash table mapping
all elements q ∈ Q to dist(q).

• Findingwords from the target coset to the identity can be achieved inmanyways, including depth-
first, breadth-first, and bidirectional search.

7.4. Refinement by projection

Refining by projection refers to the use of new upper bounds discovered at cosets within # moves
of the trivial coset to refine the bounds on all cosets further than # moves from the trivial coset.

In its simplest form, consider the casewhere all of the cosets at depth # have a refined upper bound
of u, where # ≤ u < d+# (proven by one of the abovemethods). Then, all subsequent cosets at depth
m > # have a refined upper bound ofm−#+u. This is because any of the elements in a coset at depth
m can reach a coset at depth # in m − # moves, and then complete the solution in umoves.

We can also use this same logic when the cosets at depth # have only been partially refined. For
example, assume we are attempting to refine the upper bound of Qg , at depth #, to u, but there
remain some unrefined elements. There is a set of elements S ⊂ Qg , where for all s ∈ S there is a
known solution proving dist(s) ≤ u. Then, any element sw ∈ Qgw, where s ∈ S, w is a word in the
generators, and Qgw is a coset at depth m = len(w) + #, has a refined upper bound of u + len(w).

In other words, all elements in cosets beyond depth # that have a shortest path to a coset in level #
resulting in a refined element, is also refined. So, by recording the set of refined elements for all cosets
at a given depth, we can easily determine the corresponding set of refined elements at the next depth
by performing one step in a breadth-first search, recording any elements that are the neighbor of a
refined element.

Using this technique, we can use expensive refinement techniques (e.g. optimal solvers, or finding
manywords for image intersection) at early depthswhere there are very few cosets, and project those
results to later depths, which have exponentially many more cosets.

7.5. Experimental results

We used two steps to reduce the upper bound on solutions to Rubik’s cube from 29 to 26. First,
we refined the bound on all cosets at depth 9 by 2 moves, reducing the overall bound to 27. Then,
we refined all cosets at depth 16, the furthest depth, by an additional move, proving 26 moves suffice
overall.

We did not directly refine the cosets at depth 9 by 2moves, as thiswould have required considering
22252 elements (the number of elements at depths 12 or 13 of the square subgroup) for each of the
80741117 depth 9 cosets (or almost 2 trillion total elements). Instead, we started by attempting to
refine cosets at depth 2 by 2 moves, and projected those results to later levels. By interleaving the use
of refinement by optimal solvers and image intersection with projection at each level, we were able
to minimize the total number of elements considered.

Both the optimal solver and image intersection methods were parallel computations, simultane-
ously refining several cosets. Typically, we used 60 computing cores across 30 nodes of a cluster.

Please cite this article in press as: Kunkle, D., Cooperman, G., Harnessing parallel disks to solve Rubik’s cube. Journal of
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Fig. 8. Number of remaining elements at each depth during refinement.

In some cases, the optimal solver was given an execution time limit, after which it would halt
execution on a given element. Due to this, the optimal solver may have failed to refine some elements
which it could have at some earlier depths.

The experimental results of this refinement are shown in Fig. 8. The table shows: the total number
of cosets at depths 2 through 9; the total number of remaining unrefined elements across all cosets
at each depth; and the resulting number of elements left after each refinement technique was used.
The decision of which technique to use at each point was based on timing estimates of the various
methods.

The entire processwas completed over the course of approximately twoweeks, though that period
includes down time between computations to analyze results and setup the next step. If the three
methods of refinement were more tightly integrated and automated, the entire process would likely
take just a few days on a cluster of computers.

Lastly, we refined the cosets at depth 16, showing that all elements there can be solved in 26 or
fewer moves. We did this by applying an optimal solver to the elements corresponding to the last
three levels of the square subgroup across each of the cosets, and verifying that a solution of 26 of
fewer moves was found. With 138262 elements at depth 11 or greater in the square subgroup, and 17
cosets at depth 16, this resulted in 2350454 elements to solve. This is roughly equivalent to the last
refinement, at depth 9, of the previous series of computations.
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