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Introduction

Janko’s large simple sporadic group J4 was originally constructed by Benson,
Conway, Norton, Parker and Thackray as a subgroup of the general linear group
GL112(2) of all invertible 112× 112-matrices over the field GF (2) with 2 elements,
see [1] and [13]. So far the construction of the 112-dimensional 2-modular irreducible
representation of J4 is only described in Benson’s thesis [1] at Cambridge University.
Furthermore, its proof is very involved.

In his paper [12] Lempken has constructed two matrices x, y ∈ GL1333(11) of
orders o(x) = 42, o(y) = 10, respectively, which describe a 1333-dimensional 11-
modular irreducible representation of J4. These two matrices are the building blocks
for the new existence proof for J4 given in this article.

In [17] the fourth author has used this linear representation of the finite group
G = 〈x, y〉 to construct a permutation representation of G of degree 173 067 389
with stabilizer M = 〈x3, y, (x14)t〉, where t = (x14y5)2. His main result is described
in section 2. It is based on a high performance computation on the supercomputers
of the Theory Center of Cornell University and the University of Karlsruhe.

Using Weller’s permutation representation we show in Theorem 5.1 of this article
that the group G = 〈x, y〉 is simple and has order

|G| = 212 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43.

Furthermore, we construct an involution u1 6= 1 of G and an element a1 of order
3 as words in x and y such that H = CG(u1) has the following properties:

(a) The subgroup Q = O2(H) is an extra-special group of order |Q| = 213

such that CH(Q) = 〈u1〉.
(b) P = 〈a1〉 is a Sylow 3-subgroup of O2,3(H), and CQ(P ) = 〈u1〉.
(c) H/O2,3(H) ∼= Aut(M22), the automorphism group of the Mathieu group

M22, NH(P ) 6= CH(P ) ∼= 6M22, the sixfold cover of M22.
Hence G ∼= J4 by Theorem A of Janko’s article [11].
In fact we give generators of these subgroups of H in terms of short words in

x and y, see Theorem 5.1. Therefore all the assertions of this result can easily be
checked by means of the computer algebra systems GAP or MAGMA without using
the programs of [17].

In section 1 we determine the group structure of the subgroup M = 〈x3, y, (x14)t〉,
where t = (x14y5)2. Proposition 1.3 asserts that M is the split extension of an ele-
mentary abelian group E of order 211 by the simple Mathieu group M24. By Propo-
sition 1.4 the restriction of Lempken’s 1333-dimensional 11-modular representation
V of G = 〈x, y〉 to M decomposes into two irreducible 11-modular representations
W and S of dimensions dimF W = 45 and dimF S = 1288. From these data the
fourth author has constructed the above mentioned permutation representation of
G having degree 173067389 in [17].

Section 3 is devoted to determine the group structure of H = 〈x7, y5, (x14)a, (r1)
b〉

of G, where a and b are suitably chosen elements of G described in Lemma 3.2.
In Lemma 3.1 we construct an involution u1 6= 1 of G such that H ≤ CG(u1). In
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fact, we show in Proposition 3.3 that the group H has all the properties stated in
assertions (a), (b) and (c) above.

In section 4 we study the fusion of the involutions of the stabilizer M in G.
Proposition 4.1 asserts that G has 2 conjugacy classes of involutions (u1)

G and
(w1)

G. Using this result and another high performance computation determining
the number of fixed points of the involution u1 on the permutation module of degree
173 067 389 we prove in Proposition 4.2 that H = CG(u1). In the final section it
is shown that G is a simple group. This is done in Theorem 5.1, which completes
our existence proof of Janko’s simple group J4.

Concerning our notation and terminology we refer to the Atlas [4] and the books
by Butler [3], Gorenstein [7], Gorenstein, Lyons, Solomon [8] and Isaacs [10].

1. Lempken’s subgroup G = 〈x, y〉 of GL1333(11)

Throughout this paper F denotes the prime field GF (11) of characteristic 11.
Let V be the canonical 1333-dimensional vector space over F . In Theorem 3.16
and Remark 3.21 of [12] Lempken describes the construction of two 1333 × 1333-
matrices x, y ∈ GL1333(11) of orders o(x) = 42 and o(y) = 10, which will become
the starting data for the construction and new existence proof of Janko’s group
J4. Because of their size these matrices cannot be restated here, but they can be
received by e-mail from eowmob@@exp-math.uni-essen.de.

Throughout this paper G = 〈x, y〉 is the subgroup of GL1333(11)generated by the
matrices x and y of orders 42 and 10, respectively. The following notations are taken
from Lempken’s article [12]. There he considers the subgroup M = 〈x3, y, (x14)t〉
with t = (x14y5)2 as well. However we cannot quote any result of [12] on the
structure of the subgroup M , because Lempken assumes the existence of the simple
Janko group J4.

In this section we show that the subgroup M is a split extension of an elemen-
tary abelian normal subgroup E of order |E| = 211 by the simple Mathieu group
M24. Furthermore, the module structure of the restriction of the 1333-dimensional
representation of G to the subgroup M is determined.

The following notations are kept throughout the remainder of this article.

Notation 1.1. In G = 〈x, y〉 ≤ GL1333(11) define the following elements:

r0 = yx21y−1

r1 = x14yx21y−1x−14 = (r0)
x28

r2 = y3x21y7

r3 = x14y3x21y7x−14 = (r2)
x28

v1 = y6x21y4

v2 = y8x21y2

v3 = y4x21y6

v4 = x21

w1 = [x6, y5]

u1 = [x−6w1x
6, r1] = (v1r2)

2 = [x−12(y5x6)2(x21)y−1x28

]2

u2 = (v3r0)
2

u3 = u1(v4r0)
2

u4 = (v3r2)
2

u5 = u4(v4r2)
2

u6 = [x21(x21)y]2

s1 = y2r1y
−2 = (r1)

y8

s2 = (x21)yx28

= x14y−1x21yx−14

d1 = [(r1)
b, s1], where b = y−2x−6

d2 = (x21)y
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a1 = d1x
6d1x

24d1

t1 = s1(r1)
bs1

t2 = (x21)y5

q0 = r1r3d1s1(x
6y2)4

a3 = s1(q0)
3s1(q0)

4s1s2

a6 = t1(x
14y5)−2x14(x14y5)2t1

z = (x14)t,where t = (x14y5)2

Observe that the elements a1, a3, a6, z ∈ G have order 3, and q0 ∈ G has order 7.
All other elements are involutions of G.

Lemma 1.2. Let L = 〈x6, y2, z〉 ≤ G = 〈x, y〉. Let T = 〈x6, y2〉, j = (x6y2x12)3,
and s = y6(y2x18)4. Then the following assertions hold:

(a) T = 〈x6, y2〉 ∼= GL4(2).
(b) r1 = (j)s ∈ T .

(c) r0 = (r1)
z2

∈ L.

(d) t2 = (r0)
y6

, r2 = (r0)
y8

, d2 = (r0)
y2

∈ L.

(e) E2 = 〈r0, r2, d2, t2〉 is an elementary abelian normal subgroup of

N = 〈T,E2〉 with order |E2| = 24.

(f) N = E2T, E2 ∩ T = 1, and N is perfect.

(g) |L : N | = 759, and |L| = 210 · 33 · 5 · 7 · 11 · 23.
(h) L ∼= M24, the simple Mathieu group.

Proof. (a) By MAGMA the simple group GL4(2) ∼= A8 has the following presenta-
tion with respect to the generators a and b of orders 5 and 7, respectively:

a5 = b7 = (ba3)4 = 1 ,
(b2a)2 · b−1ab−1a3b−1a−1 = 1 ,

(∗) b3aba3b−3ab−1a2 = 1 ,
b3a−1b−1a3b−2a−1b−1aba−1 = 1 ,
b2aba−1b−1a3b−1ab−1aba = 1 ,
(b2ab−1a−1b−1a−1)2 = 1.

Choosing a = y2 and b = x6 it follows by means of MAGMA that all the relations
of (∗) are satisfied. Hence T = 〈x6, y2〉 ∼= GL4(2).

(b) Certainly j = (x6y2x12)3, s = y6(y2x18)4 ∈ T . Hence (j)s ∈ T . Using
MAGMA one checks that r1 = (j)s.

(c) From r1 ∈ T ≤ L we obtain (r1)
z2

∈ L. Using MAGMA again one gets that

r0 = (r1)
z2

.
(d) As y2 has order 5 it is easily checked that conjugation by y2 yields the

following orbit:
y2 : t2 → r2 → r0 → d2 → r0r2d2t2 → t2.

Hence all assertions of (d) hold.
(e) Similarily x6 has the following conjugation action:

x6 : t2 → t2, and r0 → r2 → d2 → r0d2

Thus E2 = 〈r0, r2, d2, t2〉 is a normal elementary abelian subgroup of N = 〈T,E2〉
of order |E2| = 24.

(f) As T is a simple group by (a) we now get N = E2T , and E2 ∩ T = 1. Since
E2 is a simple 2-modular representation of T , it follows that N is perfect.

(g) Using the coset enumeration algorithm of MAGMA we see that |L : N | = 759.
Hence |L| = 210 · 33 · 5 · 7 · 11 · 23.

(h) A matrix computation inside GL1333(11) shows that [z, t2] = z. Therefore
L = 〈N, z〉 is perfect by (f). As |L : N | is odd, any Sylow 2-subgroup of L is
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isomorphic to a Sylow 2-subgroup of N , and therfore to those of L5(2) or M24.
Applying now Theorem 1 of Schoenwaelder [16] we get L ∼= M24.

�

Proposition 1.3. Let M = 〈x3, y, z〉 ≤ G = 〈x, y〉. Then the following assertions

hold:
(a) E = 〈u1, u2, u3, u4, u5, u6, v1r0, v2r2, v3d2, v4t2, y

5〉 is an elementary abelian

normal subgroup of M with order |E| = 211.

(b) L = 〈x6, y2, z〉 is a subgroup of M such that M = EL, E ∩ L = 1,
and L is isomorphic to the simple Mathieu group M24 acting irreducibly

on E.

(c) |M | = 221 · 33 · 5 · 7 · 11 · 23.
(d) M is perfect.

(e) M has six conjugacy classes of involutions with representatives:

u1, r0, r1r2, w1, u4r0 and u4r1r2.

Proof. (a) By Lemma 1.2 (b) the elements t2, d2, r0, r2 are contained in
L = 〈x6, y2, z〉 ≤ M = 〈x3, y, z〉. The following equations are verified by means of
MAGMA:

[y5, t2] = v4t2, [y
5, d2] = v3d2, [y

5, r2] = v2r2, [y
5, r0] = v1r0, [v2r2, r0] = u1,

[v3d2, r0] = u2, [v4t2, r0] = u1u3, [v2d2, r2] = u4, [v4t2, r2] = u4u5, and
[v4t2, d2] = u6. Hence E = 〈u1, u2, u3, u4, u5, u6, v1r0, v2r2, v3d2, v4t2, y

5〉 ≤ M .
Using the computer and MAGMA it is checked that the 11 involutions

u1, u2, u3, u4, u5, u6, v1r0, v2r2, v3d2, v4t2 and y5 commute pairwise, and that they
generate an elementary abelian normal subgroup of M with order |E| = 211.

(b) L = 〈x6, y2, z〉 is a simple subgroup of M by Lemma 1.2. Thus E∩L = 1, and
EL is a subgroup of M . We claim that M = EL. Certainly, y = y5 · (y2)3 ∈ EL.
Lemma 1.2 (d) asserts that t2 ∈ L. Hence

x3 = (x6)4 · x21 = (x6)4 · v4 = (x6)4 · (v4t2) · t2 ∈ EL

Thus M = 〈x3, y, z〉 = EL. It is well known that the smallest, non-trivial,
irreducible 2-modular representation of L ∼= M24 is of degree 11. Hence L acts
irreducibly on E, because 1 6= w1 = [x6, y5] ∈ [L,E].

(c) By (a), (b) and Lemma 1.2 (g) we have

|M | = |E · L| = 211 · 210 · 33 · 5 · 7 · 11 · 23 = 221 · 33 · 5 · 7 · 11 · 23.

(d) As L is a simple group, L = L′ ≤ M ′. Since L acts irreducibly on E by (b),
we have E = [E,L] ≤ M ′. Therefore M = EL = M ′.

(e) It is well known that the simple Mathieu group M24 has 2 non-isomorphic
simple 2-modular representations of degree 11. They are dual to each other. Hence
there are 2 non-isomorphic split extensions 211M24. By GAP [15] the character
tables of these groups are both known. It follows that M has six conjugacy classes.
Certainly, uM

1 , wM
1 , rM

0 , (u4r0)
M and (r1r2)

M are 5 different conjugacy classes
of involutions of M , because their lengths |uM

1 | = 7 · 11 · 23, |wM
1 | = 22 · 3 · 23,

|rM
0 | = 24 ·32 ·5·11·23, |(u4r0)

M | = 24 ·32 ·5·7·11·23, and |(r1r2)
M | = 26 ·32 ·7·11·23

are all distinct. Furthermore, |(u3r1r2)
M | = 26 · 32 · 7 · 11 · 23, but the matrices r1r2

and u3r1r2 are not conjugate in M , because they have different traces tr(r1r2) =
9 and tr(u3r1r2) = 0 in GF (11) as is checked by means of MAGMA. �

The following result is due to Lempken [12].

Proposition 1.4. Let G = 〈x, y〉, and M = 〈x3, y, z〉. Then the following asser-

tions hold:
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(a) V = F 1333 is a simple FG-module.

(b) M is a subgroup of G such that the restriction V|M = W
⊕

S,

where W and S are simple FM -modules with dimensions dimF W = 45
and dimF S = 1288.

Proof. Assertion (a) is a restatement of Theorem 3.20 of [12]. (b) is checked by
means of Parker’s Meat-Axe algorithm contained in GAP, see [15].

�

2. Transformation of G into a permutation group

In [5] Cooperman, Finkelstein, York and Tselman have described a method for
the transformation of a linear representation of a finite group κ : X → GLn(K) over
a finite field K into a permutation representation π : X → Sm, where m denotes
the index of a given subgroup U of X.

This transformation is an important idea, because most of the efficient algorithms
in computational group theory deal with permutation groups, see [3]. In particular,
there is a membership test for a permutation σ ∈ Sm to belong to the subgroup
π(X).

Using Algorithm 2.3.1 of [6] M. Weller [17] strengthened the results of Cooperman
et al. [5] as follows:

Theorem 2.1. Let K be a finite field of characteristic p > 0. Let U be a subgroup

of a finite group X, and let V be a simple KX- module such that its restriction

V|U contains a proper non-zero KU - submodule W . Then there is an algorithm to

construct:
(a) The stabilizer Û = StabG(W ) = {g ∈ G|Wg = W ≤ V },

(b) a full set of double coset representations xi, 1 ≤ i ≤ k, of Û in G,

i. e. G =
k⋃

i=1

ÛxiÛ ,

(c) a base [β1, β2, · · · , βj ] and strong generating set {gs|1 ≤ s ≤ q} of G with

respect to the action of G on the cosets of Û , which coincides with the

given operation of G on the FU -submodule W of V .

Using an efficient implementation of this algorithm on the supercomputers of
the Theory Center at Cornell University and of the computer center of Karlsruhe
University M. Weller [17] has obtained the following result.

Theorem 2.2. Let G = 〈x, y〉 ≤ GL1333(11) and M = 〈x3, y, z〉. Then the follow-

ing assertions hold:
(a) |G : M | = 173067389
(b) |G| = 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43
(c) If Ω denotes the index set of the cosets Mgi of M in G, then G induces on

Ω = {1, 2, · · · , 173067389} a faithful permutation action with stabilizer

stabG(1) = M .

(d) G =
7⋃

i=1

MxiM , where the double coset representatives xi of M are given

by the following words:
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x1 = 1 (|Mx1M | = 1)
x2 = x14c12 (|Mx2M | = 15180)
x3 = x6cyc20yc16yc19yc17yc17yc19yc8xc22

= x6y
2c16yc13yc4yc10yc18xc21 (|Mx3M | = 28336)

x4 = x3c
3x−1c11 (|Mx4M | = 3400320)

x5 = x6xc (|Mx5M | = 54405120)
x6 = xc12xc3xc2 (|Mx6M | = 32643072)
x7 = x5xc9xc16 (|Mx7M | = 82575360)

where c := (x14)ty4(x14)ty−1(x14)t has order 23, and t = (x14y5)2.

3. Group structure of the approximate centralizer H

Lempken [12] determines a suitable involution u1 ∈ G and an approximation H
of the centralizer CG(u1). It is now defined by means of the notation 1.1.

Lemma 3.1. In G = 〈x, y〉 let a = r1y
−4x6y4 and b = y−2x−6.

The subgroup H = 〈x7, y5, (x14)a, (r1)
b〉 of G = 〈x, y〉 contains the involution

u1 6= 1, and

H ≤ CG(u1).

Proof. The subgroup H of G is defined in Lemma 2.5 of [12]. Using GAP [15] it
can easily be checked that u2

1 = 1, and that u1 commutes with the given generators
of H. �

The remainder of this section is devoted to determine the group structure of H.

Lemma 3.2. Let H = 〈x7, y5, (x14)a, (r1)
b〉, M = 〈x3, y, z〉, where a = r1(x

6)y4

and b = y−2x−6. Let W = H ∩ M . Then the following assertions hold:
(a) |H : W | = 77
(b) Q = 〈u1, u2, u3, u4, u5, v1, v2, r0, r1, r2, r3, d1, s1〉 is a normal extra-special

2-subgroup of H with |Q| = 213.

(c) K = 〈d2, s2, t2, a1, a3, a6〉 is a subgroup of W with center Z(K) = 〈a1〉
such that K ∼= 3A6.

(d) A = 〈u1, u6, v3d2, v4t2, y
5〉 is an elementary abelian subgroup of W with

order |A| = 25 normalized by K〈t1〉, and A ∩ K〈t1〉 = 1.
(e) H ∩ M = QAK〈t1〉, and K〈t1〉 ∼= 3S6.

(f) |H| = 221 · 33 · 5 · 7 · 11

Proof. (a) By Theorem 2.2 G = 〈x, y〉 has a faithful permutation action on the
173067389 cosets Mg of the subgroup M = 〈x3, y, z〉. Using the computer we
restrict this permutation representation to the subgroup H. It follows that

|H : H ∩ M | = 77.
(b) Let Q = 〈u1, u2, u3, u4, u5, v1, v2, r0, r1, r2, r3, d1, s1〉. Using again the com-

puter and the permutation representation of G described in Theorem 2.2 it follows
that Q ≤ H ∩ M . Furthermore, we get the following relations:
(u2)

s1 = u1u2, (u3)
r3 = u1u3, (u4)

d1 = u1u4

(u1u4u5)
r1 = u1(u1u4u5) = u4u5, (v1)

r2 = u1v2, (v2)
r0 = u1r0.

Since u1 commutes with all the generators it follows that 〈s1, u2〉, 〈r3, u3〉,
〈d1, u4〉, 〈r1, u1u4u5〉, 〈r2, v1〉 and 〈r0, v2〉 are six dihedral subgroups of order 8
with almagamated subgroup 〈u1〉, which commute pairwise as subgroups. Hence
Q is their central product. In particular, Q is an extra-special 2-group of order
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|Q| = 213. Another matrix computation shows that Q is invariant under conjuga-
tion by the 4 given generators of H. Thus Q is normal in H.

(c) Let K := 〈a1, d2, s2, t2, a3, a6〉. Using the computer again we see that K is a
subgroup of W = H ∩M . Define a := t2a

2
1d2a

2
3a6a

2
3a

2
6s2a1s2a3, b := s2t2, o(a) = 2,

o(b) = 4 and o(ab) = 15.
Let x1 := b2ab2abab2abab, x2 := a, x3 := b3abab3ab2abab2ab2ab,

x4 := b3ab3ab3ab2ab2abababa, and c := x2
3. Then the following relations hold in

B = 〈x1, x2, x3, x4〉 ≤ K :
c3 = 1, x3

1 = 1, x2
2 = 1, x2

3 = c, x2
4 = 1, (x1x2)

3 = 1, (x2x3)
3 = 1, (x3x4)

3 = 1,
(x1x3)

2 = 1, (x1x4)
2 = 1, (x2x4)

2 = 1, cx1 = c, cx2 = c, cx3 = c, cx4 = c.
By Huppert [9], p.138 B/〈c〉 is isomorphic to the alternating group A6.
Thus |B| = 3|A6|.

Now | 〈a, b〉 | = 3|A6| by MAGMA. Furthermore we have a = x2, and

b = x2
1x2x

2
1x

4
3x

2
1x2x

2
1x

4
3x2x4x1x4x

5
3x2x4x

2
3x1x

5
3x2x3x4x

2
1x4x

2
3x1x2x1x4x

2
3x4x1.

Hence B = 〈x1, x2, x3, x4〉 = 〈a, b〉.
We claim that K = 〈a, b〉. This follows immediately from the following equations:

a1 = (bab2ab3abab3ab3)8

d2 = b2

s2 = (bab2ab3abab3ab3)6

t2 = bab2ab3(ababab3)5abab3a

a3 = bab2ab3(ababab3)2abab3ab3ababab3

a6 = bab2ab3(ababab3)2abab3ab2 .

Let p1 = b2ab2abab2ab3abab3. Then p1 has order 3 and commutes with a1.
Furthermore, [p1, a3] = a1. Hence D = 〈p1, a3〉 is a Sylow 3-subgroup of K. It
is extra-special. Therefore its center Z(D) = 〈a1〉 = 〈c〉 does not split off. Hence
K = 〈a, b〉 ∼= 3A6, the non-split 3-fold cover 3A6 of A6.

(d) Another application of the permutation representation of G described in
Theorem 2.2 on the computer shows that A = 〈u1, u6, v3d2, v4t2, y

5〉 ≤ W , and
that a1, a3, a6 ∈ W . Then A is an elementary 2-subgroup of W of order |A| = 25.
Another computation shows that A is normalized by K〈t1〉, and A ∩ K〈t1〉 = 1.

(e) and (f) As (a1)
t1 = (a1)

2, (AK)t1 = AK and K〈t1〉 ∼= 3S6 by (c).
Certainly H ∩ M ≤ CM (u1) by Lemma 3.1. Using MAGMA we see that

|(u1)
M | = 1771 = 7 · 11 · 23. Therefore |CM (u1)| = |M | : |(u1)

M | = 221 · 33 · 5
by Proposition 1.3.

Thus H ∩M = CM (u1), because |H ∩M | ≥ |QAK〈t1〉| = 213 · 24 · 23 · 33 · 5 · 2 =
221 · 33 · 5. Hence |H| = 221 · 33 · 5 · 7 · 11 by (a), and W = QAK〈t1〉.

�

Proposition 3.3. Let H = 〈x7, y5, (x14)a, (r1)
b〉 , where a = r1(x

6)y4

, b = y−2x−6.

Then the following assertions hold:

(a) U0 = 〈u6, v3, v4, d2, s2, t2, a1, a3, a6, x
14, y5〉 is a subgroup of H with center

Z(U0) = 〈u1a1〉
(b) U0/Z(U0) ∼= M22, and U0

∼= 6M22

(c) Q ∩ Z(U0) = 〈u1〉.
(d) The element a1 of order 3 generates a Sylow 3-subgroup of O2,3(H), and

CQ(a1) = Z(Q) = 〈u1〉.
(e) U = U0 : 〈t1〉 = NH(〈a1〉).
(f) H = QU , U ∩ Q = U0 ∩ Q = Z(U) = 〈u1〉, and U0 = CH(a1)
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(g) U/Z(U0) ∼= Aut(M22), the automorphism group of the simple Mathieu group

M22.

Proof. By Lemma 3.2 we know that u6, v3, v4, s2, t2 and d2 = (s2t2)
2 belong to

W = H ∩ M . Certainly x14 ∈ H.
By Lemma 3.2 (e) we have a1, a3 ∈ W . ¿From [y5, s2] = (y5s2)

2 = u1u6 ∈ U0

follows that u1a1 ∈ U0 and has order 6. By Lemma 3.2

U0 = 〈u6, v3, v4, d2, s2, t2, a1, a3, a6, x
14, y5〉

is a subgroup of H. Using MAGMA it is checked that the matrix u1a1 commutes
with the 11 generators of U0. Thus 〈u1a1〉 ≤ Z(U0).

By Lemma 3.2 (d) A = 〈u1, u6, v3d2, v4t2, y
5〉 is an elementary abelian subgroup

of U0 with |A| = 25. By Lemma 3.2 (c) and (d) it is normalized by the perfect
subgroup K = 〈d2, s2, t2, a1, a3, a6〉 of U0. Using MAGMA it can be checked that
A = [A,K] is a uniserial GF (2)K-module. Hence

AK = AK ′ ≤ (U0)
′.

Lemma 3.2 (a), (e) and (f) assert that |U0 : AK| = 77. Since x14 has order 3, and
U0 = 〈AK,x14〉 we get x14 ∈ U ′

0. Hence U0 is perfect.
Let Ū0 = U0/〈u1a1〉. Then Ū0 is perfect. Let H̄ = H/Q〈a1〉. From Lemma 3.2

we get |H̄ : Ū0| = 2, and |Ū0| = 27 · 32 · 5 · 7 · 11.
Now we claim that Ū0 is simple. Since x14 does not normalize A, it follows that

〈u1a1〉 is the largest normal subgroup of U0 contained in AK. Thus O2(Ū0) =
O3(Ū0) = O5(Ū0) = 1. Suppose that Y is a minimal normal subgroup of Ū0. If |Y |
is odd, then |Y | ∈ {7, 11}, and Ū0 splits over Y . Furthermore, Aut(Y ) is cyclic.
As Ū0 is perfect we get Y ≤ Z(Ū0). Hence Ū ′

0 is a proper subgroup of Ū0, a
contradiction.

Therefore |Y | is even, and Y ∩ (Ā : K̄) 6= 1. As Ā is not normal in Ū0, we get
Ā : K̄ ≤ Y . Thus Y = Ū0, because |Ū0 : Y | is odd and Ū0 is perfect. Hence Ū0 is a
simple group of order |Ū0| = 27 · 3 · 5 · 7 · 11. Now Theorem A of Parrott [14] asserts
that Ū0

∼= M22, the simple Mathieu group M22. Therefore (b) holds. Assertions
(a) and (c) are immediately clear.

(d) Using MAGMA it can be seen that (a1)
t1 = (a1)

2. By Lemma 3.2 and (b)
we have H = QU0〈t1〉, |H : QU0| = 2 and O2,3(QU0) = Q〈a1〉. Hence
O2,3(H) = Q : 〈a1〉. Another computation with MAGMA yields that CQ(a1) =
Z(Q) = 〈u1〉.

(e) Certainly U = U0 : 〈t1〉 ≤ NH(〈a1〉). In fact, U = NH(〈a1〉) by (d) and the
Frattini argument applied to the Sylow 3-subgroup 〈a1〉 of O2,3(H).

(f) is now obvious.

(g) By Lemma 3.2 and (f) we know that (H ∩ M)/Q ∼= 24 : 3̂S6.
Therefore (H ∩ M)/O2,3(H) ∼= 24 : S6. Hence H/O2,3(H) ∼= Aut(M22).

�

4. The order of CG(u1)

In this section the order of the centralizer CG(u1) of the involution u1 ∈ G =
〈x, y〉 is determined. From Proposition 3.3 we then get: H = CG(u1).

Proposition 4.1. The group G = 〈x, y〉 has two conjugacy classes of involutions

with representatives u1, w1 ∈ GL1333(11) having traces tr(u1) = 9, tr(w1) = 0 ∈ F .

Proof. Certainly the matrices u1 and w1 are not conjugate in G, because they have
different traces tr(u1) = 9, tr(w1) = 0 in F = GF (11). By Proposition 3.1 the
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following elements u1, w1, r0, u4r0, r1r2, and u3r1r2 of M yield a complete set of
representatives of all six conjugacy classes of M .

Let q0 = r1r3d1s1(x
6y2)4, and a6 = (x14)y5x14

. Then in G the following fusion
takes place:

u1 ∼ r0 ∼ (r1r2) and w1 ∼ (u4r0) ∼ (u3r1r2),

because r
y5x14r3(q0)

6

0 = u1 = (r1r2)
y5x14t2r2s2(q0)

6(a6)
2(q0)

6

,

(u4r0)
y5x14r3 = w1 = (u3r1r2)

y5x14s2(q0)
6y5x14r3

By Theorem 2.2 (b) the index of M in G is odd. Therefore each involution i of
G has a G-conjugate ig ∈ M . Hence ig is contained in one of the six conjugacy
classes of M . Since they are G-fused to uG

1 or wG
1 it follows that either i ∈ uG

1 or
i ∈ wG

1 .
�

Proposition 4.2. H = CG(u1)

Proof. Let f be the number of fixed points of the permutation afforded by u1 on
the 173067389 cosets of M in G. As |G : M | = 173067389 is odd, each involution i
of uG

1 is contained in f > 0 different conjugates M g of M for some g ∈ G = 〈x, y〉.
By the proof of Proposition 4.1 the group G fuses the conjugacy classes uM

1 , (r0)
M

and (r1r2)
M . Furthermore, |uM

1 | = 7 · 11 · 23, |rM
0 | = 24 · 32 · 5 · 11 · 23, and

|(r1r2)
M | = 26 · 32 · 7 · 11 · 23. Hence

|uG
1 | =

|G : M |(|uM
1 | + |rM

0 | + |(r1r2)
M |)

f

=
173067389 · 11 · 23(7 + 24 · 32 · 5 + 26 · 32 · 7)

f

=
173067389 · 11 · 23 · 4759

f

Using now the computer again, we see that u1 has f = 52349 fixed points. Therefore

|uG
1 | = |G : CG(u1)| = 112 · 23 · 29 · 31 · 37 · 43,

and |CG(u1)| = 221 · 32 · 5 · 7 · 11 by Theorem 2.2. Now Lemma 3.2 and Proposition
3.3 assert that H = CG(u1). �

5. The main result

In this section we show that G = 〈x, y〉 is a simple group. As CG(u1) satisfies
the hypothesis of Janko’s theorem A [11] by Propositions 3.3 and 4.2 our existence
proof for Janko’s simple group J4 then is complete.

Theorem 5.1. Let G = 〈x, y〉 where x, y ∈ GL1333(11) are matrices constructed

in [12] of orders o(x) = 42 and o(y) = 10. Then G is a simple group of order

|G| = 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43

such that u1 = [x−12(y5x6)2(x21)y−1x28

]2 6= 1 is an involution of G with centralizer

H = CG(u1) = 〈x7, y5, (x14)a, (r1)
b〉, where a = r1(x

6)y4

, and b = y−2x−6

. Furthermore, with the Notation 1.1 the following assertions hold:

(a) Q = O2(H) = 〈u1, u2, u3, u4, u5, v1, v2, r0, r1, r2, r3, d1, s1〉 is an extra-special

normal subgroup of H with |Q| = 213.

(b) The element a1 = d1x
6d1y

24d1 of order 3 generates a Sylow 3-subgroup of

O2,3(H), and CQ(a1) = Z(Q) = 〈u1〉.
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(c) U0 = CH(a1) = 〈u6, v3, v4, d2, s2, t2, a1, a3, a6, x
14, y5〉 ∼= 6M22, the sixfold

cover of the

Mathieu group M22 with center Z(U0) = 〈u1a1〉 .

(d) U = NH(a1) = U0 : 〈t1〉 is a subgroup of H with U/Z(U0) ∼= Aut(M22), and

center Z(U) = 〈u1〉.
(e) H = QU , and Q ∩ U = 〈u1〉 = CQ(a1).

In particular, G is isomorphic to Janko’s simple group J4.

Proof. In view of Proposition 4.2, Theorem 2.2, Lemma 3.2 and Proposition 3.3 it
remains to show that G is a simple.

Proposition 3.1 asserts that M = 〈x3, y, (x14)t〉 = M ′,where t = (x14y5)2. Hence
x3, y ∈ M ′ ≤ G′. Furthermore, (x14)t ∈ M ′ ≤ G′. As G′ is normal in G we see that
x14 ∈ G′. But gcd(3, 14) = 1 and so 〈x〉 = 〈x3, x14〉. Therefore G = 〈x, y〉 = G′,
and G is perfect.

Let N be any normal subgroup of G. If |N | is even, then there is an involution
y 6= 1 in N . By Proposition 4.1 it is either conjugate to u1 or to w1 in G. Using
Proposition 1.3 (b) and the fusion of the conjugacy classes uM

1 , rM
0 , (r1r2)

M of
involutions of M in G it follows that

〈yG ∩ M〉 = M ≤ N.

By Theorem 2.2 the index |G : M | is odd. Hence G/N is a solvable group by the
Feit-Thompson theorem. As G is perfect, we get N = G.

Therefore we may assume that |N | is odd. As u1 and u2 are two commuting invo-
lutions W = 〈u1, u2〉 is a Klein four-group acting on the normal subgroup N . Using
the computer it follows that the matrix u1u2 ∈ GL1333(11) has trace tr(u1u2) = 9.
Since tr(u1u2) = tr(u1) Proposition 4.1 implies that all three involutions of W
belong to uG

1 . Now the Brauer-Wielandt formula of [8], p. 198 asserts that

|N ||CN (W )|2 = |CN (u1)|
3.

By Lemma 3.4 O2′(H) = 1, because H = CG(u1) by Proposition 4.2. Hence
CN (u1) = 1. Thus N = 1. Therefore G is a simple group, and G ∼= J4 by Theorem
A of Janko [11]. �
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