A Fast Cyclic Base Change for Permutation Groups

Gene Cooperman* and Larry Finkelstein*

College of Computer Science
Northeastern University
Boston, Mass. 02115

Abstract. Two new cyclic base change algorithms are pre-
sented for a permutation group G acting on n points. One
is deterministic and the other is randomized. When G is a
small base permutation group both algorithms have worst
case time complexities which are better than existing algo-
rithms in their class. The deterministic algorithm requires
O(nlog? |G| + n|S|log |G|) time. It outputs a Schreier vec-
tor data structure which requires O(nlog|G|) space and in
which every Schreier tree has depth bounded by 2log|G|.
The randomized algorithm returns a Schreier vector data
structure for which the sum of the depths of the resulting
Schreier trees is O(log|G|). It is shown that the algorithm
has probability exceeding 1~ 2/n of using O(nblog2 n) time
for b the size of a non-redundant base. As with most ran-
domized base change algorithms, it is Las Vegas in the sense
that within the same time it can be deterministically verified
whether the answer is correct. In order to achieve this time
bound 1t is necessary that random elements of G be com-
putable in time O(nlog|G|). A final result is a randomized
algorithm which given an arbitrary strong generating set S
for G constructs a Schreier vector data structure which can
be used to compute random elements in O(nlog|G|) time.
It is shown that this algorithm has probability exceeding
1 —1/|G] of using O(nlog? |G| + n|S}) time.

1. INTRODUCTION

Let G be a permutation group acting on an n-element
set 2. Most important algorithms for performing computa-
tions with G assume the knowledge of a strong generating
set, 5, relative to some ordering o of 2. Equally impoi-
tant is the computation of a new strong generating set for G
relative to a different ordering o' of O, commonly 1eferted
to as a base change. An especially important subproblem
occurs when o' is obtained from o by a right cyche shaft.
This is called a cyclic base change. The main results of this
papers are two new algorithms for performing a cyclic base
change which are more time and space-efficient for the im-
portant class of small base permutation groups than existing

*Research partiallv supported by NSF Grant CCR-
8903952.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ISSAC '92-7/92/CA, USA

© 1992 ACM 0-89791-490-2/92/0007/0224...$1.50

224

algorithms. G is said to be a small base group with pa-
rameters ¢ and d if log |G| < dlog® [Q}]. For suitably chosen
small constants ¢ and d every permutation representation of
a non-alternating simple group is a small base group.

Applications of the cyclic base change include search
problems in the presence of symmetry [6, 7, 10, 16, 18],
and a strong generating test, “verify”, of Sims that has
been implemented in the Cayley system [8]. Applications of
the general base change include fast construction of strong
generating sets for normal closure, center, and certain othex
subgroups [13], fast gioup membership [2, 3], and other
structural problems [19].

The first result is a deterministic cyclic base change
algorithm which is both space and time efficient.

Theorem A. Given a strong generating set S for G,
a deterministic cychic base change algorithm can be de-
scribed that requires O(n log” |G|+ n|S| + nlogn) time and
O(nlog|G|) space

Using randomized methods one can give a substantial
theoretical improvement to Theorem A under the hypothesis
of a short Schreier vector data structure A formal definition
1s deferred, but such a data structure allows computation of
1andom clements of GG and sifting (or stripping or factoring)
in O(nlog |G}) time.

Theorem B. Given a short Schreier vector data struc-
ture for G, a random cyclic base change algorithm can be
described which has probability at least 1 — 2/n of using
O(nblog2 n) time and O(nblogn) space. Furthermore the
algorithm returns a short Schieier vector data structure with
respect to the new ordering

The next result removes an unnecessary hypothesis in
the general randomized base change algorithm given in [14]
using techniques similar to those of Theortem A.

Theorem C. Given a stiong generaling set S for G, an
algorithm can be described for computing a short Schreier
vector data structure which las piobabiity at least 1 —1/|G]

of using O(nlog” |G| + n|S|log |G]) time

Anmmediate corollary is the following stionger version

of [14, Theotrem B].



Corollary D. Given a strong generating set S for G relative
to an ordering «, an algorithm can be described for perform-
ing a base change relative to an arbitrary ordering o' using
O(nlog |G|) space and returning a short Schreier vector data
structure with respect to the new ordering. The algorithm
has probability at least 1—1/|G| of using O(nlog? |G|+n|S])
time.

In many applications, it is necessary to repeatedly
perform cyclic base changes. The significance of Theorem
B coupled with Theorem C is that after one pays an initial
one-time cost for constructing a short Schreier vector data
structure, the input and output data structures used for
all subsequent base change computations will have this
property.

The first base change algorithm was presented by
Sims [19]. Sims’s algorithm used a Schreier vector data
structure in order to achieve the space efficiency 1equired
for working with permutation groups of very large degree
and was shown to have worst case time complexity of O(ns)
time. This time complexity can be refined by incorporating
a parameter which measures the size of a base for G relative
to the new ordering. Nevertheless, Sims’s algorithm tends
to work faster in practice than the worst case time com-
plexities. The reason for this is that one must incorporate
in the time estimates the depth of the Schreier trees which
are used to implicitly represent the cosets for the subgroups
of the point stabilizer sequence and which together form the
Schreier vector data structure. In general, these depths tend
to be “short”, meaning O{logn), but unless care is taken,
there is no guarantee that the trees won’t have depth ©{n).

Brown, Finkelstein and Purdom [5] presented a base
change algorithm which has worst case time complexity
O('ns) using a generalization of Sims’s original argument and
a new data structure for representing the cosets of the point.
stabilizer sequence, Jerrum’s labeled branching[11, 15]. This
result is derived {rom a 0(112) cyclic base change algorithin.
Unfortunately, a labeled branching for G requires O(nlz)
space when G is transitive on Q, and so this data structure
1s only practical for moderate values of n.

Babai [1, Theorem 2.5] and Leon [17] were the first to
apply randomized techniques to a base change. The cur-
rent authors together with Namita Sarawagi [12, 14] used
randomized methods to develop a general base change algo-
rithm using O(n log? |G]) time and O(nlog|G|) space, pro-
vided that random elements can be computed in O(n log |G|)
time — a common situation. Thus, when the hypotheses
are satisfied, the algorithm operates in O(nlog®n) time for
a small base group. The output of this algotithm is always a
short Schreier vector data structure allowing such fast com-
putation of random elements, but the initial data structine
potentially requires a more expensive pie-processing step.
Theorem C of this paper does the pire-processing step in
O(nlog? |G| + n|S|log |G|) time.

The key idea in [14] is to use randomized methods to
build short Schreier trees with probabilistically gnaranteed
bounds on the depth of the Schreier tiecs. The alterna-
tive deterministic method of cubc Schreter trees [3] was 1e-
quired in the development of an almost linear time group
membership algorithm for small base permutation groups.
It 1s based on an effective implementation of an idea due
to Babai and Szemerédi for building straight line programs

225

for finite groups [4] and produces Schreier trees of depth at
most 2log|G|. The main results of this paper represent a
nove] synthesis of the two methods of bounding the depth
of Schreier trees.

Section 2 introduces notation, and the important con-
structions of short Schreier trees and cube Schreier trees.
The proof of Theorem A is presented in section 3 as Theo-
rem 3.1. Theorem B is given in section 4 as Theorem 4.1 and
Theorem C in section 5 as Theorem 5.1. Most of the algo-
rithmic subroutines described here have been implemented
in the context of larger programs. For example, the routines
used to compute short and cube Schreier trees play a crucial
role in our implementation of the small base group member-
ship algorithm [3]. Implementation of an independent base
change algorithm based on the ideas described in this paper
is currently undergoing testing. Based on our previous com-
putational experience [12, 5], we expect to see a signficant
1mprovement over existing methods.

2. SPACE-EFFICIENT GROUP MEMBERSHIP
DATA STRUCTURES

A fundamental issue in computing with permutation
groups is the choice of a data structure for representing coset
representatives of the subgroups in the point stabilizer se-
quence relative to some fixed ordering a of the underlying
point set. In this section, we describe a space-efficient data
structure, known as a Schreier vector data structure, that
reduces the worst case time required to access a specified
coset representative, together with new algorithms for build-
ing this data structuie.

Let G be a permutation group acting on an n-element
set € with G specified by a generating set S, and let
a = (o1,a2,.. ,a,) be a fixed ordering of the points of Q.
The powmt stabilizer sequence of G 1elative to « is the chain
of subgroups
where G'(z) = Gay, a,_y, 1 €1 < n. 5 is called a strong
generabing set for G 1elative to a if

(Sﬂ({“)) =a' <r<n

The point a, is called a base pornt relative to a if |o'f"(')| # 1.
The sequence of points B = {0,,.0,,,....0,,,) consisting
of all base points, with 1) < 19 < ... < 137, is called an
ordered base for G relative to «. The significance of a base is
that each element ¢ of GG is umquely determined by its base
image ((xfl,ar;‘/ﬁ, . ..n';q‘)‘ Note that 3 < log|G|. Also, the
size of a base may vary with the ordering o, but in general,
it is easy to show that two bases relative to two different
orderings differ in size by at most a logn factor.

A Schreier vector data structure for G 1elative to the
ordering o 1s a sequence {7,}; of Schreter trees. Each
Schireier t1ee 7; can be thought of as an otdered pair (R,, T}),
where 7, is a directed labeled tree, 1ooted at «o,, with a set
of edge labels R, C G, The nodes of T, aie contained in
the orbit a,(H‘). I vis a node of T;, then the concatenation
of the edge labels along the path from a, to vin 7, is a word
in the elements of K, whose product moves n, to v. Thus
each Schreiei tree 7, defines a set of coset representatives
for GUFD 1 GO The set of all such coset representatives



forms a partial transversal system for G. T, is complete

if the set of nodes of T, coincides with IazG(l)[ and the
Schreier vector data structure is complete if 7; is complete
for 1 € 1 < n. In this case, the Schreier vector data structure
defines a complete transversal system.

We 1equire the following access functions for a Schreier
tree 7: Root{7 ), Labels(7T), Nodes(7) and Depth(7). For
an arbitrary point v, Coset-rep-as-word(7,v) returns a
wotd in Labels(7) that moves Root(7) to v if v € Nodes(7)
and returns NIL otherwise. Coset-rep(7,v) is similar, but
retuins a permnutation rather than a word when possible.

The permutation g is said to suft through {T,}7 if we
can write g in the form

g =9n-19Yn—-2"""9g1,

defined

-1 -1
5 9.1

where g, is recursively as the element

Coset*rep(’fz,alg }. The number of multiplies re-
quired to sift an element is proportional to the sum of the
depths of the Schreier trees. In the case where the Schreier
vector data structure is complete, the above factorization
has two important implications. The first 1s the ability to
generate random elements of G according to the uniform dis-
tribution. This is achieved by creating an element g whose
factorization has the above form with the elements g, cho-
sen at random according to the uniform distribution from

amongst the cosets for GUtY in G defined by 7,. The
function Random-elt({7,} ;) will return a 1andom element
constructed in this manner. The second implication is a test
for membership in G of an arbitrary permutation. The test
consists of attempting to factor an aibitrary permutation
through {7,}i_;. The factonzation will succeed if and only
if the element belongs to . This was Siums’s original group
membership test [19].

The notion of a Schreier vector data stiucture was in-
troduced by Sims in order to save up to an order of magni-
tude of space for typical cases, at the cost of up to an order of
magnitude of time in computing coset representatives. For
example, if G i1s the symmetric group given by generators
(12),(23),....(n—1n), consider a Schreier tree which uses

those labels for G/G'*). Such a tree will have depth n — 1
and computing a cosel representative can take as much as
n — 1 multiplies.

The notion of a monotone Schreier t1ee was introduced
in [3] as a method for reducing the time penalty for access-
ing coset representatives in Schreier tiees without severely
increasing the storage requirements A Schreier tree 7 is
monotone if Labels(7) = (g1. ...gx) is a sequence and
the edge labels along the path from Root{7) to each el-
ement of Nodes{7) is a word in (g3, ..,gr) with strnictly
increasing indices. One consequence of the definition is
that Depth(7) < |Labels(7)|. Two examples of monotone
Schreier trees will first be discussed and then a new con-
struction will be described which 1s crucial for the results in
later sections The construction of a monotone Schieier tree
from a sequence R is a simple modification of a breadth-
first search algorithm for building Schieier tiees and can be
peiformed in time O(n|R]).

A complete Schirerer vector data structuie {7,170 is
said to be shori1f for a fixed constant ¢, Z:]:] Depth(7,} <
clog {7]. Tt {follows [rom the definition that a shoit Schreicr

226

vector data structure requires the storage of at most clog |G|
permutations of G and Random-elt({7,}7.;) takes time
O(rlog|Gl).

Cooperman, Finkelstein and Sarawagi [14] presented a
random algorithm to construct a short Schreier vector data
structure, with a constant c of 44, from a strong generating
set for G. Subsequently the value of ¢ was improved to 21.
The key to the result is the following procedure to build
short trees, which are monotone. In implementations, one
will often use a variation of Build-Short-Schreier-Tree
that re-builds the tree in a “breadth-first” manner with the
original labels. vielding substantially shorter Schreier trees.
The subroutine Extend-Tree(T,g) extends the monotone
Schreier tree 7 bv appending ¢ to R, applying ¢ to each
node of 7, and, for each newly discovered node, adding the
directed edge labeled by g.

Procedure Build-Short-Schreier-Tree({7,}7,v)
Input: A complete Schreier vector data structure {7,}7_,
and point v.

Qutput: A short Schreier tree 7 with Root(7) = v.

Set T — (8, {v}), O ~ vC
While O # Nodes(7) do
Set g «— Random-elt({7,}7.;)
Set 7 — Extend-Tree(7.g)
Return(7)

Proposition 2.1. (fiom [14, Theorem 3.5]) In Build-

Short-Schreier-Tree, let O = v®. Then there exists a

constant ¢ > 0 (we can take ¢ = 21) such that for all § > 1,
if d = [éclogs |O]]. Build-Short-Schreier-Tree will com-
plete after at most d random elements have been generated
with probability at least 1 — 1/[0]25,

Let R = (g1,.. ,95) be a sequence of elements of
a group . The cube C(R) is the set of group elements
{90952 - g5% 1€, €{0,1}} and CH(R) = (C(R))"". The
cube is non-degenerateif [C(R)| = 2%, The idea of a cube
was originally intioduced by Babai and Szemerédi as part of
a doubling tiick to build straight-line programs in groups [4].
Their fundamental proposition follows. The proof is easy
and is omitted.

Proposition 2.2. Let (g1,...,9k,9k+1) be a sequence of

group elements and C = C{g1,. .,9%) Then
[Clg1,- - ykv1)] = 2|C| if and only if gp41 ¢ c~lc. In
particular, C(g1,...,9541) Is non-degenerate if and only if
C(g1,-...9x) Is non-degenerate and gy 1 ¢ c e

A Sclieier tree 7 is said to be a cube Schreier tree
if {Labels{7 )| and Depth(7) are both bounded by log|G|.
Also, {T,}7; is a cube Schreier vector data structure for G if

each 7, is a cube Schieler tree for G for 1 <1 < n. Using
the notion of cubes, it is shown in [3] that given a generating
set 5 for (G, it is possible to deterministically build a cube
Schreier tree for any orbit of G. The tree constructed was
also a monotone Schreier tree. Rather than repeat that
argument here, we present a new algorithm which is also
based on Proposition 2.2, but which works faster in practice
and leads to a better theoietical 1esult.

Proposition 2.3. Let S be a stiong generating set for 5.
Then one can compute 1n time O(n log® |G/ 4 n|S| + nlog n)



both a sequence R of group elements of G such that C(R)
is non-degenerate and a complete cube Schreier vector data
structure {T;}7.; with the following property. For each T3,

Labels(7,) C R, U R:l where R; = G N R is a prefix of

R of length at most log IG’(i)I, for 1 <1 < n. In particular,
{7 .}~ requires O(nlog|G|) space.

Proof: We may assume that |S| < log|G|. Otherwise,
this can be accomplished in O(n|S| + nlogn) time by [11,
Theorem 2.1]. The code for building the Schreier trees 7,
for 1 <1 < n is given below.

Build-Cube-Schreier-Vector(S,«a)

Input: A strong generating set S for G relative to the
ordering o

Output: A cube Schreier vector data structure Sq.

Initialize R «~ #
For 2 — n downto 1 do
Set Root(7,) — {a,}, Labels(T,) — 0
While there exists y € SN G
such that Nodes(7,)Y # Nodes(7;) do
Let y € Nodes(7,) such that y? ¢ Nodes(7,)
Let h — Coset-rep(7T,,y)
Append hg to R
Build a new 7, using breadth-first search
with RU R~ to level 2|R|
Return{7;};—,

We first claim that at any point in its construction, C(R)
is a non-degenerate. We prove this by induction on |Rf.
The claim is true when |R| = 1 since we never append the
identity element to R. For the induction hypothesis, assume
that |R] > 1 and R is non-degenerate. Observe that ¢ is
added to R during the construction of some Schreter tice
T,. becanse it 1s discovered that ad ¢ Nodes(7,) Since

e =1y
Nodes(7,) contains all points in a:’ (RT)C (R). it follows that

g ¢ C(R_l)C(]?). Therefore ¢’ doubles the cube C(R)
by Proposition 2.2 (i.e |C(R U {¢'})] = 2|{C(R)|) and so
C(RU{¢'}) is non-degenerate. This proves the claim. Note
also that |R| < log|G|.

Since {7,}]_; is constructed in a bottom-up manner,
at the time T, is built, ® C G'*). By the claim, R is non-
degenerate and so |R| < log|G'*)|. But Depth(7,) < 2|R]

and Labels(7;) C RU R~ by construction and so 7;1s a
cube Schreier tree, for 1 <1 < n.

It remain to verify the timing. We separate the analysis
into two phases: a building phase and checking phase. The
cost of building any of the trees each time a genciator is
added is O(nlog|G]) since |R| <log|G| for 1 <1 < n. This
has to be done at most log |G| times. Thus the total cost of
building all the trees is O(nlog? |G'f). The cost of checking if
a given tree T, is complete is O(n]S N G) = O(nlog|Gl)
since |S] < log|G|. Initially. we must check if a, is a base
point or not. This costs O(n|S|) = O(nlog {G|). Thereafter.
we check if the trec is complete only when a new generator
has been added and the building phase invoked. This must
be done at. most log}G| tunes and so the checking phase has
the same asvinptotic time bound as the building plhase. This
completes the proof. N

227

3. DETERMINISTIC CYCLIC BASE CHANGE

Let @ = (a1,...,...,an) be a fixed ordering and let
o = (af,...,an) be a new ordering obtained from o by a
right cyclic shift. Thus

CY/ = (ala ;ar——lyO'S) O’r,CYr_]_l, . ‘,as—laas+l: e 70/77«)'

A computation that finds a strong generating set for G
relative to o’ from one for G relative to « is called a (right)
cyclic base change. (When o' is an arbitrary ordering, the
computation is simply called a base change.) The following

theorem is the main result of this section.

Theorem 3.1. Let G be a permutation group on n points
and let S be a strong generating set for G relative to
an ordering o. Let o' be an ordering obtained from «
by a right cyclic shift and let G’ be the corresponding
point stabilizer subgroup. Then one can compute in time
O(nlog? |G| +n|S| +nlogn) a new strong generating set R’
relative to o', of size log |G|. Further, R’ can be considered
as a sequence of group elements of G such that C(R') is non-
degenerate, yielding a complete cube Schreier vector data
structure {77,}7—, for G relative to o' with the property
that Labels(7",) C R, U R:_l, where R = GWNR isa
prefix of R' of length at most log[G(z)| for1 <1< n. In
particular, {7}, requires O(nlog|G|) space.

The proof follows the algorithm given in [5] for a
cyclic base change but makes use of the Schreier vector
data structure. The key to obtaining the stated time and
space bounds is the application of Proposition 2.3 for the
construction of cube Schreier trees. In the case when log |G|
is substantially smaller than n, this avoids the pathology of
creating very deep Schreier trees.

It will be assumed for the remainder of the section that

a' is obtained from o by a right cyclic shilt as given above.
. . (1) .

AY) will denote the o*" fundamental orbit & relative to

12

(2)
o and A the " fundamental orbit agG
Note that for t < r or 1 > 5, A" = A/ Forr <1 < s,
p)

: !
relative to a'.

ol = a,_1, which implies that G"™ = Gay, ar_za. and so
; Go PP — . (r)
A =g e C AT Ao, AT = a8

The following result is proved in [5] and helps guide the
base change algorithm.

Proposition 3.2. Letr <i<sandletz=a] ;€ Al-D

(1)
€ a§ .

41

for some v € G~V Then z € A/ ol

Proof of Theorem 8.1:

Proposition 2.3 guaiantees us that we can construct
a sequence R of group elements of G such that C{R) is
non-degenerate and a complete cube Schreier vector data
structure {7,}%; within the stated time bounds. We
will build a complete cube Schreier vector data structure
{7T",}7_, and a sequence R’ satisfying the same property In
order to apply Proposition 3.2, we also regunive a sequence of
cube Schieier trees {7%};_, ) for maintaining the points

o IR
and coset representatives in the orbit ol for 7 < 1 < s
The code for bulding {7}, ;| follows



Initialize 7% «— T
Initialize R® — RN G(*)
For 1 +— s — 1 downto r 4+ 1 do
Initialize 7°%; «— trivial Schreier tree with root o
While there exists ¢ € SN G®
such that Nodes(7’,)9 5 Nodes(7%;) do
Let y € Nodes(7*;) such that 39 ¢ Nodes(7’;)
Let h = Coset-Rep(7*;, y)
Append hg to R®
Build a new 7%, using breadth-first search
with R® U R® ™! to depth at most 2|R"|

The proof that the sequence {77 };_, . satisfies the re-
quired properties follows easily once it is shown that the
cube for the sequence C(R’) is non-degenerate. Thisin turn
is proved exactly as in Proposition 2.3 and is omitted.

n

The construction of {7%,}/; takes place in three
stages, corresponding to the sequences of Schreier trees
(T} epr> {T'}i=ry1 and {T',}]_, respectively. In the
first stage, we simply set T’] =7, fors+1<3<n The
most difficult part is the second stage. Here, the observation
that A/(*) - A(i—l), r <1 < s, gives an effective method for
determining the i*" fundamental orbit A/(9).

Initialize R — RN GUHY
For 1 — s downto 7 + 1 do
Initialize Root(7%,) «— {a’}, Labels(7",) — @
[Check if any work needs to be done]
If |AC=Y] > 1 then
For each = € Nodes(7 ;1)
such that z ¢ Nodes(7",) do
Let v « Coset-rep-as-word(7;_1, 1)
-1
If o € Nodes(7*,) then
[Evaluate v as a permutation]
-1
Let f — Coset-rep{7T°, a7 )
By e G VNG, =G0
8
and o/ = alﬁjl = 1]
Append 8v to R’
Build a new 77, using breadth-first search
with R’ U R'™! to depth at most 2|R/|

The kev to the analysis of the second stage is the claim that
at any point in its construction, C(R/) is non-degenerate.
The proof is by induction. The base case is the initial value
of R as R0 GU1Y) in which case C{R') is non-degenerate
by inheritance from R. Let the induction hypothesis be
that C{R’) is non-degenerate at some intermediate step of
the psendo-code  Thereafter Sy € G'™) is added to R’
during the construction of some Schreier tree 7,, because
it is discovered that a;ﬁv ¢ Nodes(7",). Since Nodes(7%)

. . . C(R"™YC(R') .
contains all points in a; ( ) ), it follows that ¢ ¢

C(R'™Y)C(R'). Therefore g’ doubles the cube C(R') by
Proposition 2.2 and so C(R U {g’})} is non-degenerate. This

proves the claim. Note also that |R’| < log |G'("+1)].

Since {77 }i_, 41 is constructed in a bottom-up manner,
at the time 77 ic built, R’ C G, By the claim, R’ is non-
degenerate and so |R'| <log |G'(i)|. But Depth({77,) < 2| /|
and Labels(7") C R U R'™! by constiaction and so 77, 1s
a cube Schreier tree for r <2 < s.

228

We now analyze how long the second stage takes. Let
b be the number of fundamental orbits A~ which are
non-trivial for r < i < s. Then O(nb') points have to be
examined to test for inclusion in fundamental orbits relative
to . The cost of each test is O(log|Gl). This involves
the evaluation of the word ™! on a single point. Since
the word has length O(log|G|), the total cost of all tests is
O(nb' log |G|) = O(nlog? |G}).

When a new element is added, this requires the mul-
tiplication of a word of length O(log |G]). The total num-
ber of new elements that are added cannot exceed |R/| <

logs ]G'(T'H)[ = O(log {G|). Thus the total cost for adding
new elements in this portion of the code is O(n log? |G|).

The Schreier tree 7’; needs to be updated only when
a new generator is added. Since this occurs at most log |G|
times, the total cost of building the trees is O(n log? IGl)
time. Thus, the second stage operates within the required
time and space bounds.

We complete the proof by indicating how to complete
the third stage during which the remaining tiees {71}/,
are built. This is easy to do in light of previous developments
because G’V = GO for 1 < 1 < 7. The code to do this
follows, and is almost identical to Build-Cube~Schreier-
Vector of Proposition 2.3. At this point, R’ will have the
value assigned to it at the end of the second stage.

For ¢ — r downto 1 do
Initialize Root(7",) — {o}}, Labels(T",) « 0
While there exists g € S0 G
such that Nodes(7",}? # Nodes(7",) do
Let = € Nodes(7",) such that 27 ¢ Nodes(7",)
Let h « Coset-Rep(7;, =)
Append hg to R
Build a new 77, using breadth-first seaich
with RU R~ to depth at most 2|R]

The argument that C(R') is a non-degenerate and the
resulting implication that the Schreier trees 7%, 1 < ¢ < r
are cube Schreier trees is almost identical to the argument
given for the proof of Proposition 2.3 and is omitted. For
the same reason, we omit the proof that the time and space
requirements are O(n log? {G|) and O(nlog|G|) respectively.
We now conclude that R and {77, }J., satisfy the conclusion
of Theorem 3.1 and that the algorithm works within the

stated time and space requirements. D

An interesting corollary to Theorem 3 1 is a fast method
for determining the number of nodes in the fundamental
orbits for an ordering o’ obtained from o by a right cyclic
shift when a complete short Schreier vector data structure
is provided. This will be useful in section 4 where a fast
randomized cyclic base change algorithm will be presented.

Corollary 3.3. Let {7;})_, be a complete short Schreier
vector data structure for GG relative to an ordering a. Let
o' be an ordering obtained from « by a nght cyclic shift

Then 7} = |A/(])|, 1 <t < n can be determined in time

O(nlog |G|).

Proof: (Sketch) Assume that o and o' are given as before,
It suffices to determine the values of |A'W)| for r < ) < s.



. (r) . e
Note that A'(") = af , which can be computed within the

given time bound. The key to the remaining fundamental
orbits is Proposition 3.2. In order to determine A'G) a5

J goes from s down to r + 1, note that each z € AU-D
defines a v = Coset-rep-as-word(7;_1,z) and we must

-1 (1) . . .
check whether @] € ozf ”. By hypothesis, v is a word in

Labels(7,_1) of length at most Depth(7;_1). There are
at most n such tests for each AU~Y. Each evaluation of
o]  requires O(Depth(7T;)) time and . ; Depth(7;) =
O(log|G|). Thus the total cost of all such evaluations is

. . -1 ) .
O(nlog|G|). Testing if o] € a$"” takes constant time

once the orbits alsG(J) have been constructed. This can be
done in a bottom-up manner using an incremental breadth-
first search with the computation organized so that each
generator of G is never applied more than once to any
point of A", (See [5] for a more detailed description.)

Since there are at most clog |G(")| generators for G, which
appear as edge labels of T, r < j < s, it takes O(nlog|G})
time to complete this phase. Thus the total running time is
as stated. [J

4. RANDOMIZED CYCLIC BASE CHANGE

The new deterministic cyclic base change has the same
time and space complexity as the general randomized base
change [14]. This leads to the natural question, whether
there is a faster randomized cyclic base change. The next
theorem answers the question in the affirmative.

Theorem 4.1. Let G be a permutation group acting on n
points and let {T,}I..; be a complete short Schreier vector
data structure for G relative to an ordering «. Let o’ be an
ordering obtained from « by a right cyclic shift. Then one
can build a complete short Schreier vector data structure
{737, for G relative to . With probability at least
1 — 2/n, the algorithm completes in time O(nblog2 n), for
b the size of a non-redundant base with respect to « or
o', Further, each Schreier tree T; will be of depth at most

6.3log n,, for n; the size of the i*? fundamental orbit.

The proof of this theorem is deferred, while a crucial
lemma and the necessary procedures are described.

Lemma 4.2. Let H be a subgroup of a finite permutation
group G and let U be a complete set of right coset represen-
tatives for H in G. For g € H, let § be the unique element
of U so that Hg = Hg. Let g be a uniformly random ele-
ment of G. The the element g~ ! is uniformly random in H.
Furthermore, if S C G is a set of mutually independent uni-
formly random elements of G, then T = {gg_l:g € S}isa
set of mutually independent and uniformly random elements
of H.

Proof: To prove the first part, assume that g is uniformly
random in G. Given an arbitrary h € H, there are exactly
JU| elements of G which will produce h, namely the elements
of the set hU. Since Prob(g € hU) = |U]/|G], it follows that
Prob{gg~' = k) = 1/|H|. To prove the second part, let
S=1{g1,.--,95}- Then

Prob((g15; " = hi) A+ Algrdp " = h1))
=Prob((g; € U)A - Algr € hiU)) = 1/|H|*

229

since gi1,---,g; are mutually independent by assumption.
Thus g1 _('11_1, ey gkgk—l are independent and the second part

is proved. 0

The previous lemma is important for understanding the
correctness of the randomized cyclic base change algorithm,
below. For Schreier trees for G acting on Q, with 7 and 7T;
Schreier trees, o € €, and g € G, the routines Labels(7),
Depth(T), Coset~rep(7, ), and Random—elt({7;}I_, ) were
defined in section 2. Their implementation is clear from the
definitions. The time required for Coset-rep is bounded by
the depth of 7 times the time for a permutation multipli-
cation. We additionally define the routine Size(7), which
returns the number of a € 2 for which Coset~rep returns a
non-NIL value.

Finally, we require, for technical reasons, a modi-
fied routine Extend-Tree-if-Success(7,g,n), where n is
a number. In applications, 7 will be a Schreier tree for an
orbit of G for some 1, and n will correspond to the orbit
length. The routine Extend-Tree-if-Success should call
Extend-Tree(7, ¢) as defined in section 2, but only if g is a
success, as defined below.

Definition. (from [14, Theorem 3.5]) Let P be the nodes
of a Schreier tree T for an orbit of length n. The group
element g is a success for T if either

|P| <n/2 and [PY — P| > |P|/4 or

|P|>n/2 and |PY — P| > (n — |P])/4

Note that for an orbit of length n, and an initial trivial
Schreier tree, and then modifying it by adding O(logn,)
successes 1telative to the current Schreier tree suffices to
build a Schreier tree with all n, nodes. This motivates the
following proposition.

Proposition 4.3. For G acting on a set of size n and
for some 1 with 1 with 1 < 1 < n, if one knows the
index n, = [G(’) : G(\Z‘H)] and has r > 21logn mutually
independent, random elements of G (but not necessarily
generating (), then one can form a short Schieier tree of
depth at most 6.3log,(n,/2) for G®)/GUH) jn time O(nr)
with probability at least 1 — 1/713.

Proof: Let @ be the orbit of a, under G, By Propo-
sition 2.1 for § log» n/logs |0}, one can constiuct a
Schreier tree of depth d = 21élog, |O] = 21logs n with

probability at least 1 — 1/n%. The depth is too large for
our purposes. However, inspection of the original proof of
[14, Theorem 3.5], shows that one can choose a subset of
the r random elements (the “successes”) of size at most
2logs/4(ni/2) = 2logy(n./2)/loga(5/4) < 6.3logy(n,/2),
which will also build the Schreier tree with the stated prob-
ability. [

The next procedure contains the key idea of this sec-
tion. It is called to incrementally construct short Schieier

. - . ~(1)
trees in two distinct cases: for the orbits ag' forr<i:<s
in the procedure Random-Cyclic-Base-Change, and for the

fundamental oibits (\ZGM for 1 < 1 < n in the proof of
Corollary 4.4. As we shall sec, Augment-Trees i1s more effi-
clent than an analogous routine described in [12. 14], since
all of the Schieier tiees under construction can be angmented



within the asymptotic time needed to construct a single ran-
dom group element.

Augnent-Trees({7;}ien, {Fi}ien, B, {T: 1)
Input: A collection of (possibly incomplete) Schrejer trees
{T,} indexed by a subset B, with each tree representing the
orbit (Root(?i))G(t), the known sizes 7; ](Root(?z))a(l) |,
and a complete Schreier vector data structure {7,},
that B C [r,n].
Output: No output, but {7,},¢p is modified
Initialize g — Random-elt({7,};,)
Fory—rton
fo,eB

Extend-Tree-if-Success(7,, ¢,7,)

Set h — Coset-rep(7T;, ;)

Set g — gh™*

» such

An interesting application of Augment-Trees is to con-
struct a complete Schreier vector data structure in which
each Schieier tree is short.

Corollary 4.4. Given a short Schreier vector data struc-
ture {7,} with }:?:1 Depth(7,) < clog |G|, one can form
short Schreier trees of depth at most 6.3logn, for all 1 <
1 <n (wheren, = Size(7,)) in time O{nclog |G|logn) with
probability at least 1 — 1/n.

Proof: Let {7,}"_; be the short Schreier trees that one
wishes to constiuct. The sizes of the fundamental orbits

Labels(T,))| are the same as for 7, and so are

n, = |cyz(
known in advance. Initialize 7, to the trivial tice for each 1,
and make 21logn calls to

Augment-Trees({7,},—;, {n. }i=1, 5, {7, };=1). By repeated
application of Lemma 4.2, the set of g at level j computed
by the algorithm over all 21logn calls is mutually inde-
pendent. By Proposition 4.3, each 7, has depth at most
6.3logs(n,/2) < 6.3log, n with probability at least 1—1/n”.
Random elements at different levels can be correlated. (Con-
sider, for example, what would happen to a random element
equal to the identity ) Nevertheless, the probability of an
error at any level 1s at most n times the probability of ervor
on a particular level. So, with piobability at least 1 — 1/n,

all Schreier trees will have the indicated depth O

Finally, the 1andomized cyclic base change can be
presented. As in section 3, we assume that o’ is a new
ordering obtained from o by a right cyclic shift of the
subsequence {ar,...,a5-1,as} to {as,ar, ..,0:_1}, and
that G'(1) is determined with 1espect to the ordering a.

Random—Cyclic-Base-Change({7,})%1,7,5)
Input: complete Schreier trees 7, for G(”/G(H"l) such that

n

D vy Depth(7,) < clog|G| for some ¢, and indices r, s
satisfying 1 <r <s <n
Output: complete Schreier trees 7%; for G'()/G/C+D of
depth at most 6.3logn, (where the prime denotes with
respect to the cvclically permuted ordering o’ of the points
of @, and n/ = [G'®): Gli+LY])
For j —1ton
G
Set ) = [a/0)] (=" )

Imtialize T/J — trvial Schreiet tiee with 100t r};

[via Corollary 3.3]

230

Forj—rtos

Set n’; = [asG(J)I [in O(nlog|G|) time]

Initialize T"'J «— trivial Schreier tree with root o
Initialize B — {as}U base points of {7, };_,
While Size(7';) < n, for some @ do
Set ¢ — Random-elt({7,}7,)
Forjy«—1ton
If n; >0
Hy<rory>s
Extend—Tree—if—Success(T/] . g, n;)
Else ifr<j <s
[For efficiency, compute {7 %} only as necessaiy
(by lazy evaluation) mnstead of pre-computing
all of {7}
While Coset-rep(T*, -1, ,7) = NIL
Augment-Trees({7" },ep, {7’ e, B, {7}
Set h — Coset-rep(7T% _1,as9)

Extend—Tree—i:hSuccess(T’J ,gh™ L n; )

n
1=T

Else [when j = r]
hugment-Trees({T% ), {n°+}, far }, {T2}7))
Set 7' — T°,
Set h — Coset-rep(7,, a,7)
Set g — yh_1
Return {77, }7_,

Proof of Theorem 4.4:
We will show that O(logn) iterations of the outermost
“while” loop suffice for completion of the algorithm. In
addition, there will be at most Oflog n) calls to Augment-
Trees over the life of the algorithm. The probability of

failing to constiuct a short Schreier tree T/] of depth at most
6 3log n; < 6.3log n can be shown to be at most 1/n” in the
same manner as in the proof of Proposition 4.3. A similar
case holds for 7%, where n*;, < n. So, a proof similar
to Corollary 4 4 for {7%,} shows that with probability at
Jeast 1 — 2/n, onc can constiuct Schreier trees 77, of depth
at most 6.3log n; and Schieier trees 7%, of depth at most
6.3logn with overall probability at least 1~2/n. (Note that
one cannot replace log n by log n; for the depth of 7%, and
there are examples in which the sum of the depths of 77,
for all ; may exceed Oflog |G]) )

- - . ‘

[t 1emains to venfv the time Computing {n)}7_,
requires O(nblog n) time by Corollary 3.3. Computing
{n®,}>_. can be done via the hottom-up constiuction of

+(3) . .
of " in the proof of Corollary 3 3 and requires O(nlog|G|)
time As alieady shown, with the stated probability only

Of(logn) 1andom elements ¢ will be constructed. The cost
of creating each random element and multiplying by coset
representatives Coset-rep(7,,c,7) will be O(nlog|G}).
since {7,}7_; forms a short Schieler vector data struc-
ture.  The cost of multiplying by coset tepresentatives
Coset~rep(7*;,as?) is O(nblog n). where b 1s the base size,
or the number of non-tnivial tiees {7,} Thus, there are
O(log n) random elements, and the time related to each one

is O{nblog n), vielding the overall time. 0

Note that i common with most base change algo-
1thms, the new cvclic tandomized algouthm is Las Vegas, in
the sense that one can determnustically vertfy if the answer
is cotrect. The verification is done by comparing the group
owders as computed by the ongmal and new strong genei-
ating sets. We have previonsly stated a gencial random-



ized base change algorithm [14] with asymptotic complexity
O(nlog?|GY}), that is also Las Vegas.

5. FAST CONSTRUCTION OF SHORT SCHREIER TREES
FROM A STRONG GENERATING SET

Both the result of the previous section and the
original randomized cyclic base change [14] required as
input short Schreier vector data structures (satisfving
ZlSiSn depth(7;) = O(log|Gl)), in oirder to guarantee
that the output Schreier vectors have depth O(logn,).
This requirement can be removed by Theorem 5.2 be-
low, which provides a recipe for guickly constructing short
Schreier vector data structures In fact, a stronger re-
sult is achieved in constructing short Schreier trees (depth
O(logn;)) from the strong generating set alone. (Recall that

ng =[G gU+]

The following result on reduction of a strong generating
set is well-known, and is included for completeness. In most
applications, O(log n) < O(log |G]). In such situations, [11.
Theorem 2.5] shows how to find a reduced strong generating
set in time O(n|S| + nlogn), and will usually be faster in
implementations.

Lemma 5.1. Given a strong generating set S for a group
finite G, one can construct a new strong generating set
5" C S with |S'| < log|G| in O(n|S|+nb|S']}, where b is the
size of the smallest non-redundant base with respect to the
ordering of S.

Proof: The following pseudo-code fragment has the correct
properties.
Initialize S* —
For ¢ «— n — 1 downto 1
For g € SN G — Gl do
If a,({g}usl) # cll(5/>
Set S — S U {y}
Return(s’)

In implementations, for each level ¢+ one computes the sct

il

ai({y}usl) incrementally from ozz'(b ). Further. for each 7
the elements of S U S’ should be applied to cach point at
most once. Each element of S will be invoked for at most
one level, 2. From this, the time follows. After adding each g,
the size of {S') must at least double. Hence, |5| < log|G].

0

Theorem 5.2. For a permutation group G of degree n with
strong generating set S, one can construct all short Schreier
trees for G(Z)/G’(Hl) for 1 < 1 < n in time O(nlog” |G| +
n|S|) of depth at most 6.3logn,. with probability at least
1~ 1/|G|. Further, these short Schreier trees form a group
membership data structure from which random elements can
be derived in time O(nlog|G|).

Proof: The conclusion on the time to build random elements
follows from noting that a random group element is con-
structed from the product of at most n —1 random coset vep-
resentatives in time 21575" ~1 O(nlogn,) = O(nlog IG)
It suffices to prove the time and probability for constiuction
of shoit Schreler trees when |.S] < log{(| by Lemma 5 1.

By induction on j. we assume monotonic short Schicier
trees for G /GUH) Wwith ;) < 0 < n have been built, and we

231

will construct such a tree for G(j)/G(j+l). A (trivial) short
Schreier tree for GU*) /G 1) can be built in O(1) time.
Let T for J < © < n be the set of coset representatives
for GWGOHD and let DUHD) = (-1 PO+ o
GU*Y_ Note that each element of DV T can be built as a

word of length O(log IG(]+1)]), since each T(*) is built from
a Schreier tree with depth O(logn,).

One first pre-computes, in time O(n log |G(J)| logn,;), a
data structure which allows computation of a coset repre-
sentative of G(j)/G(j"H) in time O(nlog |GY)]). (This data
structure will then enable construction of a shoit Schreier
tree for G(J)/G(]'H).) Let U be initialized to the identity.
By Pioposition 2.2

oy

DU+ {g.1)] = 21DV D
g ¢ U—l(D(J+1))~1D(J+1)U =y~ lgu+by
If there is a s € SN GY) such that a?’_lG(J“)Us £

—“150+D) _ R
VG U then construct UtgUtlys —

3 ayg €
UT'GUTDY. Replace U by U{g.1}. Repeat
~ 1 ~(3+1) ~1(241) .
ag’r GVTRUs ajU GVTUU for all s € § N GU). This
can be 1epeated at most logn, times since log |G’“+”| <
[DUTDY| < log|GY)), and | DY TV U] 15 doubled each time.
So, the length of any word in UTIDUADE is at most
O(log|GU)]). Thus, g and any coset representative for
G(”/G(]“H) can be computed in time O{nlog|G]) (by re-

taining pointer data structures from previous levels).

until

Given the availability of coset repiesentatives for
G(j)/G(]‘H) in time O(nlog|G|) and the avalability of
short Schreier trees (depth O(logn,)) for GU'/GUFY) for
7 < 1 < n, one can construct random elements of GY) in

time O(nlog |GY)]). 6.3log n, such random elements that
are successes {in the sense of section 4) can be used to build a

new Schreier tice 7,, fo1 G'U)/G'(j“"1 ), which is shoit. Thus,
the time 15 O(nlog|Gllogn,} at level 3, or O(n log” |G])
overall. This completes the induction on .

It 1emains to verify the reliability 6.3logs |G| successes
among all levels will suffice to build shoit Schreter trees at
all levels. With probability at least p 1/3, the random
clement will be a success (in the sense of Proposition 4.3
and the previous definition) with respect to 7,;. Since the
fandamental orbit lengths n, ate known in advance, one
can discard those random elements that are not successes.
Chernoff’s Bound [9] stales that for S; the number of
successes 1n t independent Bernoulli trials with probability
of snccess p, and for 0 < e < 1,

Prob(S: < [(1—€)pt]) < €~e9;11/2

Choosing ¢ = 1/2, t = 54.51n |G| = 37.8log, |G| and not-
ing p = 1/3 then yields (1 ~ ¢)pt (37.8/6) loga |G| =
6.3log+ |G|, the required number of successful tiials. Cher-

nof’s bonnd predicts a 1ehability of e~/ > 1 -
VG212 1 — |G,

On completion of the algorithm, DM wil) be of
length at most 6.310g |G|, requirmg O(nlog? [(]) time for



its comstruction. The n short Schreier trees also require

O(nlog?|G}) time. [

The proof used 37.8log, |G| 1iterations to guarantee
the 6.3logy |G| successes with the indicated worst-case re-
liability. In implementations using breadth-first search,
many fewer than 6.3logy |G| successes will suffice, and a
larger fraction of the trials will be successes than would
be indicated by the worst case analysis. The previous re-
sult allows us to strengthen our arbitrary randomized base
change [12, 14; Theorem B].

Theorem 5.3. Given a strong generating set S of size
O(log |G|) for a group G, thete is a randomized base change
algorithm that, with probability 1—1/|G|, constructs a short
Schreier vector data structure in O(nlog? |G|+ n|S|log |G|)
time.

Proof: Lemma 5.1 is first applied to find a strong generating
set of size at most log |G|, followed by Theorem 5.2 to gener-
ate random group elements in O(nlog|G|). The hypothesis
of {14, Theorem B] is then satisfied, yielding the conclusion

of that theorem. U

REFERENCES

1. L. Babai, “Monte-Carlo Algonthms in Graph Isomor-
phism Testing”, Université de Montréal Tech. Report
D.M.S. 79-10 (1979), Dep. Math. et Stat.

2. L. Babai, G. Cooperman, l.. Finkelstein, E.M. Luks,
and A. Seress, “Fast Monte Carlo Algonthms for Per-
mutation Groups”, Proc. 23”1 ACM STOC (1991),
pp. 90-100.

3. L. Babai. G. Cooperman, L. Finkelstemn, and A. Ser-
ess, “Nearly Linear Time Algoiithms for Permutation
Groups with a Small Base”?, Proc. of the 1991 Interna-
tional Symposium on Symbolic and Algebraic Compu-
tation (ISSAC ’91), Bonn, pp 200-209, July, 1991.

4. L. Babai and E. Szemerédi, “On the Complexity of

Matrix Group Problems 1,” Proc. '_75”7 IEEE FOCS
(1984), Palm Beach, FL. pp. 220-240.

5. C.A. Brown, L. Finkelstein, and P.W. Puidom, “A
New Base Change Algorithm for Permutation Groups”,
SIAM J. Computing 18 (1989), pp. 1037-1047.

6. C.A. Biown, L. Finkelstein, and P.W. Purdom, “Back-
track Searching in the Picsence of Symmetry”, Proc.
of the 6'" International Conference on Algebraic Algo-
rithms and Error Correcting Codes (AAECC-6, Rome,
1988), Springer Verlag Lectuie Notes in Computer Sci-
ence, Vol. 357, pp 99-110

7. G. Butler and C. Lam, “Isomorphism Testing of Com-
binatorial Objects”, J. of Symbolic Computation 1,
(1985), pp 363-381.

. J.1 Cannon, “An Introduction to the Group The-
ory Language, Cayley”, in Computational Group The-
ory, edited by M.D. Atkimson, Academuc Press, 1984,
pp. 145-184

9. H. Chernoff, “A Measure of Asymptotic Efficiency for
Tests of a Hypothesis Based on the Sum of Observa-
tions™, Annals of Math Statisties 23, 1952, pp 493-
507T.

o

232

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Cooperman and L. Finkelstein, “New Methods for
Using Cayley Graphs in Interconnection Networks”,
Discrete Applied Mathematics, Special Issue on Inter-
connection Networks, in press.

G. Cooperman and L. Finkelstein, “A Strong Gener-
ating Test and Short Presentations for Permutation
Groups”, J. Symbolic Computation 12 (1991), pp. 475~
497.

G. Cooperman and L. Finkelstein, “A Random Base
Change Algorithm for Permutation Groups”, J. Sym-
bolic Computation, under revision.

G. Cooperman, L. Finkelstein and E. Luks, “Reduc-
tion of Group Constructions to Point Stabilizers”, Pro-
ceedings of the International Symposium on Symbolic
and Algebraic Computation (ISSAC 89), ACM Press,
pp- 351-356.

G. Cooperman, L. Finkelstein and N. Sarawagi, “A
Random Base Change Algorithm for Permutation
Groups”, Proc. of 1990 International Symposium on
Symbolic and Algebraic Computation, (ISSAC 90,
Tokyo), ACM Press and Addison-Wesley (1990), pp. 161-
168.

M. Jerrum, “A Compact Representation for Permuta-
tion Groups”, J. Algorithms 7 (1986), pp. 60-7T8.

C.W.H. Lam, “The Search for a Finite Projective Plane
of Order 10”, American Mathematical Monthly 98,
(1991), pp. 305-318.

J. Leon, “On an Algorithm for Finding a Base and
Strong Generating Set for a Group Given by a Set
of Generating Permutations”, Math. Comp. 35 (1980),
pp. 941-974.

J. Leon, “Computing Automorphism Groups of Com-
binatorial Objects”, in Computational Group Theory,
edited by M. D. Atkinson, Academic Press (1984),
pp. 321-337.

C.C. Sims, “Computation with Permutation Groups”,
in Proc. Second Symposium on Svmbolic and Algebraic
Manipulation, edited by S.R Petrick, ACM Press, New
York, 1971, pp. 23-28.



