
Biased Tadpoles: a Fast Algorithm for Centralizers in
Large Matrix Groups

Daniel Kunkle and Gene Cooperman
College of Computer and Information Science

Northeastern University
Boston, MA, USA

kunkle@ccs.neu.edu, gene@ccs.neu.edu

ABSTRACT
Centralizers are an important tool in in computational group
theory. Yet for large matrix groups, they tend to be slow.
We demonstrate a O(

p

|G| (1/ log ε)) black box randomized
algorithm that produces a centralizer using space logarith-
mic in the order of the centralizer, even for typical matrix
groups of order 1020. An optimized version of this algorithm
(larger space and no longer black box) typically runs in sec-
onds for groups of order 1015 and minutes for groups of or-
der 1020. Further, the algorithm trivially parallelizes, and so
linear speedup is achieved in an experiment on a computer
with four CPU cores. The novelty lies in the use of a bi-
ased tadpole, which delivers an order of magnitude speedup
as compared to the classical tadpole algorithm. The biased
tadpole also allows a test for membership in a conjugacy
class in a fraction of a second. Finally, the same methodol-
ogy quickly finds the order of a matrix group via a vector
stabilizer. This allows one to eliminate the already small
possibility of error in the randomized centralizer algorithm.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic algorithms

General Terms: Algorithms, Experimentation

Keywords: centralizer, matrix groups, tadpole, conjuga-
tor, group order

1. INTRODUCTION
The tadpole algorithm in computational group theory is

reminiscent of the Pollard rho algorithm [15] for integer fac-
torization. Indeed, both the “tadpole” and the “rho” are
meant to remind us geometrically of the shape of a certain
trajectory. Tadpoles were originally invented by Richard
Parker [14]. Our implementation will use appropriate bias-
ing heuristics to create an algorithm for centralizers in large
matrix groups. We also apply biased tadpoles to the prob-
lems of group order and conjugacy testing.

One defines the conjugate of a group element g by an el-

ement h as gh def
= h−1gh. This is analogous to the change

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

of basis formula in linear algebra. Given a group G, the

centralizer subgroup of g ∈ G is defined as CG(g)
def
= {h : h ∈

G, gh = g}.
Note that the above definition of centralizer is well-defined

independently of the representation of G. Even for permu-
tation group representations, it is not known whether the
centralizer problem can be solved in polynomial time. Nev-
ertheless, in the permutation group case, Leon produced a
partition backtrack algorithm [8, 9] that is highly efficient
in practice both for centralizer problems and certain other
problems also not known to be in polynomial time. Theißen
produced a particularly efficient implementation of partition
backtrack for GAP [17].

In the case of matrix groups, centralizers are well known to
be computationally difficult for large groups. In this paper,
we demonstrate a randomized centralizer algorithm. The
algorithm can be thought of as a randomized Schreier-Sims
algorithm under the conjugate action. We also make the
assumption that a distribution of uniformly random group
elements is available. However, the conjugate action implies
that the group acts on a permutation domain of the same
size as the group. For large groups, this makes computation
of a Schreier generator computationally expensive.

The problem of computing a Schreier generator in the
conjugate action reduces to the following problem:

Problem 1.1 (Conjugator). Given two elements of
a group G, g and h, find an element r ∈ G such that gr = h.

A traditional method for computing a conjugator between
g and h is by bidirectional search. However, this can require
a lot of storage, and the use of such an out-of-CPU-cache
algorithm makes it slow using today’s technology. This is
because of the large gap in speed between CPU and RAM.
Further, as CPUs continue to gain additional cores, an in-
cache algorithm can execute a different conjugator in each
CPU core, unlike a bidirectional search algorithm.

The tadpole algorithm has the advantage of requiring space
that is only constant in the size of a group element; i.e.
storage proportional to a small constant times the memory
required to store one group element. Further, a simple prob-
ability argument shows that the expected number of steps
required to solve the Conjugator problem is O(

p

|G| log |G|)
(under certain randomness assumptions). Further, for k such
conjugacy tests with k ≥ |G|, the amortized cost of one Con-

jugator is only O(
p

|G|). (See Section 4.2.) The obvious
centralizer algorithm derived from this (Section 3) then op-

erates in time O(
p

|G| log(1/ε))) with probability of error
bounded above by ε, 0 < ε < 1. (see Section 3.3).

The idea of a biased tadpole is to create a modified tad-
pole that, loosely speaking, acts on a smaller space than the
original tadpole. In Section 6.3, we show a 9.6 times speedup
by using biasing to compute the centralizer of an involution
in an example for the group J4.

The same tadpole idea can be used to more efficiently find
a vector stabilizer subgroup of a matrix group.

Problem 1.2 (Vector Stabilizer). If a matrix group,
G, acts on a vector space V , an element g ∈ G stabilizes a
vector v ∈ V if the product of v and the matrix representa-
tion of g is equal to v itself. A vector stabilizer subgroup
of G is a subgroup H such that vh = v for every h ∈ H.

The rest of the paper has the following structure. First,
we briefly conclude the introduction with related work. Sec-
tion 2 describes the core idea of tadpoles walks. Section 3
presents our tadpole-based algorithm for the centralizer prob-
lem. Section 4 describes two additional tadpole-based algo-
rithms: vector stabilizer and group order; and conjugacy
testing. Section 5 describes the addition of biasing to tad-
poles, and estimates the predicted speedup due to biasing.
Finally, Section 6 provides a number of experimental results.

1.1 Related Work
Butler describes a backtracking algorithm for centralizers

of matrix groups based on examining the action of the ma-
trix group on vectors of the vector space [2]. Eugene Luks
showed how to find centralizers in polynomial time for the
special case of solvable matrix groups [11].

In the domain of permutation groups, Leon invented the
partition backtrack algorithm [8] for centralizer and other
permutation group problems not known to be in polynomial
time. Theißen added an efficient implementation of this al-
gorithm into GAP [17].

Luks described a polynomial time centralizer algorithm for
matrix groups [11]. Bray describes a fast algorithm special-
ized for centralizers of an involution in certain groups [1].
Murray and O’Brien demonstrated how to use a random
Schreier-Sims algorithm [7] for the matrix group viewed as
a permutation group on vectors or subspaces [12].

This work assumes the ability to generate uniformly ran-
dom group elements. Celler and Leedham-Green [3] devel-
oped the product replacement algorithm, which is extremely
efficient, and widely used in GAP. Although the best the-
oretical guarantee of randomness to date requires that the
algorithm use O(n9) group multiplications [13], a small num-
ber of group operations suffice in practice to produce ele-
ments that pass all current tests of randomness.

2. TADPOLE WALKS
The core idea of the tadpole algorithm [14] is to create a

dynamical system on any orbit of a permutation group. This
dynamical system yields a tadpole walk. A tadpole walk on a
permutation domain and group generators is a construction
in which one takes a pseudo-random, but deterministic func-
tion f (such as a hash function) that acts on the permutation
domain and returns an element of the group. (In Richard
Parker’s original description, it returned one of the group
generators.) One then views this as a dynamical system on
the points of the permutation domain. Given a point x0, one

computes the new point x1 = x
f(x0)
0 (the application of the

generator f(x0) to the point x0). One iterates to produce

a sequence x0, x1, . . . , xj , . . . , xi for which xi = xj . Clearly,
once one of the xi is equal to an earlier xj , the series will
then continue cycle among the points xj , xj+1, . . ., xi−1.
This cycle is sometimes called an attractor cycle.

It remains to detect when the xi have arrived on the at-
tractor cycle. This is done using landmarks. A landmark is
a point xi whose representation as a point in the permuta-
tion domain satisfies a chosen property. In our applications,
a landmark is a state for which the k initial bits are all zero.
The constant k can be tuned. It is assumed that the first
k bits are pseudo-random. Where that is not true, alterna-
tives are possible such as to hash the bits, or to use a related
algorithm of Sedgewick and Szymanski [16].

Upon arriving at a state xi that is a landmark, one looks
it up in a hash table. If it is already in the hash table, then
one has already made a circuit around the attractor cycle.
Otherwise, one stores xi in the hash array. One adjusts k to
simultaneously ensure that the overhead of checking land-
marks is small, and that at least one landmark appears on
every attractor cycle.

It can easily be shown that the number of steps until a
tadpole walk makes one revolution around an attractor cycle
is O(

√
n), for n the size of the permutation domain on which

it acts. The space required to store the landmarks is then
O(

√
n/2k). A second critical property of tadpoles is that the

expected number of attractor cycles is only O(log |n|), for n
the size of the permutation domain on which the tadpole
acts [5]. Hence, there are relatively few large tadpoles. This
will be critical in Algorithm 1 (Centralizer).

One empirically observes further that in practice, the num-
ber of large attractor cycles tends to be less than five. While
smaller attractor cycles may exist, our computations almost
never encounter such smaller attractor cycles, and so they
do not greatly affect the running time. (See Section 6.)

Tadpole Walks Using Constant Space.
The above method uses a hash table of landmark elements

to detect the attractor cycle of the tadpole walk, which re-
quires O(

√
n/2k) space. An alternate approach uses the

two-finger trick, which reduces the space required to O(1),
at the cost of requiring about three times as many genera-
tor applications. This trick has a further advantage in that
Algorithm 1 (centralizer) becomes a black box algorithm.

In this method, two fingers follow the tadpole walk. The
first finger uses the standard definition of the walk. The
second finger follows the walk at twice the speed, applying
two generators for each one generator the first finger applies.
The walk has found an attractor when the two fingers meet.

3. TADPOLE ALGORITHM FOR
CENTRALIZER

Suppose we wish to find the centralizer of an element g ∈
G. We will do so by performing tadpole walks of group
elements acting on group elements by conjugation.

Start with the element to be centralized. Conjugate it by
a random group element r1 ∈ G. Then, do a tadpole walk on
gr1 until some element is repeated, and an attractor cycle is
found. We keep track of the word used to conjugate, starting
with that random group element, and continuing with the
generators chosen by the tadpole walk. If the tadpole walk
produces a word w1, then we have a path, gr1w1 , that leads
from g to a landmark on the attractor cycle.

We then repeat the process, using a different initial ran-
dom group element for conjugation, r2 ∈ G. If this second
tadpole walk leads to the same attractor cycle, then we pro-
duce a second word r2w2 leading to the same landmark.

Hence gr1w1 = gr2w2 . This implies that gr1w1w
−1

2
r
−1

2 = g,
and therefore that r1w1w

−1
2 r−1

2 is in the centralizer of g.

Algorithm 1 Centralizer

Input: Group G, g ∈ G, pseudo-random function
f : G 7→ G

Output: random elements, RandomCentralizerElts, for
CG(g)

1: Initialize a hash array of AttractorCycleReps to be
empty.

2: Initialize RandomCentralizerElts to empty.
3: repeat
4: Initialize empty Landmark hash array, and Land-

markPtr list
5: Let r be a uniformly random element of G
6: Let x = gr

7: [Begin tadpole walk at random conjugate of g]
8: repeat
9: Let r = rf(x)

10: Let x = xf(x)

11: if x is a landmark then
12: If x is not in Landmark array, hash it, and append

it to LandmarkPtr
13: end if
14: until x is a landmark and x is in Landmark array
15: Use LandmarkPtr list to determine all landmarks oc-

curring at x or later in Landmark array
16: Let m be the lexically least such landmark
17: if m is in AttractorCycleReps then
18: Get the value wm, and Add rw−1

m to RandomCen-
tralizerElts

19: else
20: Set wm = r, and add the key-value pair (m, wm)

to AttractorCycleReps
21: end if
22: until stopping condition satisfied (see Section 3.3)
23: Return RandomCentralizerElts

This tadpole-based method for centralizer is described by
Algorithm 1. See Section 2 for a description of the land-
marks used in the algorithm.

If the hash array AttractorCycleReps in Algorithm 1 be-
comes too large, we can remove the less frequently occurring
elements. However, [5, Appendix], shows the expected num-
ber of attractor cycles to be bounded above by (1/2) log2 |G|.
Also, the algorithm can use a number of different stopping
conditions, which are discussed further in Section 3.3.

In fact, it is not required that g ∈ G, in which case the
above algorithm produces an external centralizer subgroup.
More generally, although we identify gr as defined by the
conjugate action, one could take g ∈ Ω for any permutation
domain Ω. The pseudo-random function f must then be
defined as mapping Ω to G.

Theorem 1. If r2 is a random group element of G, then
r1w1w

−1
2 r−1

2 of the previous discussion is a random element
of the centralizer subgroup CG(g).

Proof. The group elements r1 and w1 are independent
of the random element r2. While the element w2 depends

on the choice of r2, in fact, w2 depends only on gr2 . This is
because w2 is a tadpole walk with starting point gr2 .

Let us temporarily fix r2 and choose r′2 = hr2, where h is

chosen randomly from CG(g). Note that gr′

2 = ghr2 = gr2 ,

since h ∈ CG(g). So a tadpole walk starting at gr′

2 depends
on r2, but is independent of the choice of h for r′2 = hr2 ∈
CG(g)r2. The random choice of r′2 implies a random choice
of h ∈ CG(g) such that r′2 = hr2. Since r1w1w

−1
2 r−1

2 ∈ CG(g)

and h is random in CG(g), r1w1w
−1
2 r′2

−1
is a random element

of CG(g).
We have shown that for a fixed r2, a random choice of r′2 ∈

CG(g)r2 produces a random element of CG(g) using Algo-
rithm 1. Since the algorithm produces a random element
of CG(g), for a random choice of r′2 restricted to CG(g)r2,
and since this is true independently of the choice of r2 ∈ G,
it suffices to choose a random r2 ∈ G, and then a random
r′2 ∈ CG(g)r2, to ensure r1w1w2−1r′2

−1 ∈ CG(g). Since this
produces a random r′2 ∈ G, it suffices to choose a random
r2 ∈ G to ensure r1w1w

−1
2 r′2

−1 ∈ CG(g). Therefore, any ran-
dom choice of r2 produces a random element of CG(g).

3.1 Early Termination of Long Walks
As will be seen in Section 6, there can be several common

attractor cycles with widely varying lengths. If a particular
tadpole walk is excessively long, one gains evidence that one
may be in a long attractor cycle. Under these circumstances,
it is tempting to terminate the tadpole walk, and begin a new
walk using a new random element that will hopefully lead
to a shorter attractor cycle. Corollary 2 implies that as long
as the decision to terminate is based solely on the number
of steps or time passed, the resulting centralizers computed
from completed tadpole walks will still be uniformly random.
They will not be biased by such a decision procedure.

Corollary 2. In producing the random elements of the
centralizer subgroup according to Theorem 1, one may termi-
nate a particular tadpole walk based on the number of steps
executed so far, and any properties of previous tadpole walks.
The early termination of a particular tadpole may remove
one element of the centralizer subgroup, but it will not bias
the uniform distribution of the other random elements of the
centralizer that are generated.

Proof. The tadpole walk to be terminated has already
produced an initial random starting position gr for r ∈ G
random. If one fixes r and chooses r′ ∈ CG(g)r uniformly at

random, then gr′

= gr. If r produces a centralizer element
h ∈ CG(g), then r′ produces an element r′r−1h ∈ CG(g).
Since r′r−1 is a uniformly random element of CG(g) inde-
pendently of when the tadpole walk is terminated, r′r−1h
is also uniformly random in CG(g) independently of when
the tadpole walk is terminated. So, termination of the tad-
pole walk causes removal of this uniformly random element
r′r−1h, which does not bias the uniform distribution of the
resulting centralizer elements produced by Algorithm 1.

There are several potential heuristics for early termination
of a tadpole walk. Such heuristics are not employed in our
experiments, since the primary concern is evaluating the core
algorithm. However, one such heuristic is to set a variable
cutoff to be the median number of steps for all previous
tadpole walks. The median means that half of the walks
were longer and half were shorter. One then terminates any
tadpole walk that has already used two times cutoff steps.

In computing the median, any terminated tadpole walk is
considered to have taken an infinite number of steps.

3.2 Complexity: Number of Tadpoles Required
The following theorem is well known. It is based on the

fact that in any subgroup chain, the order of a subgroup in
its parent subgroup is at most 1/2. So, the longest possible
chain is log2 |G|. It has been observed that in practice, one
can usually generate G using many fewer group elements
than would be indicated by O(log n). Elementary abelian
2-groups are a worst case, and many algorithms for those
groups reduce to linear algebra. Most groups encountered
in practice are far from this worst case.

Theorem 3. O(log |G|−log ε) random elements of a group
G suffice to generate G with probability of error bounded
above by ε, 0 < ε < 1.

Theorem 4. For a group G, the expected number of tad-
pole walks needed to generate CG(g) is O(log |CG(g)|).

Proof. Theorem 3 states that one needs O(log |CG(g)|)
random centralizer elements. The Appendix of [5] shows
that the expected number of attractors is (1/2) log2 |CG(g)|.
Algorithm 1 produces one random centralizer element per
tadpole walk, except those tadpole walks that are the first to
reach a new attractor cycle. Since at most (1/2) log2 |CG(g)|
can reach a new attractor cycle, O(log |CG(g)|) tadpole walks
suffice to generate G.

A standard argument demonstrates the refined estimate
of O(log |CG(g)|−log ε) tadpole walks to generate CG(g) with
upper bound ε on probability of error.

Let n < |G| be the size of the conjugacy class of the
element g to be centralized. One can Combine this with
the expected length of a tadpole walk,

√
n, and assume

c log |CG(g)| tadpole walks for some fixed c chosen in ad-
vance. Noting that n|CG(g)| = |G|, it is clear that Al-

gorithm 1 executes in O(
√

n log |CG(g)|) = O(
p

|G|) mul-
tiplications, and it succeeds with probability of error at
most 1/|CG(g)|c. The next section describes a stopping cri-
terion independent of knowledge of |CG(g)| or |G|.

3.3 Stopping Criteria
Algorithm 1 is mostly a black box algorithm, in that it

does not depend on the representation of x, g, or r, except
for purposes of landmarks. Even that restriction could be
removed by using the cycle-finding algorithm of Sedgewick
and Szymanski [16]. As with all such randomized black box
algorithms, one must rely on a randomized stopping crite-
rion. Let the maximum length of a chain of subgroups in G
be L.

Theorem 5. If L is an upper bound on the length of a
subgroup chain in |CG(g)|, and if the stopping criterion of
Algorithm 1 is to stop after k centralizer elements are pro-
duced, for k > L, then the probability of error before produc-
ing the full centralizer is at most 1/2k−L.

The proof is clear. Note that if the group order of the
centralizer, |CG(g)|, or the order |G|, is known, then the
number of prime factors of that order (including repeated
prime factors) can be used as the upper bound L.

If |CG(g)| and |G| are not known a priori, then the next
stopping criterion can be used. This yields the revised es-
timate O(

p

|G| − √
n log ε)) = O(

p

|G| (1 − log ε/|CG(g)|)),

or the coarser estimate of O(
p

|G| log(1/ε)) for 0 < ε < 1
specifying the desired upper bound on the error probability.

Theorem 6. If the stopping criterion of Algorithm 1 is
to stop after k centralizer elements in a row fail to cause the
candidate centralizer subgroup to grow, then the probability
of error is at most 1/2k−1.

Proof. We will show the probability of error to be bounded
above by 1/2k + 1/4k + 1/8k + · · · = 1/2k−1. To see this,
assume that Algorithm 1 produces an infinite number of gen-
erators for the centralizer. Consider the last element that
caused the candidate centralizer subgroup to grow. If the
k immediately preceding steps had not increased the sub-
group size, Algorithm 1 would have stopped before that el-
ement. The probability of that happening is at most 1/2k,
since the subgroup size at that point was at most 1/2 the full
group size. Then look at the second to last generator that
caused the candidate centralizer subgroup to grow. If there
were k immediately preceding steps that did not produce a
new generator, then we would have stopped at this point.
The probability of that is 1/4k. Continuing in the same way
produced the series upper bound, which yields 1/2k−1.

4. OTHER TADPOLE-BASED ALGORITHMS
Here, we present two additional tadpole-based algorithms,

both of which are closely related to the algorithm for central-
izer presented above. They are: computing vector stabilizers
and group order; and conjugacy testing.

4.1 Vector Stabilizer and Group Order
Suppose we wish to compute the order of a matrix group

G with generators 〈g1, g2, . . . , gk〉 = G. We will do so us-
ing a method that makes use of tadpoles to compute vector
stabilizers. The overall algorithm is closely related to the
Schreier-Sims algorithm for permutation groups.

First, choose a vector x such that xg 6= x for some gener-
ator g ∈ [g1, g2, . . . , gk]. Compute the transversal of G with

respect to x. The transversal is defined as TG(x)
def
= {y : g ∈

G, y = xg}. We compute the transversal by breadth-first
search, beginning with the vector x, and enumerating all
vectors reachable by some word in the generators of G.

Then, find a set of generators of the vector stabilizer sub-
group of G with respect to x. The vector stabilizer subgroup

is defined as SG(x)
def
= {g : g ∈ G, xg = x}. To do this, we

use a slightly modified version of Algorithm 1 (Centralizer).
Instead of the domain consisting of elements of G and the
action being conjugation, the domain consists of vectors and
the action is vector-matrix multiplication.

The order of G is the product of the order of the transver-
sal and the order of the vector stabilizer subgroup: |G| =
|TG(x)||SG(x)|. If the vector stabilizer is trivial, we return
the order of the transversal as the order of the group. Oth-
erwise, we recursively compute the order of the vector sta-
bilizer subgroup, using the elements of the vector stabilizer
discovered using tadpoles as generators of the group.

4.2 Conjugacy Testing
We first consider the case in which one wants to do many

conjugacy tests. In this limit, the time is O(
p

|G|) steps, the
number of steps in a tadpole walk. Suppose we are given an
element g ∈ G of order k, and we wish to determine which
of the conjugacy classes of order k that element belongs to.

First, we will complete a small number of tadpoles for ran-
dom elements in each of the conjugacy classes of order k.
This will provide us with a few landmarks, each associating
a tadpole attractor cycle with a specific conjugacy class.

Then, we simply compute one more tadpole walk start-
ing from element g, and look up which conjugacy class the
attractor cycle landmark is associated with. As argued in
Section 2, and seen empirically in the experimental results
of Section 6, there are only a few large attractor cycles that
are visited with high probability. So, we need only a small
number of landmarks in each of the conjugacy classes to find
a match with high probability. In the unlikely event that the
landmark has not been seen yet, we can compute another
tadpole starting at gr, where r is a random element of G.

This method is particularly efficient when there are many
elements for which one wants to perform a conjugacy test, as
the initial cost of associating landmarks with each conjugacy
class is amortized over the tadpole computations for each of
the elements.

Next, we consider the case of a single conjugacy test. In
this case, the number of steps is O(

p

|G| log |G|). In this
case, we consider two elements g, h ∈ G, and we wish to
construct an element r ∈ G such that gr = h. The algo-
rithm consists of forming c

p

|G| random conjugates of g,
where the constant c can be chosen as described at the end
of the paragraph, and then executing a tadpole walk for
each of these random conjugates. The tadpole walk termi-
nates when the lexically least landmark of its attractor cycle
has been identified. This produces at most c

p

|G| distinct

attractor cycles. One similarly finds c
p

|G| random conju-
gates of h, and then executes a tadpole walk for each one.
The probability of a tadpole walk from g and one from h
reaching a common attractor cycle is then a constant. The
constant c can be tuned to increase the probability of two
tadpole walks from g and h meeting. This shows that the
expected number of steps is O(

p

|G| log |G|).

5. TADPOLE BIASING
By biasing a tadpole walk, we seek to constrain that walk

to visiting elements in a subset of the permutation domain.
As observed in Section 2, the expected length of a tadpole
walk before a duplicate element is reached (i.e., before an
attractor is found) is O(

√
n), where n is the number of el-

ements in the permutation domain. Therefore, if the walk
is constrained to a subset of the permutation domain of size
n/k, the expected length of the walk is reduced to O(

p

n/k).
If the additional time spent computing the bias function is
not prohibitive, we have reduced the total time to finish a
tadpole walk. We next demonstrate a method for adding
biasing to the tadpoles used in Algorithm 1 (Centralizer).

5.1 Biasing Conjugation in Matrix Groups
First, we briefly describe a normal tadpole walk. We then

describe the addition of biasing to decrease the expected
length of the walk.

Standard Tadpole.
We are given generators of a group 〈g1, g2, . . . , gk〉 = G

and a start element x0 ∈ G. We are also given a hash func-
tion gi = f(h) that deterministically, and pseudo-randomly,
maps any element h ∈ G to a generator gi of G.

The tadpole iteratively conjugates the current element in
the walk by the generator specified by the hash function,

until some element is repeated. So, one step in the walk is
defined as

g = f(xi)

xi+1 = g−1xig

The walk continues until some xi = xj , for j < i.
The time to compute one step is dominated by the two ma-

trix multiplication operations required by the conjugation.
For matrices of dimension n, this requires 2n3 operations.

Biasing Function.
To add a bias, we define a prefix function [e1, e2, . . . , em] =

p(x, g), where x ∈ G, g ∈ G is one of the generators, and
[e1, e2, . . . , em] is a vector containing the first m elements of
the matrix resulting from the conjugation g−1xg. In other
words, we are computing the first m out of n2 entries of the
result of one step.

This prefix computation can be done by two vector-matrix
multiplication operations: the first multiplying a 1×n vector
of g−1 by the full n×n matrix x; the second multiplying the
resulting 1×n vector by a n×m portion of g. The resulting
cost is n2 + nm operations. Typically, m < n, so a prefix
computation is at least a factor of n less expensive than a
full conjugation computation.

To implement the bias, we remove the use of the hash
function and decide which generator to use by computing
the prefix of g−1xg for all generators g and choose the one
that yields the lexically least result. In doing so, the tadpole
walk will visit those states with lower prefixes more often,
thereby effectively reducing the size of the domain.

Note that the quality of the biasing depends in part on the
number of generators. The larger the number of generators,
the lower the expected value of the minimum prefix. So, in
cases where very few generators are given, we expand the
set of generators with additional elements.

5.2 Other Biasing Functions
In certain cases, there may be biasing functions even more

effective than the prefix computation presented above.
For example, in the general linear group GL(n, q), one can

construct an arbitrary change-of-basis matrix. By conjugat-
ing by such a change-of-basis matrix, one can imitate the
standard algorithm for Gaussian elimination. Thus, one can
extend the function f(x) of Algorithm 1 to g(xf(x)), where
g() maps its argument to a new matrix that is as close to
diagonal form as possible. This produces large biasing, since
the range of g() will be relatively small.

There exist much stronger biasing functions. For example,
a biased tadpole for conjugacy testing can converge in a
single step if the biasing function returns the unique lexically
least element in the conjugacy class. A less extreme and less
expensive version of this approach is to return an element
with a small base image under a lexical ordering. While we
do not pause to describe such a heuristic in detail, this is
clearly motivated by similar results in which lexically least
elements can be found in other settings [4, 10, 6].

Specifically, Cooperman and Finkelstein [4, Section 5] show
that for a subgroup H < G, one can assign a unique integer
in [1, . . . , |G|/|H|] for each distinct coset Hg for g ∈ G. Lin-
ton [10] shows how to find a lexicographically least image
of a set of points under the action of a permutation group.
Hulpke and Linton [6] demonstrate a lexicographic ordering
for subgroups of groups.

Table 1: Results of computing the order of twelve different matrix groups (* indicates that GAP exceeded
its maximum of 4 GB of RAM without completing).

Group Order Dim Size of 1st Chain Our GAP’s
Transversal Length Time (s) Time (s)

J3 5.0 × 107 80 50232960 1 750.37 *
McL 9.0 × 108 22 22275 3 1.27 19.89
He 4.0 × 109 51 8330 4 1.25 1161.58
A14 4.3 × 1010 12 3003 8 2.17 0.50
21+8.O+

8 (2) 8.9 × 1010 24 4147200 3 55.03 *
Ru 1.5 × 1011 28 417600 3 5.66 *
Co3 5.0 × 1011 22 37950 6 1.82 10.90
Co2 4.2 × 1013 22 46575 5 2.03 1108.76
Fi22 6.4 × 1013 78 142155 6 3.98 *
F4(2) 3.3 × 1015 26 17821440 3 257.91 *
Co1 4.2 × 1018 24 8386560 4 124.63 *
E6(2) 2.1 × 1023 27 69193488 5 1219.85 *

These three algorithms, centered around lexicographic or-
derings, provide the basis for important heuristics for tad-
poles acting: on cosets; on sets; and on subgroups. Finding
lexicographic orderings on sets leads to biases that are use-
ful for finding set stabilizers for permutation groups, while
lexicographic orderings on on subgroups can lead to finding
new heuristics for finding normalizer subgroups.

Last, note the following important implementation detail:
If a biasing function uses a randomized algorithm as a sub-
routine, then the seed of the corresponding random number
generator must be re-initialized to a fixed value at the begin-
ning of the function. Otherwise, the biasing function would
not be deterministic (but pseudo-random), as required.

6. EXPERIMENTAL RESULTS
All of the experimental results given below were produced

using a computer with: two 2.00 GHz dual-core Intel Xeon
CPUs; 16 GB of RAM; and Linux version 2.6.9. All of
our algorithms were implemented in C and compiled with
GCC version 3.4.5. All matrix representations and involu-
tion words in standard generators were taken from version
3.0 of the ATLAS of Finite Group Representations [18].

In cases where our algorithm requires the use of a ran-
dom group element, we produce that element using a naive
random walk of length at least 100 (and length 10000 for
the larger groups). A more sophisticated generator, such
as product replacement [3], would have produced the same
timings or better.

For all biased tadpoles, we used 100 random group ele-
ments as generators and a prefix of size 8 (see Section 5.1
for the definition of prefix).

6.1 Group Order and Centralizer for Matrix
Groups

Here, we provide a comparison of our tadpole-based meth-
ods for matrix groups to the corresponding algorithms im-
plemented in GAP, including computing group order and
the centralizer of an involution. We choose to focus on in-
volutions because they are often useful in other algorithms,
and because their centralizers are usually large. Although
GAP’s strategy appears to be a naive enumeration of all
group elements, we compare with GAP as an implementa-

tion of the only other general matrix centralizer algorithm
in the literature.

Tables 1 and 2 show experimental results for the follow-
ing twelve groups: Janko group J3; McLaughlin group McL;
Held group He; Alternating group A14; Conway groups Co3,
Co2, and Co1; 21+8.O+

8 (2); Rudvalis group Ru; Fischer
group Fi22; and untwisted groups of exceptional Lie type
F4(2) and E6(2). Note that 21+8.O+

8 (2) appears as a sub-
group of Co1 and is of interest because it is far from simple.

When choosing a set of groups to test on, we restricted
ourselves to groups with an available matrix representation
over GF (2) of dimension 128 or less. This is because our
implementation of matrix operations was originally devel-
oped for J4, which has a representation of dimension 112
over GF (2) (so we represent each row of the matrix with
two 64-bit words). Because we have optimized for this case,
matrix operations of smaller dimension are suboptimal. In
the future, we plan to generalize our implementation to yield
maximum performance for arbitrary dimensions, possibly by
incorporating the MeatAxe library.

6.1.1 Group Order
We tested our tadpole-based algorithm for computing group

order on the twelve matrix groups listed in Table 1. The
groups range in size from 5.0 × 107 to 2.1 × 1023, with di-
mension ranging from 12 to 80.

Recall that the algorithm for computing group order (Sec-
tion 4.1) works by recursively computing a series of vector
stabilizers and transversals. Table 1 lists the size of the first
(and largest) transversal, and the total number of transver-
sals computed (i.e., the chain length).

Finally, the table gives the total time required by our al-
gorithm and by the corresponding group order algorithm
in GAP. In cases where GAP ran out of memory before
completing (max 4 GB), no time is shown. Of the five out
of twelve cases where GAP produced an answer, GAP was
faster in one (A14), and our algorithm was between 5 and
1000 times faster in the other four. With the exception of
J3 (which has a trivial vector stabilizer), our algorithm com-
pletes in seconds for groups of order 1013 and less, and in
minutes for groups up to order 1023.

Table 2: Results of computing the centralizer of an involution in twelve different matrix groups (* indicates
that GAP exceeded its maximum of 4 GB of RAM without completing).

Group Involution Centralizer Our Centralizer Our Order GAP Centralizer and
Word Size Time (s) Time (s) Order Time (s)

J3 a 1920 17.78 0.90 *
McL a 40320 4.64 0.69 18.12
He a 161280 7.11 1.17 1010.06
A14 (ba)6 46080 13.39 1.14 1.15
21+8.O+

8 (2) a 49152 15.11 2.26 *
Ru a 116480 7.78 1.16 *
Co3 bb 2903040 8.05 1.32 11.86
Co2 a 743178240 6.91 1.66 1011.21
Fi22 a 18393661440 15.74 5.69 *
F4(2) a 754974720 20.49 66.84 *
Co1 a 2012774400 86.56 43.20 *
E6(2) a 135291469824 1643.73 11.87 *

6.1.2 Centralizers of Involutions
Next, we tested our algorithm for computing centraliz-

ers using the same twelve groups. In each case, we chose to
compute the centralizer of an involution (element of order 2).
Table 2 shows the results of these computations. In that ta-
ble, the chosen involutions are given as short words in the
two generators listed for that group in version 3 of the AT-
LAS of Finite Group Representations [18]. The centralizers
range in order from 1920 to approximately 1.35 × 1011. In
each case, we give the time for our algorithm in two pieces:
the time to compute the centralizer (as a set of generators
of the subgroup); and the time to compute the order of the
centralizer (using our algorithm for group order).

For GAP we list only a single time, because GAP com-
putes the order of a centralizer as that centralizer is pro-
duced. Note that the times listed for GAP in Table 2 are
nearly identical to those in Table 1, suggesting that GAP is
using the same strategy for both group order and centralizer
computations.

Again, of the five cases where GAP completes, GAP is
faster in one (A14), and our method is faster in the other
four, with a maximum speedup of over 100 times. For groups
of order 1015 or less, we compute the centralizer in 20 sec-
onds or less. For the largest case, group order approximately
1023, the algorithm completes in less than half an hour.

6.2 Case Study of a Large Group: J4

Because our initial motivation for developing biased tad-
poles was the problem of conjugacy testing in Janko’s group
J4, we report here results for the closely related problem of
finding centralizers in that group.

We examine two extreme cases: computing the centralizer
of an involution; and of an element of order 37. For involu-
tions, the centralizer is relatively large, and the conjugacy
class relatively small. For elements of order 37, the reverse
is true. Our element of order 2 is the product (abababbb)6,
and our element of order 37 is the product ab (generators as
given in v3 of the ATLAS [18]).

Centralizer of an Involution.
In this case, the centralizer is of order 1816657920 ≈ 1.8×

109 and the conjugacy class (the domain of the tadpole walk)
is of order 47766599364 ≈ 4.8 × 1010.

Using biased tadpoles, we were able to produce one el-
ement of the centralizer in an average of 11.17 seconds.
We produced 100 such elements, for a total time less than
20 minutes. For these 100 biased tadpoles, an attractor was
found after an average of 27500 steps, and there were a total
of 4 attractors discovered. Additional analysis of these tad-
poles, and a comparison between the biased and unbiased
versions, is presented in Section 6.3.1.

Because we expect O(log n) elements of a group to gener-
ate that group, these 100 elements are sufficient to generate
the centralizer with very high probability. Theorem 5 pro-
duces a bound on the probability of error of 2−65, where
k = 100 and L = 34 with L being the number of prime
factors, including repetition, for |J4|. We could not directly
confirm this by computation because the size of the first
transversal in the centralizer exceeded available memory.

Centralizer of an Element of Order 37.
In this case, the centralizer is of order 37 and the con-

jugacy class (the domain of the tadpole walk) is of order
2345285703948042240 ≈ 2.3 × 1018. In this large space, the
biased tadpoles required an average of 23.5 hours to com-
plete. We computed 20 such elements in parallel on 20 nodes
of a compute cluster. The longest cases, and therefore the
entire computation, were completed in about 1.5 days. For
these 20 tadpoles, an attractor was found after an average
of 2.0 × 108 steps, and a total of 3 attractors were found.

We confirmed that the order of the computed centralizer
was 37. The time for this verification was trivial in compar-
ison the tadpole computations.

6.3 Tadpole Accelerators
Here, we present experimental results for two tadpole ac-

celerators: biasing and parallelism. The results show a sig-
nificant speedup of 9.6 times for biasing in the case comput-
ing centralizing elements in J4, and a full linear speedup of
4.0 times on a machine with 4 CPU cores.

6.3.1 Biasing Effectiveness
For this experiment we used the same 100 tadpole com-

putations that were used to compute the centralizer of an
involution in J4 (Section 6.2). For each of the 100 cases, we
ran one biased and one unbiased tadpole.

Table 3: Comparison of biased and unbiased tad-
poles (averages over 100 trials).

Biased Unbiased

Tail Length 23751 169497
Attr Length 3832 224153
Total Steps 27583 393650

Steps per sec 2463 3679
Time (s) 11.2 107.0

Attr Size Visits Attr Size Visits
List 1454 75 35350 7
of 7921 11 238364 93

Attrs 11218 6
14961 8

Table 3 presents the results of these 100 trials. The statis-
tics include an average of: the length of the tail (number of
steps until an attractor cycle is reached); the length of the
attractor cycle; the total number of steps; the time to com-
plete the walk; and the number of steps per second. Also
listed are the lengths of the attractor cycles discovered, and
the number of trials out of 100 that visited each attractor.

These results show that biasing can significantly decrease
the length of a tadpole walk. In this case, biasing yields a 14
times reduction in the total walk length, mostly due to the
almost 60 times reduction in the average attractor length.
As predicted in Section 5.1, the cost of computing the bias
increases the time to complete one step in the tadpole by
50%. Overall in this case, biasing yields an almost 10 times
speedup over unbiased tadpoles.

6.3.2 Parallel Speedup on Multicore Architectures
For this experiment, we simply chose one of the biased

tadpole walks from the previous section and computed that
walk four times. We tested three cases: one process com-
puting all four walks serially; two processes, each comput-
ing two walks in parallel; and four processes, each computing
one walk in parallel. The three cases completed in 49.23 sec-
onds, 24.64 seconds, and 12.25 seconds, respectively. This
test shows the expected four times speedup on a computer
with four CPU cores.

7. CONCLUSION AND FUTURE WORK
Biased tadpoles demonstrate a O(

p

|G| log(1/ε))) cen-
tralizer algorithm for matrix groups for ε an upper bound
on the probability of error. The method is orthogonal to
another general method for matrix groups from Magma:
the use of the Murray-O’Brien random Schreier-Sims algo-
rithm [12] in combination with Leon’s backtracking [8]. We
thank the reviewer for pointing out this other method. A
combination of our method with that one is planned for the
future.

8. ACKNOWLEDGMENT
We acknowledge helpful discussions with Jürgen Müller

concerning conjugacy testing, that led us later to consider
the more general problem of centralizers. We also thank the
reviewers for helpful comments.

9. REFERENCES
[1] J. Bray. An improved method for generating the

centraliser of an involution. Arch. Math. (Basel),
74:241–245, 2000.

[2] G. Butler. Computing in permutation and matrix
groups II: Backtrack algorithm. Mathematics of
Computation, 39(160):671–680, Oct. 1982.

[3] F. Celler, C. Leedham-Green, S. Murray, A. Niemeyer,
and E. O’Brien. Generating random elements of a
finite group. Comm. Algebra, 23:4931–4948, 1995.

[4] G. Cooperman and L. Finkelstein. New methods for
using Cayley graphs in interconnection networks.
Discrete Applied Mathematics, 37/38:95–118, 1992.

[5] G. Cooperman and M. Tselman. Using tadpoles to
reduce memory and communication requirements for
exhaustive, breadth-first search using distributed
computers. In Proc. of ACM Symposium on Parallel
Architectures and Algorithms (SPAA-97), pages
231–238. ACM Press, 1997.

[6] A. Hulpke and S. Linton. Total ordering on subgroups
and cosets. In Proc. of Int. Symp. on Symbolic and
Algebraic Comp. (ISSAC-03), pages 156–160, 2003.

[7] J. Leon. On an algorithm for finding a base and strong
generating set for a group given by a set of generating
permutations. Math. Comp., 35:941–974, 1980.

[8] J. S. Leon. Permutation group algorithms based on
partitions, I: Theory and algorithms. J. Symbolic
Computation, 12:533–583, 1991.

[9] J. S. Leon. Partitions, refinements, and permutation
group computation. In Groups and computation II,
1995, volume 28 of DIMACS (Discrete Math. Theor.
Comp. Sci.), pages 123–158. Amer. Math. Soc., 1997.

[10] S. Linton. Finding the smallest image of a set. In
Proceedings of the 2004 international symposium on
Symbolic and algebraic computation (ISSAC-04),
pages 229–234, New York, NY, USA, 2004. ACM.

[11] E. M. Luks. Computing in solvable matrix groups. In
33rd Annual Symposium on foundations of Computer
Science, pages 111–120. IEEE, 1992.

[12] S. H. Murray and E. A. O’Brien. Selecting base points
for the schreier-sims algorithm for matrix groups. J.
Symb. Comput., 19:577–584, 1995.

[13] I. Pak. The product replacement algorithm is

polynomial. In Proc. 41st IEEE Symposium on
Foundations of Computer Science (FOCS), pages
476–485. IEEE Press, 2000.

[14] R. Parker. Tadpole, 1986. oral communication.

[15] J. Pollard. A Monte Carlo method for factorization.
BIT Numerical Mathematics, 15(3):331–334, 1975.

[16] R. Sedgewick and T. G. Szymanski. The complexity of
finding periods. In STOC ’79: Proc. of the 11th
annual ACM Symposium on Theory of Computing,
pages 74–80, New York, NY, USA, 1979. ACM.

[17] H. Theißen. Eine Methode zur
Normalisatorberechnung in Permutationsgruppen mit
Anwendungen in der Konstruktion primitiver
Gruppen. PhD thesis, Rheinisch-Westfalische
Technische Hochschule, Aachen, Germany, 1997.

[18] R. Wilson and et al. ATLAS of finite group
representations – version 3.
http://brauer.maths.qmul.ac.uk/Atlas/v3/.

