
Marshalgen: Marshaling Objects in the Presence of
Polymorphism

Gene Cooperman1,2 and Viet Ha Nguyen1,2

College of Computer and Information Science, 161 CN
Northeastern University, Boston, MA 02115 / USA

{gene,vietha}@ccs.neu.edu
Keywords: middleware, marshaling, serialization, automatic parallelization, polymorphism

Abstract— Marshaling or serialization of objects is an im-
portant component of both distributed and parallel computing.
Current systems impose a significant burden on the programmer
for describing the marshaling of complex, recursive data struc-
tures. Marshalgen provides support for retrofitting legacy and
complex software with marshaling features. The original version
of Marshalgen provided a semi-automatic process for marshaling
in C and C++, based on annotations of the existing include files.
The new version reported on here provides direct support for
class inheritance, templates and other important features of an
object-oriented programming style.

I. INTRODUCTION

Marshalgen is a package for semi-automatically marshaling
objects. Marshaling is the process of copying associated fields
of an object into a contiguous buffer in memory. This is critical
for internet computing. It is needed to copy an object across
the network. Its applications include parallel and distributed
computing. It also extends to the computational grid [1], [2].

Marshalgen is intended to support marshaling of legacy
and complex software. The goal of Marshalgen is to simplify
human-computer interaction. It does so by requiring the user
only to add annotations (comments) to the include files. By
not requiring the modification of the source code (other than
include files), Marshalgen provides two benefits.

1) It supports software libraries distributed as binary only,
with include files to support the API.

2) It allows one to marshal large, complex software by
minimally invasive modifications to the existing code.
This results in more maintainable software.

Version 1 of Marshalgen was previously reported on else-
where [3]. Loosely speaking, although version 1 of Marshal-
gen was targeted toward C++, like most other marshaling
packages, Marshalgen primarily addressed marshaling of an
isolated class. Classes were marshaled in isolation. In cases
of inheritance and templates, marshaling was difficult or
impossible. Version 2 of Marshalgen addresses these issues
of polymorphism.

Polymorphism concerns itself with abstractions that oper-
ate uniformly on values of different forms. Polymorphism

1This work was supported in part by the National Science Foundation under
Grant CCR-0204113.

2This work is supported by the Institute for Complex Scientific Software
(www.icss.neu.edu) of Northeastern University.

is supported in object-oriented programming through two
main abstractions: inheritance (subtype or inclusion polymor-
phism [4]) and genericity (templates; parametric polymor-
phism).

Our motivation was to have sufficient features so as to
automatically marshal Geant4, a package for particle-matter
interaction. For this purpose, we address marshaling issues
closely associated with object-oriented programming. Ver-
sion 2 adds marshaling support for four language features:

1) Genericity (C++ templates)
2) Polymorphic Access (An object has a compile-time

type B, but a run-time type D, where D is one of the
derived classes of B.

3) Inheritance (A derived class D inherits data members
from a base class B. An object of type D must marshal
data members declared directly in D, and also those
additional data members declared in B.)

4) Visibility of data members (What does one do with a
data member that is protected or private?)

We specifically do not address multiple inheritance. In many
cases (including Geant4), C++ programmers try to avoid
multiple inheritance. Where they do use it, they use it in a
restricted context that can best be served in Marshalgen by
user-specified annotations suitable for the specific context.

Cyclic data structures, such as doubly linked lists, represent
a special issue. That issue will be addressed in a future work.

Section II provides an overview of Marshalgen. The new
support for handling polymorphism and visibility are described
in Section III. Section IV concludes with an example motivated
by Geant4.

A. Taxonomy of Issues for any Marshaling Package

It is useful to provide a taxonomy of the cases that any
marshaling package (not just Marshalgen) will encounter in
the real world in marshaling compound types. We illustrate
for a class, although the ideas are also valid for an array. It
is assumed that primitive types (int, float, etc.) are always
marshaled. Pointer types are marshaled along the same lines
as class data members that are of pointer type.

1) Deep copying of data members (default for Marshal-
gen): (Marshalgen annotations are optional in this case.)

a) pointer member pointing to class, pointer, or
primitive type for which a marshaling routine
is available

b) class member: invoke the marshaling routine for
the class

c) array member of declared array size: iteratively
marshal each element of the array using the appro-
priate marshaling routine

d) dynamically allocated arrays: annotation in-
cludes a parameter to determine the array size

e) user-written stub functions: This is for cases not
handled above. (Marshalgen provides additional
support for this case, by requiring the application
writer only to annotate a triple of code fragments
for marshaling, unmarshaling and the size of a
field: (FIELDMARSHAL, FIELDUNMARSHAL,
FIELDSIZE). See [3] for further information.)

2) Shallow copying of data members:

a) transient member: Don’t marshal. Set to default
value on unmarshaling. (For example, if a pointer
is not used by the remote process, then it suffices
to marshal the pointer to the null pointer. An array
acts as a pointer in this case. If a class member
is not used, the it suffices to marshal an object
produced by the default constructor.)

b) pointer to data that is common to all processes:
Copy pointer only. This works only on homoge-
neous architectures. It assumes that the pointer
points to preinitialized constant data. It assumes
that the executable is loaded at the same virtual
memory address on such homogeneous architec-
tures.

c) pointer to array of data that is common to all
processes: Convert pointer into index into array.
Array is same on source and destination. Only the
index need be marshaled.

Potentially, any case can be handled by a hand-coded stub
function (Case 1e above). Version 1 of Marshalgen directly
supported all cases except Case 1d, which was handled as a
stub function. Version 2 includes direct support for Case 1d.
The newer, novel issues of support for object-oriented pro-
gramming are described in Section III.

B. Example: Issues in Marshaling Geant4

The decision to write an extensible, object-oriented, semi-
automated marshaling package was motivated by the struggles
of the first author in parallelizing Geant4 [5], [6], [1]. Geant4 is
a C++ toolkit for simulating particle-matter interaction. It com-
prises approximately one million lines of code developed by
an international consortium centered around CERN. Geant4 is
used, among other purposes, to simulate collider experiments,
in order to determine where to place particle detectors for the
greatest sensitivity. As a toolkit, Geant4 includes libraries only,
similarly to many other scientific subroutine libraries, such as
LinPACK [7]. It is up to the end-user to write a main routine.

The first author parallelized Geant4 using the high level
parallelization tool, TOP-C [8]. TOP-C provided support for
parallelization, but it viewed marshaling as an external library,
similar in spirit to the relation of the C stdio library to the core
C language. The parallelization of Geant4 originally included
manual coding of the marshaling routines. That hand-coded
marshaling code accounted for 250 lines of the 450 line
parallelization of Geant4.

The example of Geant4 demonstrates two motivations for
an annotation-based marshaling package, such as Marshalgen.

1) A common mode of distribution for a toolkit is to
provide users with pre-compiled binaries, along with
include files (.h files). (The pre-compiled binaries for
Geant4 are larger than 15 MB, and it would be a great
inconvenience to re-compile or maintain a separate set
of binaries.)

2) New releases are frequent, and it is easier to modify
annotations of declarations in include files than to write
entirely new stub functions for each release. (New
releases of Geant4 occur up to twice per year.)

C. Related Work

Previous well-known marshaling systems include rpc-
gen [9], Corba IDL [10], and Java serialization [11] as part
of the Java RMI (Remote Method Invocation) facility. In
addition, there are numerous marshaling packages tied to a
particular software package. Microsoft has designed its own
marshalling packages, such as MIDL and DCOM [12]. With
the rise of XML, there are now also many packages to marshal
data into XML. Foremost among these is XML-RPC [13], a
variation of RPC using XML for the marshaled representation.
Other XML marshaling packages include gSOAP [14], JAXB,
Castor XML and many others. In related work, Grogono and
Sakkinen have proposed annotations of C++ to distinguish
deep copying, shallow copying and gradations between the
two extremes [15].

II. OVERVIEW OF MARSHALGEN

Marshalgen has an annotation-based strategy, which allows
the original application source code to be used unchanged. In
the simplest and most common case, it suffices simply to write
//MSH BEGIN and //MSH END around the data structure to
be marshaled, and then run the file through the Marshalgen
preprocessor.

For each application class, (LinkedList in the exam-
ple), the user must annotate the include file (add Marshal-
gen comments). Figure 2 illustrates some annotations for
LinkedList.h. Some of the possible Marshalgen annota-
tions are listed in Table I.

Marshalgen is invoked by calling marshalgen
LinkedList.h. This generates C++ code and
an include file, MarshaledLinkedList.h, for a class
MarshaledLinkedList. The result is code for a
new class, MarshaledLinkedList, along with
a constructor, MarshaledLinkedList(). An
instance of MarshaledLinkedList contains

#include MYCLASS.h //MYCLASS is a user defined application class

main() { //MARSHAL OBJECT FOR SENDING
MYCLASS obj1(); // Construct an instance, obj1, of MYCLASS
MarshaledMYCLASS mObj1(obj1); // Marshal it into marshaled object, mObj1
SendBuffer(mObj1.getBuffer()); //Send the marshaled buffer to remote host
...

//RECEIVE A REMOTE MARSHALED OBJECT
char *mbuf = ReceiveBuffer(); // recv marshaled buffer from remote host
MYCLASS obj2; // obj2 is uninitialized instance of MYCLASS
MarshaledMYCLASS::unmarshal(mbuf, obj2); // Unmarshal mbuf into obj2

}

Fig. 1. main.cpp (invocation of marshaling routines by end user)

#include <stdio.h>

//MSH_BEGIN --- beginning of marshaled block
class LinkedList
{
public:

int head; //MSH: primitive
LinkedList *next; //MSH: predefined_ptr

public:
LinkedList(int = 0 , LinkedList* = NULL);
bool operator==(LinkedList l);
bool operator!=(LinkedList l);

};
//MSH_END --- end of marshaled block

Fig. 2. LinkedList.h: original application file with Marshalgen annotations; The annotations for head and next are optional, since Marshalgen already
knows how to marshal an int or to recursively call itself to marshal a recursive data structure

Fig. 3. Internal Architecture of the Marshaled Buffer

a marshaled buffer of LinkedList. The buffer
can be unmarshaled by calling a member function
MarshaledLinkedList::unmarshal(). That code
is then compiled and linked with the application. Figure 1
shows typical usage of the marshaling methods provided by
MarshaledLinkedList. Finally, figure 3 illustrates the data
layout of the marshaled buffer produced at runtime.

For more details on the internals of Marshalgen, see [3].

III. ISSUES AND SOLUTIONS

A. Polymorphism

In object-oriented programming, an identifier (variable) may
have compile-time type B, but run-time type D. Additionally,
a class may be a template class, parametrized by a type T. Yet,
marshaling routines must be prepared to handle any instance of

the template. The marshaling package must be able to correctly
distinguish and dynamically dispatch to the proper marshaling
routine of each type.

1) Genericity (Templates): A class template may be in-
stantiated with different types, and each type may require a
separate marshaling policy.

Consider the example on the left of Figure 4, the type of the
data member T data may be instantiated to Bar1 or Bar2.
Since Bar1 or Bar2 may have different data members and
require different marshaling policies, the user should be able
to specify the circumstances under which marshaling routine
for a given class should be used. The annotations for that
mechanism are on right of Figure 4.
IsSameClass<T,Bar1> is a user-defined C/C++ ex-

pression specifying the circumstance under which the user

Default Annotations Explanations
//MSH: primitive For int, double, char, float and other primitive data types

Use built-in marshaling routines
//MSH: primitive ptr For int *, double *, and other points to the primitive data

Use built-in marshaling routines
//MSH: predefined For instances of a previously annotated struct or class.

Use previously defined MarshaledMYCLASS
//MSH: predefined ptr For pointers to previously annotated struct or class

Use previously defined MarshaledMYCLASS
//MSH: array For array with element type from four cases above

Use array of marshaled elements
//MSH: ptr as array For pointers to an array with element type from first four cases

TABLE I

OPTIONAL ANNOTATIONS: ONE OF FIVE DEFAULT CASES, DETERMINED BY PARSING DATA TYPES

//MSH_BEGIN
template <T> class Foo {
public:

T data;
};
class Bar1 { ... }
class Bar2 { ... }
//MSH_END
Foo<Bar1> f1;
Foo<Bar2> f2;

//MSH_BEGIN
template <T> class Foo {
public:
T data; /* MSH: predefined
[elementType:
(IsSameClass<T,Bar1>) => Bar1
| true => Bar2]

*/
};
class Bar1 { ... }
class Bar2 { ... }
//MSH_END
Foo<Bar1> f1;
Foo<Bar2> f2;

Fig. 4. Annotation for marshaling templates (code on left is before annotation, code on right is after annotation)

wants T data to be marshaled as an object of type Bar1.
Note that the expression inside (...) can be any boolean
C/C++ expression. The annotation in this example tells Mar-
shalgen to marshal the data member T data as an object of
type Bar1 if IsSameClass<T,Bar1> is true, otherwise
marshal it as an object of type Bar2.

In general, the syntax of the option is as follows:

[elementType : phrase1|phrase2|...]

where the syntax of each phrase is:

phrase → (C boolean expression)“ =>′′ type

The phrases will be evaluated from left to right, if the
C boolean expression of a phrase is true, the evaluation ter-
minates immediately, and the data member will be marshaled
according the type of that phrase.

2) Polymorphic access (multiple derived classes): There is
another case in which the run-time type of an object is not
known at the time of generating marshaling code. This is the
case of union of classes. An object may be declared in the
source code to have a type Base, but at run-time the object
may be a subtype of Base.

Consider the example on the left in Figure 5. In this
example, the object that Base* ptr points to could be of

type either Base or Derived1, or Derived2. In order to
dispatch to the marshaling routine for the proper subclass, the
user can use annotations similar to the template case (see the
right of Figure 5).

On the right in Figure 5, the expression inside (...) can
be any boolean C/C++ expression. In this particular example,
(dynamic cast<Derived1*>ptr!=NULL) is a
C++ expression equivalent to the (ptr instanceof
Derived1) expression in Java. It tests whether the object
pointed to by ptr is an instance of class Derived1.
The annotation in this example tells Marshalgen to
marshal the object pointed by ptr as an object of class
Derived1 if dynamic cast<Derived1*>ptr!=NULL,
as an object of class Derived2 if dy-
namic cast<Derived2*>ptr!=NULL, or as an object
of class Base otherwise.

Remark 1: Since a goal of Marshalgen is to marshal with-
out modifying the original class hierarchy, it is not an option
to add marshaling and unmarshaling methods to the original
classes. Even the visitor pattern [16, pp. 331] cannot be
invoked, since that requires the addition of an acceptVis-
itor method.

Remark 2: An alternative design is for Marshalgen

//MSH_BEGIN
class Base { ... }
class Derived1 : public Base { ... }
class Derived2 : public Base { ... }
class Foo {
public:

Base* ptr;
}
//MSH_END

//MSH_BEGIN
class Base { ... }
class Derived1 : public Base { ... }
class Derived2 : public Base { ... }
class Foo {
public:

Base* ptr; /* MSH: predefined_ptr
[elementType:

(dynamic_cast<Derived1*>ptr!=NULL) => Derived1*
| (dynamic_cast<Derived2*>ptr!=NULL) => Derived2*
| true => Base*]

*/
}
//MSH_END

Fig. 5. Annotation for marshaling of union of classes (code on left is before annotation, code on right is after annotation)

to implement MarshaledDerived1 and Marshaled-
Derived2 as derived classes of MarshaledBase.
Hence, given an identifier, mobj, with compile-
time type MarshaledBase, one could then call
mobj->marshal(), and the call would be dispatched
automatically to MarshaledDerived1:marshal(),
MarshaledDerived2:marshal(), or Mar-
shaledBase:marshal(). The methods Mar-
shaledDerived1:marshal(), etc., would then call
Base:marshal() as part of their implementation. As
a result, there is no need for the case-by-case code in the
annotation as in Figure 5.

However, this alternative design had to be rejected.
The difficulty in the alternative design is that one still
has to assign the appropriate run-time type to the iden-
tifier mobj. For example, given an object Base* obj
to be marshaled, one has to decide which of the follow-
ing constructors to call: “MarshalBase* mobj = new
MarshalDerived1(obj)”, “MarshalBase* mobj =
new MarshalDerived2(obj)”, or “MarshalBase*
mobj = new MarshalBase(obj)”. As a consequence,
the case-by-case code must be inserted before each call to
the constructor for instantiating mobj. It is clearly preferable
to embed the case-by-case code once only in the .h file as
in Figure 5, rather than at each occurence of a call to the
constructor as in the alternative design.

3) Inheritance (Subtype Polymorphism): A class may in-
herit data members from its ancestor classes. When marshaling
an object, one usually wants to also marshal the data members
it inherits from its ancestors as well.

In the example on left of Figure 6, whenever we marshal
an object of type Derived, we may also want to marshal
the data member int i that class Derived inherits from
class Base. Marshalgen does not automatically marshal all
the ancestor classes with the targeted class. The reason is that
the class hierarchy may be very deep and there may even be
multiple inheritances. This would cause Marshalgen to marshal
unnecessary ancestor classes. As a result, the marshaling buffer
would be unnecessarily large and the marshaling process
would be inefficient.

For that reason, Marshalgen does not marshal data members of
an ancestor class unless explicitly requested by the annotation
//MSH superclass. An example of that annotation is on
right of Figure 6.

The data members of class Base to be marshaled are
specified by separate annotations inside class Base.

B. Visibility of Data Members

A good object-oriented programming style would hide most
of the data members from direct access from outside by
declaring them protected/private. Since we are not
allowed to add accessor/modifier methods to the original class,
we may need a mechanism to access protected/private
data members of the targeted class from outside.

a) General solution (does not work).: First, we tried to
access the private data members of an object by casting the
object to a “masked class”. The masked class has the same data
members as the targeted class, with all of them are declared
public.

class OriginalClass{
private:

int i;
double f;

};
OriginalClass* org = new OriginalClass();
...
// the new defined class
class MaskedClass{
public:

int i;
double f;

}

MaskedClass* m = (MaskedClass*)org;
// allows us to access private data members
int a = m->i;
double d = m->f;

The issue with this approach is when we have the targeted
class inherits data members from several ancestor classes, the

//MSH_BEGIN
class Base
{
public:

int i; //MSH: primitive
};
class Derived : Base
{
public:

Bar b; //MSH: predefined
};
//MSH_END

//MSH_BEGIN
class Base
{
public:
int i; //MSH: primitive

};
class Derived : Base
{
public:
Bar b; //MSH: predefined
//MSH_superclass: Base

};
//MSH_END

Fig. 6. Annotation for marshaling in the case of inheritance (code on left is before annotation, code on right is after annotation)

layout order of data members from ancestor classes may vary
among compilers (we observed the discrepancies between gcc
and SunCC). It makes the construction of the masked class
impossible in general.

b) Conservative solution.: Since our package is a source-
to-source preprocessor, we can not use the masked class ap-
proach, which depends on the data member’s layout of specific
compilers. Instead, we assume that any well-designed class
should have accessor/modifier methods for each significant
data members (the data members worth being marshaled).
The access to private data members can be done via the
corresponding accessor/modifier methods.
This assumption, of course, is not true for all programs, but
it is true for most programs we have encountered so far. This
includes Geant4.

IV. AN EXAMPLE FROM GEANT4

The above issues occur when we use Marshalgen Version
2 to marshal objects in parallelizing Geant4. In order to
do parallel computation in a distributed environment, we
need to be able to marshal and send over network the ob-
jects representing events (G4HCofThisEvent and related
classes in Figure 7) and the objects representing simulated
hits and particles (G4VHitsCollection, its derived class
G4THitsCollection and other customized classes in Fig-
ure 8).

The Geant4 toolkit allows users to define their own types of
hits or particles. As a result, most of the classes representing
collections of hits or particles are designed as templates,
allowing users to “plug-in” (instantiate) those templates with
their customized types. The Marshalgen package has correctly
handled the marshaling of templates in Geant4, dispatched
according to the types the users instantiated.
Moreover, Geant4 is a toolkit designed to allow as much as
generality for the users. As a result, the class hierarchy is
relatively deep. As an example, the classes representing the
hits are of 4-5 levels deep. Marshalgen has correctly handled
the marshaling of classes both with many ancestor classes and
multiple potential derived classes.

ACKNOWLEDGEMENTS

We gratefully acknowledge Victor Grinberg and David
Lorenz for useful discussions and suggestions on issues of
human-computer interaction, and object-oriented design, re-
spectively. We also gratefully acknowledge Eugenio Korolev,
Igor Malioutov and Eric Smith for their contributions to
modifying and testing Marshalgen.

REFERENCES

[1] G. Cooperman, H. Casanova, J. Hayes, and T. Witzel, “Using TOP-
C and AMPIC to port large parallel applications to the Computational
Grid,” Future Generation Computer Systems (FGCS), vol. 19, pp. 587–
596, 2003, (also appeared in Proc. of 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2002)).

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[3] G. Cooperman, N. Ke, and H. Wu, “Marshalgen: A package for semi-
automatic marshalling of objects,” in Proc. of The 2003 International
Conference on Internet Computing (IC’03). CSREA Press, 2003, pp.
555–560.

[4] L. Cardelli and P. Wegner, “On understanding types, data abstractions,
and polymorphism,” ACM Computing Surveys, vol. 17, no. 4, pp. 471–
522, 1985.

[5] S. Agostinelli et al., “Geant4: A simulation toolkit,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303,
2003, (over 100 authors, incl. G. Cooperman).

[6] Geant4 webpage, http://wwwinfo.cern.ch/asd/geant4/geant4.html.
[7] LinPack webpage, http://www.netlib.org/linpack/.
[8] G. Cooperman, “TOP-C: A Task-Oriented Parallel C interface,” in 5

th

International Symposium on High Performance Distributed Computing
(HPDC-5). IEEE Press, 1996, pp. 141–150, software at http://www.
ccs.neu.edu/home/gene/topc.html.

[9] Sun Microsystems, Inc., “ONC+ developer’s guide,” Nov. 1995.
[10] Object Management Group, “The Common Object Request Broker:

Architecture and specification,” Framingham, MA, USA, 1999, minor
revision 2.3.1, OMG TC Document formal/99-10-07.

[11] D. Reilly, “Introduction to remote method invocation,” Oct. 1998, online
at http://www.davidreilly.com/jcb/articles/javarmi/javarmi.html.

[12] N. Brown and C. Kindel, Distributed Component Object Model Protocol
— DCOM/1.0. Microsoft Corporation, Redmond, WA, 1996.

[13] XML-RPC, http://www.xmlrpc.com/.
[14] R. van Engelen and K. Gallivan, “The gSOAP toolkit for web services

and peer-to-peer computing networks,” in Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid2002). Berlin, Germany: IEEE Press, 2002, pp. 128–135.

[15] P. Grogono and M. Sakkinen, “Copying and comparing: Problems and
solutions,” Lecture Notes in Computer Science, vol. 1850, pp. 226+,
2000.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

Fig. 7. Event and Hit Management classes

Fig. 8. Hit Collections classes

[17] C. Queinnec, “Marshaling/demarshaling as a compilation/interpretation
process,” IPPS/SPDP, pp. 616–, 1999.

