
Marshalgen: A Package for Semi-Automatic
Marshaling of Objects
Gene Cooperman

�
, Ning Ke and Huanmei Wu

�
College of Computer and Information Science

Northeastern University, Boston, MA 02115 / USA�
gene,nke,maggiewu � @ccs.neu.edu

Phone: 617-373-8686
FAX: 617-373-5121

Abstract— Marshaling or serialization of objects is an impor-
tant component of both distributed and parallel computing. Cur-
rent systems impose a significant burden on the programmer for
describing the marshaling of complex, recursive data structures.
Marshalgen provides a semi-automatic process for marshaling
in C and C++. Marshalgen avoids the need for complex IDLs
and auxiliary routines. It is based on annotations of the existing
source code.

I. INTRODUCTION

Marshalgen is a package for semi-automatically marshaling
objects. Marshaling is the process of copying associated fields
of an object into a contiguous buffer in memory. This is critical
for internet computing. It is needed to copy an object across
the network. Its applications include parallel and distributed
computing. It also extends to the computational grid [1], [2],
[3].

Marshalgen is different in concept from such well-known
marshaling packages as rpcgen [4], Corba IDL [5], and Java
serialization [6]. Its purpose and design are distinguished by
the goal of providing marshaling services for existing software.
This provides ease of maintenance as the existing software is
transformed through frequent version upgrades.

Marshalgen has an annotation-based strategy, which allows
the original application source code to be used unchanged.
Marshalgen requires only the addition of a few comment-based
directives. A consequence of this design is that the application
writer does not need to learn a new Interface Definition
Language (IDL). The application writer also does not need
to create additional data structures or auxiliary code for the
objects to be marshaled. In the simplest and most common
case, it suffices simply to write //MSH BEGIN and MSH END
around the data structure to be marshaled, and then run the
file through the Marshalgen preprocessor. In the more com-
plicated and most general case, Marshalgen provides a triple,
(FIELDMARSHAL, FIELDUNMARSHAL, FIELDSIZE), of
user-specified code fragments to direct Marshalgen in writing

1This work was supported in part by the National Science Foundation under
Grant CCR-0204113.

2This work was supported in part by CenSSIS, the Center for Subsurface
Sensing and Imaging Systems, under the Engineering Research Centers
Program of the NSF (Award Number EEC-9986821).

the marshaling stubs. Such triples are discussed in Section III-
B.

A. Example: Issues in Marshaling Geant4

The decision to write an extensible, object-oriented, semi-
automated marshaling package was motivated by the struggles
of the first author in parallelizing Geant4 [7], [8], [1], [2].
Geant4 is a toolkit for simulating particle-matter interaction.
It comprises approximately one million lines of code. It was
developed by RD44, a world-wide collaboration of about 100
scientists in Europe, Russia, Japan, Canada and the United
States, participating in more than 10 collider experiments at
CERN. It is important, among other reasons, for determining
in advance where to place detectors for collider experiments
to maximize the chances of detecting events of interest.

The first author parallelized Geant4 using the high level
parallelization tool, TOP-C [9], after some other groups had
failed to parallelize Geant4. TOP-C provides support for
parallelization, but it views marshaling as an external library,
similar in spirit to the relation for the core C language with
the C stdio library. Parallelizing the typical Geant4 application
requires marshaling complex objects, such as arrays, collec-
tions of dynamic extent, pointers to static objects present on
all machines (which therefore should not be marshaled), and
other objects for which separate marshaling functions had to be
written. The marshaling has accounted for 250 of the 450 line
parallelization of Geant4. The marshaling code is now being
rewritten using Marshalgen and about 20 lines of annotation.

Marshaling the complex Geant4 data structures involves
several real-world marshaling issues. For instance, one may
only want to marshal array elements with odd index if the
even index entries are static data. The array may have dynamic
content. In marshaling data members of an object, one must
choose between deep shallow copying. A data member may
be an index or offset into a static table of definitions already
present on all machines. Common types are often aliased using
the C++ typedef command. This requires marshaling routines
to be aliased. Such real-world issues greatly complicate the
use of traditional IDL-based marshaling package.

In the example of Geant4, maintaining a correct IDL across
version upgrades would require a tedious and error-prone job

#include MYCLASS.h //MYCLASS is a user defined application class

main() { //MARSHAL OBJECT FOR SENDING
MYCLASS obj1(); // Construct an instance, obj1, of MYCLASS
MarshaledMYCLASS mObj1(obj1); // Marshal it into marshaled object, mObj1
SendBuffer(mObj1.getBuffer()); //Send the marshaled buffer to remote host
...

//RECEIVE A REMOTE MARSHALED OBJECT
char *mbuf = ReceiveBuffer(); // recv marshaled buffer from remote host
MYCLASS obj2; // obj2 is uninitialized instance of MYCLASS
MarshaledMYCLASS::unmarshal(mbuf, obj2); // Unmarshal mbuf into obj2

}

Fig. 1. main.cpp (invocation of marshaling routines)

of rewriting the IDL with each new version. In the Marshalgen
alternative, the programmer need only add simple annotations
from a small set of approximately ten keywords.

A more subtle motivation for semi-automatic marshaling
occurs when one does not have access to the source code. One
must then write additional marshaling routines, without the
luxury of modifying the source code of the target application.
For example, some vendors do not distribute source code.
Such an application consists of pre-compiled libraries plus
include files with the necessary class declarations. In the case
of Geant4, one prefers to use pre-compiled libraries to avoid
the burden of compiling a large package. The source files of
Geant4, version 5.1, consist of 8.25 Megabytes of source files
after compression. They also distribute pre-compiled Geant4
libraries consisting of 16.77 Megabytes.

B. Organization of Paper

The paper is organized as follows. Section II briefly dis-
cusses related work. Section III describes Marshalgen as seen
by the end user. Section IV describes the intermediate IDL
generated by Marshalgen. This IDL is then used to generate
the traditional stub or skeleton code for marshaling. Future
work summarized in Section VI.

II. RELATED WORK

Previous well-known marshaling systems include rpc-
gen [4], Corba IDL [5], and Java serialization [6] as part of the
Java RMI (Remote Method Invocation) facility. The packages
rpcgen and Corba IDL are both IDL-based. (The .x file of rpc-
gen acts as the IDL file.) The packages are not as extensible as
Marshalgen. They allow the programmer to marshal compound
data structures by specifying the components. However, either
all or none of the data structure must be marshaled. Further,
there is no provision for marshaling pointers to other objects.
In addition, there are numerous marshaling packages tied to
a particular software package. Microsoft has designed its own
marshalling packages, such as MIDL and DCOM [10]. With
the rise of XML, there are now also many packages to marshal
data into XML. Foremost among these is XML-RPC [11], a
variation of RPC using XML for the marshaled representation.
Other XML marshaling packages include JAXB, Castor XML
and a lot of others.

Much of the work on marshaling has been concerned with
more highly optimized packages for efficiency [12], [13], [14],
[15]. Such packages are typically based on marshaling all or
none of a data type, and do not allow for pointer members.
The Universal Stub Compiler (USC) [15] optimized copying
based on user specification.

III. OVERVIEW OF MARSHALGEN

We demonstrate the simplicity of the Marshalgen approach
through a running example in marshaling linked lists (see
Figures 1, 3, 4 and 5). For each application class, MYCLASS,
Marshalgen produces a new class, MarshaledMYCLASS,
and a constructor, MarshaledMYCLASS(). An instance of
MarshaledMYCLASS contains a marshaled buffer of MY-
CLASS. The buffer can be unmarshaled by calling a member
function MarshaledMYCLASS::unmarshal(). An intu-
itive C++ binding makes the usage easy for the end user. A
typical invocation from main() is shown in Figure 1.

A. Marshalgen Framework

The layers of Marshalgen and the process for building an
application using Marshalgen are shown in Figure 2 (a) and
(b), respectively.

B. Annotations

Marshalgen is distinguished from other marshaling systems
in that the end user need only annotate the existing object
declaration in the included files. A Marshalgen annotation
is specified as a triple, (FIELDMARSHAL, FIELDUNMAR-
SHAL, FIELDSIZE), for each data member to be marshaled.
Each element of the triple is a code fragment specifying how
to marshal a field, unmarshal a field, or determine the size of
the marshaled field. Conceptually, Marshalgen already knows
how to marshal primitive data types. So, it suffices to describe
how to marshal compound data types. Then Marshalgen can
marshal any object by recursively marshaling each data mem-
ber.

Annotations of a struct or class must be surrounded by
//MSH_BEGIN and //MSH_END. Real-world code often
uses typedef to provide a simple name, NEWTYPE, for a
common data type. Such a case must also be surrounded by
//MSH_BEGIN and //MSH_END in order for Marshalgen

Fig. 2. Overview of Marshalgen (a) The layered view of marshalgen; (b) Building an application using Marshalgen.

#include <stdio.h>

//MSH_BEGIN --- beginning of marshaled block
class LinkedList
{
public:

int head; //MSH: primitive
LinkedList *next; //MSH: predefined_ptr

public:
LinkedList(int = 0 , LinkedList* = NULL);
bool operator==(LinkedList l);
bool operator!=(LinkedList l);

};
//MSH_END --- end of marshaled block

Fig. 3. LinkedList.h: original application file with Marshalgen annotations; The annotations for head and next are optional, since Marshalgen already
knows how to marshal an int or to recursive call itself to marshal a recursive data structure

Default Annotations Explanations
//MSH: primitive For int, double, char, float and other primitive data types

Use built-in marshaling routines
//MSH: primitive ptr For int *, double *, and other points to the primitive data

Use built-in marshaling routines
//MSH: predefined For instances of a previously annotated struct or class.

Use previously defined MarshaledMYCLASS
//MSH: predefined ptr For pointers to previously annotated struct or class

Use previously defined MarshaledMYCLASS
//MSH: array For array with element type from four cases above

Use array of marshaled elements

TABLE I

OPTIONAL ANNOTATIONS: ONE OF FIVE DEFAULT CASES, DETERMINED BY PARSING DATA TYPES

to provide a marshaling class with the corresponding name
MarshaledNEWTYPE. All the annotations are in the format
of //MSH: annotation type. As new cases appear, it is easy to

add new types to the design of annotations.
Conceptually, each data member of the object falls into one

of five categories below. These five categories are described

%{
#include <string.h>
#include "LinkedList.h"
%}

marshaling class MarshaledLinkedList (LinkedList *__obj)
{

int head;
// The triple (FIELDMARSHAL, FIELDUNMARSHAL, FIELDSIZE) is omitted
// for int, since mgen already knows how to marshal an int.

LinkedList *next;
// FIELDMARSHAL:
{ MarshaledLinkedList __m_obj(__obj->next);
memcpy($BUFFER, __m_obj.getBuffer(), __m_obj.getBufferSize()); }

// FIELDUNMARSHAL:
{ MarshaledLinkedList __m_obj($BUFFER);
__obj->next = __m_obj.unmarshal(); }

// FIELDSIZE:
{ MarshaledLinkedList __m_obj(__obj->next);
$SIZE = __m_obj.getBufferSize(); }

}

Fig. 4. LinkedList.msh: IDL generated from annotated LinkedList.h file: The recursive definition of MarshaledLinkedList reflects the recursive
definition of the original LinkedList class.

to provide a general framework. The actual annotations used
by Marshalgen are different, and are described later in Ta-
ble I. Simple data members need no special annotations for
marshaling. There is a default routine for marshaling such data
members. Hence, the last four of the five categories are present
to handle certain real-world issues that are sometimes omitted
in simple demonstrations of marshaling.

1) default: A tree traversal strategy based on member data
types is employed for marshaling. Refer to Table I for
details.

2) transient: Don’t marshal. Set to default value
(e.g. NULL) on unmarshaling.

3) ptr shallow copy: Copy pointer only. This works only
on homogeneous architectures. It assumes that the ex-
ecutable is loaded at the same virtual memory address
on such homogeneous architectures.

4) ptr to static table(TYPE TABLE): Convert pointer
into index into static table. The table and its type are
specified as a parameter. Table is same on source and
destination.

5) manual(FIELDMARSHAL, FIELDUNMARSHAL,
FIELDSIZE): This is for special application-specific
cases not handled above. Code fragments are pro-
vided for FIELDMARSHAL, FIELDUNMARSHAL
and FIELDSIZE.

The source file Marshalgen is a C++ file with appropriate
annotations. As shown in Figure 3, the class is declared in
some file, MYCLASS.h. Here, we assume that MYCLASS is
a class for defining linked lists. The Marshalgen annotations

are described in Table I.
Marshalgen also has a variation of the syntax of Figure 3 for

marshaling more than one original object as a single marshaled
object. Marshalgen then produces a new marshaled class with
each marshaled object as its field.

IV. INTERMEDIATE LANGUAGE

Marshalgen currently translates the annotations into a .msh
file. This .msh file is then translated into C++ stub code. We
directly generate C++ stub code for ease of experimentation.
A future version may translate into an IDL file, and data
structures and auxiliary functions for any of rpcgen, CORBA
or Java serialization.

The grammar of the intermediate language for specification
of single object marshaling is as follows.

%{
//anything to be included or defined
INCLUDE_MACROS
%}

marshaling class MTYPE (TYPE OBJ) {

TYPE1 FIELD1;
{ FIELDMARSHAL }
{ FIELDUNMARSHAL }
{ FIELDSIZE }

TYPE2 FIELD2;

class MarshaledLinkedList : public MarshaledObj {
MarshaledLinkedList(LinkedList source);
˜MarshaledLinkedList();
void unmarshal(MarshaledLinkedList m_obj, LinkedList dest);

}

class MarshaledObj {
public:

char *msh_buffer; // same as $BUFFER
char *msh_size; // same as $SIZE
char *msh_cursor;
...
inline int getBufferSize() { return msh_size; }
inline char *getBuffer() { return msh_buffer; }

}

Fig. 5. MarshaledLinkedList.h and MarshaledObj.h: MarshaledLinkedList.h and MarshaledLinkedList.cpp are stub files generated from
LinkedList.cpp by mgen. The class MarshaledObj is not generated. It is a fixed class in the Marshalgen package.

Fig. 6. Internal Architecture of the Marshaled Buffer

{ FIELDMARSHAL }
{ FIELDUNMARSHAL }
{ FIELDSIZE }

...
}

Here, TYPE is the original type (or class or struct) that is to
be marshaled. MTYPE is the name of the class that contains
the marshaled object. By convention, if TYPE is Foo, then
MTYPE is MarshaledFoo.

The Marshalgen IDL is easily readable by a non-expert, al-
lowing for easy customization by the end-user. Figure 4 shows
a sample IDL file for a linked list. It corresponds to a Corba
IDL file or to a .x file in rpcgen. The variable $BUFFER
is of type (char *), pointing to a marshaled buffer, and
$SIZE is a variable specifying the size of the marshaled data.
FIELDMARSHAL and FIELDSIZE must set $BUFFER and
$SIZE, respectively, while FIELDUNMARSHAL may read
from $BUFFER and $SIZE.

Finally, Marshalgen produces two stub
files, MarshaledLinkedList.h and
MarshaledLinkedList.cpp (see Figure 5 below).
This is implemented using GNU bison and flex for parsing.
The corresponding class is derived from MarshaledObj,

which maintains an internal buffer $BUFFER, as shown in
Figure 6. The next section describes the internals for writing
to that buffer.

V. INTERNALS

Internally, marshaling is doing nothing more than converting
an object (or a number of objects and values) into a byte array,
which is suitable to be sent over the network or be written to a
file. Several internal files are part of the Marshalgen package.
Two files, marshalgen.y and marshalgen.cpp, are
there to read the marshalgen language. There are two other
library files. The file genfiles.c is part of the compile-
time libray, while MarshaledObj.cpp is part of the run-
time library which, is a base class for all marshaled objects.

The files MarshaledObj.h and MarshaledObj.cpp
contain code for the basic marshaling. The base class Mar-
shaledObj contains a buffer that stores the marshaled objects.
This field of MarshaledObj is called msh buffer. There is
also a field called msh cursor, which points to the next
field of the object to be marshaled. The pointer msh cursor
moves along msh buffer as the object or objects are mar-
shaled. Figure 6 is a diagram of msh buffer.

The sequence in which objects are marshaled is not random.
In single-object marshaling, the sequence in which fields of

an object are marshaled is the same sequence the fields are
specified in the field specification. In multiple-object marshal-
ing, the sequence in which objects are marshaled is the same
as the order in which objects are listed in the parameter list.

The sequence in which objects are marshaled can be impor-
tant. For example, suppose one wishes to marshal an array of
objects. The size of the array must be marshaled along with
the array. In this case, the size of the array must be marshaled
before the array is marshaled, since the size of the array must
be known before the array can be unmarshaled. Therefore, the
size of the array must precede the array itself in the .msh file
specification.

Marshalgen can also gracefully handle marshaling of mu-
tually recursive data structures. This is a slight generalization
of the MarshaledLinkedList example. If an object of class A
contains a pointer to another object of class B, then marshaling
of an object A depends on the marshaling of another object B.
But an object of class B may simultaneously contain a pointer
to an object of class A. In the .msh file, one can use
marshaledB to specify how A should be marshaled. This
case is marshaled automatically using our standard annota-
tions.

The efficiency of Marshalgen with respect to CPU time and
memory tends to be excellent. This is because the marshaling
code is generated at compile time and targeted specifically at
the original annotated class. So there is no run-time overhead,
and no padding is neede in writing to the marshaling buffers.

VI. FUTURE WORK

This paper presents a new semi-automatic and extensible,
object-oriented marshaling package based on annotations. A
future version of Marshalgen will further simplify the an-
notations. More types of annotations will be optional, and
determined by parsing.

Two particular issues remain to be addressed before Mar-
shalgen can be applied to large, complex applications, such
as Geant4. These are (i) private data members and (ii) class
hierarchies containing templates or derived classes. The first
issue would arise if the class MarshaledLinkedList had to
access private data members of LinkedList. The second issue
of class hierarchies is important since template instantiations
and derived classes need information from a base class.

We foresee Marshalgen as being added to existing systems.
Marshalgen has a small footprint, and is trivial to bring up
in a new operating system. Although the current prototype of
Marshalgen has been written for homogeneous architectures,

it is easy to extend to heterogeneous architectures. One option
is to use a package such as XDR (eXternal Data Representa-
tion) [16]. Alternatively, Marshalgen can be based on top of
CORBA, RPC, Java Serialization (RMI) to gain their support
for heterogeneous architectures.

ACKNOWLEDGEMENTS

We gratefully acknowledge Victor Grinberg and Viet Ha
Nguyen for useful discussions and suggestions.

REFERENCES

[1] G. Cooperman, H. Casanova, J. Hayes, and T. Witzel, “Using TOP-
C and AMPIC to port large parallel applications to the computational
grid,” in Proc. of 2 �

�
IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid 2002), H. Bal, A. Reinefeld, and
P. Lohr, Eds. IEEE Press, 2002, pp. 120–127.

[2] J. H. G. Cooperman, H. Casanova and T. Witzel, “Using TOP-C and
AMPIC to port large parallel applications to the computational grid,”
Future Generation Computer Systems (FGCS), vol. 19, pp. 587–596,
2003.

[3] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[4] Sun Microsystems, Inc., “Onc+ developer’s guide,” Nov. 1995.
[5] Object Management Group, “The common object request broker: Ar-

chitecture and specification,” Feb. 1998.
[6] D. Reilly, “Introduction to remote method invocation,” Oct. 1998, online

at http://www.davidreilly.com/jcb/articles/javarmi/javarmi.html.
[7] A. D. Acqua et al., “Geant4: A simulation toolkit,” Nuclear Instruments

and Methods in Physics Research Section A, 2003, (over 100 authors,
incl. G. Cooperman), to appear.

[8] Geant4 webpage. [Online]. Available: http://wwwinfo.cern.ch/asd/
geant4/geant4.html

[9] G. Cooperman, “TOP-C: A Task-Oriented Parallel C interface,” in � th

International Symposium on High Performance Distributed Computing
(HPDC-5). IEEE Press, 1996, pp. 141–150, software at http://www.
ccs.neu.edu/home/gene/topc.html.

[10] N. Brown and C. Kindel, Distributed Component Object Model Protocol
— DCOM/1.0. Microsoft Corporation, Redmond, WA, 1996.

[11] XML-RPC. [Online]. Available: http://www.xmlrpc.com/
[12] T. Braun and C. Diot, “Automated code generation for integrated layer

processing,” in Proc. of IFIP Protocols for High Speed Networks,
Sophia-Antipolis, France, Oct. 1996.

[13] M. Hof, “Just-in-time stub generation,” in JMLC’97 — Joint Modular
Languages Conference, Linz, Austria, Mar. 1997, pp. 197–206.

[14] P. Hoschka and C. Huitema, “Automatic generation of optimized code
for marshaling routines,” in IFIP TC6/WG6.5 International Working
Conference on Upper Layer Protocols, Architectures and Applications,
M. Medina and N. Borenstein, Eds., 1994, pp. 131–146.

[15] S. W. O’Malley, T. A. Proebsting, and A. B. Montz, “USC: A universal
stub compiler,” in Proceedings of the Symposium on Communications
Architectures and Protocols (SIGCOMM), London, UK, Aug. 1994.

[16] Sun Microsystems, Inc., “XDR: External Data Representation,” June
1987, RFC 1014.

[17] C. Queinnec, “Marshaling/demarshaling as a compilation/interpretation
process,” IPPS/SPDP, pp. 616–, 1999.

