

1

Expedite any Simulation with DMTCP and Save
Decades of Computation

Balaji R, CAD Er, Intel Corporation, Bengaluru, India (balaji.r@intel.com)

Sathish Kumar Sugumaran, SOC Design Er, Intel Corporation, Bengaluru, India
(sathish.kumar.sugumaran@intel.com)

Rohan Garg, Northeastern University, Boston, USA (rohgarg@ccs.neu.edu)

Jiajun Cao, Northeastern University, Boston, USA (jiajun@ccs.neu.edu)

Gene Cooperman, Northeastern University, Boston, USA (gene@ccs.neu.edu)

Abstract—The SoC simulation models are becoming more complex day by day, and therefore require more and
more time to complete execution. Some models can take up to a week in order to complete a single simulation.
Considering the general “shift left” testing strategy, it becomes increasingly important to run pre-silicon simulations
efficiently in order to capture the design and content bugs early on, and reduce the number of steps required to achieve
production readiness. This desire to reduce the number of steps, and therefore reduce the turnaround time, imposes
several unique challenges. In either case, the simulation should be rerun from the beginning to resolve/triage the failure
cases, which wastes many man hours and compute resources. This badly impacts the time-to-market (TTM), and
eventually decreases revenue. To address these issues, a transparent checkpoint-restore capability using DMTCP
(Distributed Multithreaded CheckPointing) [1] has been developed. The proposed approach improves the usage of
compute resources by allowing for the bypass of initialization flows, such as full long reset flows that are common across
the regressions. This also helps debug simulation failures by reducing the effective turnaround time. We collaborated
with the Northeastern University team to improve the DMTCP checkpoint and restore solution for the simulation use
cases. The DMTCP-based approach brings various advantages over the earlier BLCR approach [3]. This simulation
checkpointing technique can greatly shorten the development and debug cycle in the Pre-Si environments. Depending
on the test environment and test, if reset takes most of the wall clock time, then one can gain significant savings.

Keywords—Save & Restore; Checkpointing; Distributed MultiThreaded CheckPointing; DMTCP; Simulation;
Engineering Computing; Throughput; Turn-around time;

I. INTRODUCTION

As the semiconductor industry becomes more focused towards the “shift left” paradigm, the need for robust and

timely validation of the design in Pre-Si becomes absolutely crucial. Simulation is still the work horse of Pre-Si

validation. Its model availability is earlier in the PLC (Product Life Cycle) compared to other Pre-Si validation

platforms like Virtual-Platform (VP), Emulation, and FPGA or GLS. Thus, any increase in bugs caught during

simulation reduces the cost of the chip. When bugs escape to further down in the PLC, the cost of fixing them

increases. Hence, in order to catch more bugs in the simulation, we need to come up with an efficient method to

minimize the simulation time. Both environmental instability and an actual bug in the model force the user to

execute more simulation reruns. The additional simulation reruns cause much time to be lost.

Post-Si debug would be straightforward if the validation content were error-free. However, this can only be

achieved by running through the validation content exhaustively, which is prohibitively expensive. Instead, all

execution teams should be able to take snapshots of the simulation run either at periodic intervals or when some

particular event of interest occurs. By sharing these snapshots, the teams can cut the number of reset simulations.

The DMTCP save-restore technique provides validation engineers with the capability to do checkpoint and

restore of the simulation run at the process level. DMTCP has the capability to checkpoint and restore multiple

processes of an application. DMTCP also provides wrappers that abstracts out the high-level application. This

avoids burdening the validation engineer with low-level changes between checkpoint and restore such as changing

process id (pid), network sockets, file paths associated with open file handles, etc.

2

There were two other tools that were evaluated prior to this work: Berkley Lab Checkpoint/Restart (BLCR) [2]

and the native save-restore functionality of the simulator. However, each of these tools had limitations. BLCR

requires installation of kernel modules, and hence a mini-lab setup is required to get root access for this activity.

The native save-restore of the simulator does not have support for multi-threaded process checkpointing, which is

a common occurrence in complex simulation test benches/models.

The following table does a comparative analysis of features supported by DMTCP compared to BLCR. A fully

implemented feature scores 1; a partially implemented feature with limitation scores 0.5; and an unimplemented or

unavailable features scores 0. The details are included in reference [3].

II. DMTCP

A. DMTCP Overview

DMTCP is a tool to transparently checkpoint the state of multiple simultaneous applications to disk, including

multi-threaded and distributed applications. It works under Linux, with no modifications to the Linux kernel or to

the application binaries. It can be used by unprivileged users; no root privilege is required. One can later restart

from a checkpoint, or even migrate the processes by moving the checkpoint files to another host prior to restarting.

A DMTCP checkpoint image includes any libraries (.so files) that it may have been using. This strategy is used for

greater portability of the checkpoint images. In some cases, this allows for migration of checkpoint images to a host

with a different Linux distribution and a different Linux kernel.

B. DMTCP Advantages & Limitations

DMTCP supports checkpoint-restore of distributed processes of a program. The processes may be connected

through network sockets or through other inter-process communication mechanism such as POSIX shared-memory

areas. This is a key advantage compared to other solutions and expands the scope of how this kind of save-restore

technique can be used. It works completely in user space and doesn’t require any modifications to the kernel, and

hence it allows non-privileged users to use the solution. It is also open source and follows a plugin architecture, and

hence it is easily extensible. It is tried and tested, and has been extremely stable in our experience.

However, DMTCP depends on standard symbol lookup mechanism provided by the dynamic linker-loader to

achieve its goals. This works for most common use cases. However, in some unusual cases, such as a non-standard

Table I. DMTCP vs BLCR (see [3] for the original table)

3

symbol lookup mechanism or system calls using inline assembly, DMTCP cannot track the system calls made by

the process to the kernel. This was observed with signal dumper libraries where DMTCP was not able to track the

system calls and the file handles opened by those libraries. It also cannot utilize the simulator internal mechanisms

such as the save-restore functionality of the native simulator. For example, the save-restore functionality allows

one to change command-line arguments after a restore, but it’s not possible to directly use this mechanism with

DMTCP.

III. USE CASES

A. Skipping Reset

With the help of event-based checkpointing, one can checkpoint the model design, based on different reset

phases. This allows one to create as many checkpoints as the number of different phases in a single regression. This

is illustrated in Figure I. Further, if the regression fails at any point of time, one can restore it from a previous

checkpoint. This increases productivity by avoiding the redundant runs for every test.

The efficiency can be increased further by reusing the same checkpoint state across simulation runs. This is

achieved by allowing users to change the sequence executed in a later test phase after restore. The reset phase can

take up to 95% of the execution time and on average 50% to 60% of the execution time. This technique can be used

to skip the reset phase and directly start executing the test phase.

For example, in Figure I, a test is snapshotted at PHASE_7_END and restored from the same point. This helps

the different tests to skip the complete reset flow by changing the test sequence plugged in at

USER_DATA_PHASE and start running the regressions right away in the restored run.

B. Debug Speedup

 Periodic checkpoints can be used to improve the stability of a simulation run by taking a snapshot periodically

and saving it to the disk. When the simulation fails due to a machine failure, it can be restored from the last

checkpoint, instead of rerunning it from the beginning. Furthermore, if the failure is due to a model bug, checkpoint-

restore can enable further debugging during restore by enabling signal dumps or by forcing the release or deposit

of signals. This allows the user to quickly find the root cause of the issue, instead of rerunning the simulation from

the start. This methodology is illustrated in Figures II and III.

Figure I. Phase based checkpoint restore

Figure II. Dynamic checkpointing based on clock cycles

4

C. Case Study with SCAN

SCAN validations require changing the SCAN pattern for different tests, while the simulation binary remains

the same. Thus, Pre-Si SCAN validation can greatly benefit from save-restore by skipping the reset phase. For

example, a typical validation use case with 'n' partitions, 'm' flavors of patterns, and 'l' iterations requires n*m*l

repeated simulations. This translates into months of repeated reset simulations consuming many man hours. Most

of the pattern validations require a similar reset state and are fixed well in advance of the reset usage for every team.

There are very few cases where one needs different reset phases. This is treated as a separate case, but the same

methodology is used. For the typical case, checkpoint-restore enables running of the ‘n’ different partitions and the

‘m’ different patterns in parallel using one saved state. This leads to only one parallel simulation for all of the m*n*l

possible cases. In the case of a failed pattern, one just needs to rerun only the failed patterns. Note that the failed

patterns can be run in parallel from a common saved state. Furthermore, the reset phase doesn’t need to be executed

for any of the parallel runs and the execution can jump directly to the pattern. This is the key advantage of the

proposed approach: to save years of cumulative simulation time and many man hours, and eventually millions of

dollars.

D. Multi-Process & Hybrid Testbench

In this case study, we describe the use of DMTCP’s support for checkpointing distributed processes for two

different multi-process simulation test benches.

In the first scenario, we discuss multi-socket simulation use cases. Here the simulation of each CPU socket is

delegated to a separate simulator process. The simulator processes can be distributed across different computer

nodes for reasons of efficiency. The communication between these simulator processes can be modelled on top of

different inter-process communication mechanisms such as network sockets or shared-memory areas.

The second scenario where distributed checkpointing is used is that of hybrid test benches. Here the simulation

model is broken into multiple parts and each portion is modelled differently. For example, a processor core can be

modelled using a C++ program and some IP/PCH can be modelled as an RTL model, with the two portions

communicating over a TCP socket connection.

IV. RESULTS

There are two main achievements that are an outcome of this work.

• Improving the efficiency of different types of simulation regression.

• Leveraging the close collaboration with academia for solving the critical limitations in existing tools.

Table II describes the savings in compute time and, in some cases, reduction in turnaround time. This is achieved

by skipping the full reset flow, or a part of it, using event-based checkpointing. The first run that creates the

checkpoint takes a little longer to complete because of the checkpoint creation overhead. However, subsequent runs

Agnisys Technology.

Figure III. Efficient usage of event & cycle based checkpointing

5

that use the restore flow take much less time to complete. This is extremely useful in cases where multiple tests

have a standard model configuration, test options, and initialization sequence. The main gains are achieved when

the test content can be changed without the need to rebuild the model and without the need to run with different

pre-conditions and configurations. In Table II, SoC1 and SoC2 are the best examples for this scenario. For both of

these cases, the test content is read from a file that is not built as part of the simulation model.

Table I. Savings achieved with DMTCP

SoC Without
DMTCP

With DMTCP
first run

With DMTCP
subsequent runs

Save Restore
Overhead

Disk space /
checkpoint

Savings

SoC 1 48 hours 48.5 hours 2 hours 25 mins 10 GB 45.5 hours
SoC 2 54 hours 54.5 hours 12 hours 25 mins 10 GB 41.5 hours
SoC 3 12 hours 12.5 hours 2 hours 30 mins 3 GB 9.5 hours

SoC 4 15 hours 15.5 hours 4 hours 30 mins 10 GB 10.5 hours

SUMMARY

This paper shows that checkpoint-restore using DMTCP has definitely added value to the overall simulation

flow. It successfully achieves its objectives in the use cases where the model configuration and code does not

change between save and restore. Our results show that there can be up to 95% savings in the simulation time, with

an average savings of 50% to 60% in the simulation time. Without checkpoint-restore using DMTCP, a traditional

approach would have consumed decades of computation time, and this would have limited the number of possible

tests. Therefore, the turnaround times can be greatly reduced in order to achieve 100% content validation. For other

use cases, such as volume validation, skipping of initialization sequence is not possible. This is because each test

has its own unique and fixed configuration that cannot be changed during restore. In such scenarios, checkpoint-

restore can still be used to improve the reliability of the simulation runs and speed up debugging.

ACKNOWLEDGMENT

We would like to thank the full DMTCP team at Northeastern University for the close collaboration and

partnership in this project. We would also like to thank all the users who helped, starting from initial conception till

the development of the components of this new tool. Last but not least, we would like to thank Agnisys technology

for sponsoring and would like to thank all the people who reviewed the paper and provided valuable feedback.

REFERENCES

[1] J. Ansel, K. Arya and G. Cooperman, “DMTCP: Transparent checkpointing for cluster computations and the desktop,” in IEEE

International Symposium on Parallel & Distributed Processing, Rome, 2009.

[2] J. C. Duell, E. Roman and P. H. Hargrove, “Berkeley Lab Checkpoint/Restart for Linux,” Lawrence Berkeley National Laboratory, 2003.

[3] Ljubuncic, Igor; Rozenfeld, Avikam; Goldis, Andrew and Giri, Ravi, “Be kind, Rewind – Checkpoint & Restore capability for improving

reliability of large scale semiconductor design” IEEE, 2014.

