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Abstract. We look at some simple algorithms for elementary problems in
algebra that yield dramatic efficiency improvements over standard methods

through randomization. The randomized algorithms are, in a sense, “obvious”.
Their formal statement was delayed partly by the need for rigorous analysis,
but more so by the need to re-think traditional approaches to elementary
algorithms. We illustrate this philosophy with some basic problems in com-

putational number theory (GCD of many integers), linear algebra (low-rank
Gaussian elimination) and group theory (random subproducts for subgroup
construction), along with a brief survey of other areas.

1. Introduction

Because the textbook algorithms of elementary algebra seem to be so efficient,
researchers often neglect to examine still more efficient randomized algorithms.
Nevertheless, there is scope for some interesting and potentially very important
applications of randomization.

A paper of this length cannot hope to provide a survey of the subject. So, it
is our intention, rather, to illustrate the utility of randomization in several recent
innovations that are related to our own work. The topics chosen reflect elementary
algorithms that are either known or can easily be taught to high school students.
Often, it is not difficult to see a candidate for a randomized algorithm, but a formal
analysis may be more difficult. It is hoped that these examples will inspire more
people to look at randomization as a source of greater efficiency. We would also like
to point out the excellent survey paper [13] in this volume, concerning generation
of randomized non-singular matrices, k-subspaces and other structures of interest.

In keeping with our philosophy, the ideas for randomization are simple. The
“interesting bits” are in the analysis. In this paper, we discuss the GCD problem
for many integers, one of the oldest algorithms of elementary algebra, in detail,
while surveying several other algorithms. In addition to GCD’s, we give examples
of some applications of randomizations to low-rank Gaussian elimination, and to
computing canonical forms of matrices.

For GCD’s, one wishes to find the GCD of k integers, n1, . . . , nk, with few
GCD computations. The key idea of the algorithm is to form two random linear

sums of the form
∑k

i=1 aini, and take the GCD of those two random linear sums.
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It is clear that this computation yields a multiple of the true GCD. Hence, we
describe an “error” as occurring when the two random linear sums each include
an additional prime factor that is not present in the k integers. The issue is to
determine a maximum magnitude for the randomly chosen coefficients, ai, sufficient
to guarantee low probability of error. A refined version of such an algorithm is given
in [3] together with a rigorous analysis and some experimental results.

For low-rank Gaussian elimination, one uses a similar trick. If one can rapidly
determine the rank, r, of a matrix and form r independent linear combinations of
matrix rows, then the Gaussian elimination algorithm admits an obvious optimiza-
tion. The algorithm consists of considering the rows, v1, . . . , vk, of a matrix, and

forming r random linear sums,
∑k

i=1 aivi, where the random coefficients, ai, are
now chosen independently from the set {0, 1}.

The ideas above are specified in the context of integers and vectors, respectively.
The ideas can be generalized in the direction of mathematical groups by considering
random subproducts for groups. This yields some surprisingly strong results.

Finally, the use of randomization in computing canonical forms of matrices
shows performance gains over deterministic algorithms. The randomized algorithms
achieve close to theoretically optimal performance in some practical circumstances.

2. GCD’s of many integers

Consider a model of computation where calculating GCDs is relatively expen-
sive in comparison to other arithmetic. This is a reasonably realistic model. Thus,
we wish to do few GCD computations in comparison with the naive algorithm (it-
erative computation of pairwise GCDs), which in the worst case requires k−1 GCD
calculations.

Theorem 1. For positive integers n1, . . . , nk, one can probabilistically find
gcd(n1, . . . , nk) at the cost of 4k arithmetic operations, one GCD calculation, and
the computation of 2k random integers chosen in the range from 1 to M , where

M = max(1024⌈ log
2

k
150 + 0.1⌉, (n1)

2, . . . , (nk)2). All operations involve quantities of

size at most M
∑k

i=1 ni ≤ kM max(n1, . . . , nk). The probability of error is bounded
above by 0.622.

Proof. Without loss of generality, we assume that n1 ≤ n2 ≤ · · · ≤ nk.

The reduction algorithm consists of computing z = gcd(
∑k

i=1 aini,
∑k

i=1 bini),
where ai, bi ∈ [1,M ] are randomly chosen integers in the specified range. The value
of z will be a multiple of gcd(n1, . . . , nk).

We now consider x = z/ gcd(n1, . . . , nk). We bound the probability that x 6= 1.
The analysis consists of finding an upper bound on the probability that x has a
prime factor, p, for each of three cases: (A) M < p ≤ kM3/2, (B) M/10 < p ≤ M ,
and (C) p ≤ M/10. (Note x ≤ kM3/2, and so no other cases are possible.) The sum
of these three probability bounds will then be shown to be less that the probability
stated in the theorem.
CASE A: (M < p ≤ kM3/2)
In this case, p is co-prime to nk since p > nk and p is prime. Since M < p and∑k

i=1 bini ≤ kM3/2, there are at most ⌈log(kM3/2)/ log M⌉ distinct primes, p, that

divide
∑k

i=1 bini. Consider
∑k

i=1 aini as a function of ak. Since ak ≤ M < p, for
each fixed p there is at most one value of ak for which p divides sumk

i=1aini. Since
ak is chosen uniformly from the range [1,M ], the probability that a prime p > M
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divides x is bounded above by ⌈log(kM3/2)/ log M⌉/M . So, the probability that p
divides x is bounded above by

⌈log(kM3/2)/ log M⌉/M ≤ ( log
2

k
10 + 3

2 )/M ≤ 15⌈ log
2

k
150 + 0.1⌉/M .

CASE B: (M/10 < p ≤ M)
Choose s to be the smallest positive integer such that ps does not divide
gcd(n1, . . . , nk). (Hence, s ≥ 1 always.) Choose j such that ps does not divide nj .

Fix the ai’s arbitrarily except for aj , and consider
∑k

i=1 aini as a function of aj . If

ps divides
∑k

i=1 aini for a given value of aj , then the next value of aj for which ps

divides
∑k

i=1 aini will be aj +p. Since aj is chosen uniformly from the range [1,M ],

the probability that ps divides
∑k

i=1 aini is at most ⌈M/p⌉/M ≤ 1
p + 1

M ≤ 2/p.

Similarly, the probability that ps divides
∑k

i=1 bini is at most 2/p. Since the ai

and bi were chosen independently, the probability that p divides x is at most 4/p2.
So, the overall probability that p divides x for some prime in the given range is

bounded above by
∑M

p=(M/10)+1(4/p2) ≤
∫ M

p=M/10
(4/p2) dp = 36/M .

CASE C: (p ≤ M/10)
Choose s and j as in the previous case. One follows the argument of the previous
case. Since aj is chosen uniformly from the range [1,M ] while now p ≤ M/10,

one can conclude for this case that the probability that ps divides
∑k

i=1 aini is
at most ⌈M/p⌉/M ≤ 1

p + 1
M ≤ 1

p + 1
10p = 11

10/p. Similarly, the probability

that ps divides
∑k

i=1 bini is at most 11
10/p. Since the ai and bi were chosen in-

dependently, the probability that p divides x is at most ( 11
10/p)2. So, the over-

all probability that p divides x for some prime in the given range is bounded

above by (11
10/2)2 + (11

10/3)2 + (11
10/5)2 + (11

10/7)2 +
∑M/10

p=11 ( 11
10/p)2 < 0.51004 +

∫ M/10

p=10
( 11
10/p)2 dp = 0.51004 + (11

10 )2( 1
10 − 10/M) < 0.571.

Hence, the sum of the probabilities of error for the three cases is

0.571 + 36/M + 15⌈
log2 k

150
+ 0.1⌉/M ≤ 0.622

based on the choice of M in the hypothesis. This completes the proof.

Remark 2. A different approach to solving this problem is implicit in [8, Proof
of Lemma 1.2].

As is always the case with Monte Carlo algorithms, the probability can be
improved by repeating the algorithm. Specifically, the probability that r invocations
all return an erroneous answer is at most 0.622r.

2.1. Las Vegas conversion. Any Monte Carlo algorithm which has an easy
check as to whether the solution is correct may be simply converted to a Las Vegas
algorithm: run the algorithm, check the solution, and repeat till the solution is
confirmed.

In this case checking the solution is very easy: check that the hypothetical
GCD exactly divides each of the k input numbers. Thus, adding k more arithmetic
operations to the algorithm, we get a Las Vegas algorithm for which the expected
number of invocations needed to achieve a correct answer is at most 1 + 0.622 +
0.6222 + 0.6223 + · · · < 2.65. Multiplying 2.65 by the appropriate complexity
estimate yields the following corollary.



4 GENE COOPERMAN AND GEORGE HAVAS

Corollary 3. One can find gcd(n1, . . . , nk) for arbitrary positive integers
n1, . . . , nk with an expected cost of at most 13.25k arithmetic operations, 5.3k ran-
dom integers in the range [1,M ], and 2.65 GCDs. All operations involve quantities
of size at most kM3/2, with M defined as in Theorem 1.

Notice that ⌈ log
2

k
150 + 0.1⌉ = 1 for k ≤ 1040. It is worth remarking that the

only uses of division in this algorithm are in the GCD algorithm and in the Las
Vegas verification of the answer. All other operations consist of multiplication and
addition, which are usually faster.

2.2. Improved Reliability. The above analysis can be strengthened to yield
a probability of error of at most 0.2. Define a spurious prime factor as a prime factor

of x. (Recall that x was defined as gcd(
∑k

i=1 aini,
∑k

i=1 bini)/ gcd(n1, . . . , nk).)

Remark 4. The largest contribution to the above probability comes from small
primes. For example, the possibility of additional prime factors 2 or 3 occurring
spuriously in the answer contributed a probability of error of more than 0.4369. If
one separately checks for factors of 2 and 3 in the answer and replaces 0.622 by
the finer estimate of 0.6219, the probability of error is reduced to at most 0.6219 −
0.4369 = 0.185.

In implementations, this cost saving may be worthwhile. Since the answer
returned, y, will be a multiple of the true answer, it requires one to directly find
the largest power of 2 that divides gcd(y, n1, . . . , nk) and similarly for 3. Since
y ≤ kM , there are at most log2 kM additional spurious prime factors in y. So, the
additional computation costs O(k log(kM)) using an obvious algorithm.

However, the worst case computational cost occurs only if y has many prime
factors corresponding to 2 and 3. In typical cases, there will be at worst a small
constant number, r, of such factors, and so the additional computation costs will
typically involve only k + 5r additional divisions. This is seen by first finding how
many times 2 and 3 occur as factors of y and then carrying out the k divisions into
n1, . . . , nk and up to r adjustments to y as spurious prime factors corresponding
to 2 or 3 are found. This operation should be carried out before the Las Vegas
test at the end to see if y divides ni for all i. If one can be assured that r is small
(for example, if the inputs, n1, . . . , nk are drawn from a “random” distribution
for appropriate definition of random), then this yields a still faster GCD algorithm.
Taking r < k/5 yields a Monte Carlo algorithm with probability of error at most 0.2.
The expected number of invocations is then reduced from 2.65 to 1.25 at the cost
of raising the 5k arithmetic operations per invocation to at most 7k.

Still further heuristics are possible. As just one example, consider including the
result of a previous invocation as an additional input, nk+1 in the next invocation.

3. Random Subproducts for Group Theory

Random subproducts provide a useful unifying framework for both the random-
ized GCD algorithm, discussed above, and for the low-rank Gaussian elimination
algorithm, discussed in the next section. Random subproducts were first used in a
more limited setting (for orbits in permutation groups [2]). A survey of many of the
implications of random subproducts is found in [4]. The more general description
here has surprising consequences.
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Definition. A random subproduct of a sequence of group elements (g1, g2, . . . , gk)
is an instance of a product ge1

1 ge2

2 · · · gek

k where the ei are independent random
variables uniformly distributed over {0, 1}.

We also refer to a random subproduct on a set of group elements, instead of a
random subproduct of a sequence, when an arbitrary ordering of the set suffices.

Theorem 5. [1, Lemma 2.4] Let H be a non-trivial, proper subgroup of the
finite group G, and let G have a generating set S of size s. If g ∈ G is a random
subproduct on S, then one can compute g at the cost of at most s group multiplica-
tions, and Pr(g /∈ H) ≥ 1/2.

Proof. For some i, gi 6∈ H, (since H 6= G). Let w = ugǫi

i v, with gi 6∈ H,
gi+1, . . . , gr ∈ H. So, v ∈ H.
Case I: u ∈ H. With probability 1/2, ǫi = 1, and so w = ugiv 6∈ H.
Case II: u 6∈ H. With probability 1/2, ǫi = 0, and so w = uv 6∈ H.

Note that this algorithm makes no mention of a particular group representation.
This “representation-free” character of the result also provides a strong result for the
case of matrix groups, which are notoriously difficult to analyze. The ideas of this
section yield an almost trivial algorithm to find generators for the normal closure
of a group, first described in [4]. The normal closure algorithm also illustrates the
general ideas of this philosophy.
Definition. Let H ⊆ G, with H = 〈U〉 and G = 〈S〉. A random normal subproduct
with respect to U and S is a conjugate of the form hg where h is a random subproduct
on U and g is a random subproduct on S.

Theorem 6. [1, Lemma 3.6] Let H = 〈U〉 and G = 〈S〉 be subgroups of a
(possibly infinite) group J , with U and S finite. Suppose that H is not normalized
by G. Let hg be a random normal subproduct with respect to U and S. Then

Pr(hg ∈ 〈HG〉 \ H) ≥ 1/4.

The proof of this theorem is clear by analogy with Theorem 5. Its usage is
more interesting. In looking for a normal closure, K = 〈HG〉, we initially set
K = 〈U〉. Our goal is to add generators to K, until K = 〈HG〉. Theorem 6 asserts
that a random normal subproduct will provide a “new” generator in 〈KG〉\K with
probability at least 1/4. The random normal subproduct is added to the generators
of K, and the previous random normal subproduct construction is repeated.

One can show that the algorithm operates on O(l2) generators, where l is an
upper bound on the length of a subgroup chain from its representation and assum-
ing max(|S|, |U |) = O(l). One can estimate l based either on the representation
as a permutation or matrix group, or one can take l = log2 |G| for H < G. So 4l
random normal subproducts suffice in some averaged sense for full generation of
〈HG〉. Formally, one uses Chernoff’s theorem to show cl random normal subprod-
ucts suffice with high probability, for c a constant that is larger than 4 by some
small factor.

Other similar ideas are described in [1], where random subproducts are used for
fast algorithms that test solvability and nilpotency of groups in O(l2 log4 l) group
operations, that find a normal closure in O(l log4 l) (by a different algorithm), and
that find a generating set of size O(log |G|) from an initial generating set, S, in
O(|S| log l) group operations.

The last result is important for the next section, and so we highlight it.
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Theorem 7. [1, Theorem 2.3] Let G = 〈S〉 be a finite group. Let l be a known
upper bound on the length of all subgroup chains in G. Then for any fixed parameter
p such that 0 < p < 1, with probability at least p one can find a generating set S′

with |S′| = O(l), using O(|S| log l) group operations.

4. Low-rank Gaussian elimination

It is well known that Gaussian elimination operates in O(n3) time or operations
in a given field, for n the matrix dimension. For low-rank matrices of rank r < n,
this time can be reduced to O(nr2 + n2 log2 r) field operations. This should be
compared with the standard upper bound (Gaussian elimination) of O(n2r) and
the lower bound of O(n2) required simply to look at all matrix entries.

Theorem 8. A system of n linear equations of rank r (where r is not known
a priori) can be solved (or found inconsistent) (with a small probability of error)
using O(nr2 + n2 log2 r) field operations.

A useful way to understand this construction is by using the ideas of random
subproducts, discussed in the previous section. The idea is to consider an additive
group on vectors in dimension n. Consider the group generated by the row vectors
of the matrix. A maximum subgroup chain in this group is of length l = r. If one
could efficiently construct O(r) generators for this group, it is clear that O(nr2)
field operations would then suffice for the Gaussian elimination. Theorem 7 allows
us to assume l = r, and find O(r) generators in O(n2 log r) field operations.

In this specialized setting, l = r and a randomized subproduct of the row
vectors vi becomes

∑n
i=1 eivi for random ei ∈ {0, 1}. We initially set K = span(0)

for 0 the zero vector. We add cr random subproducts to the generators of K for
suitable c > 4, where each random subproduct has probability at least 1/4 of being
“new”, by Theorem 5. This requires crn = O(nr) operations. So if the rank, r,
is known a priori, we form a rectangular cr × n matrix and carry out Gaussian
elimination on that matrix in O(nr2) field operations.

We now describe the full algorithm. The only additional idea is to guess the
rank and invoke “repeated doubling”. One initially guesses a rank of r̃ = 1 and
carries out Gaussian elimination on the resulting cr̃×n matrix, and determines an
estimated rank, r̃′, of the matrix with cr̃ row vectors. One then doubles the guessed
rank, r̃, repeats the Gaussian elimination, and compares the newly estimated rank,
r̃′, with the old value. If the values are the same, then we have discovered the rank
with high probability, and we have successfully carried out a Gaussian elimination.
If the ranks are different, we double the guessed rank, r̃, again, and repeat the
process. It is clear that ⌈log2 r⌉ iterations will be required (where r is the true
rank), with each iteration requiring O(nr̃2) field operations. The time is dominated
by the last iteration with r̃ ≤ 2r. So, the overall time is O(nr2), if one is given the
cr̃ row vectors. As we have seen, one can form the cr̃ row vectors using O(n2 log r̃)
field operations for each of the O(log r) iterations, yielding the overall estimate of
O(nr2 + n2 log2 r).

If partial information is known, a priori, about r, then one can often achieve a
better complexity. If the rank, r, is known exactly, then the time can be reduced
to O(nr2 + n2 log r) in an obvious manner.

If r < ǫm for some small ǫ > 0 but r itself is not bounded, we can achieve
considerable savings by first replacing the m rows by a set of O(r) rows using our
Monte Carlo algorithms. With large probability, the rows obtained will generate
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the same row space. The new rows are obtained as sums of subsets of the original
rows and will require O(m log r) row operations to compute. Subsequently, we can
complete the work by Gaussian elimination, using O(r2) row operations.

5. Computing canonical forms of matrices

There has been much recent work on finding theoretically efficient and practical
algorithms for computing canonical forms of matrices over various computational
domains. In a well-defined sense finding optimal ways to obtain the canonical
forms is NP-hard, and worst-case complexity for standard algorithms is exponen-
tial in terms of both space and time [6, 12]. Randomization has proved to be
a powerful tool in addressing such difficult problems. Recent progress includes
[7, 8, 9, 10, 11, 15, 17, 18], which cover a comprehensive range of algorithms
including: heuristically driven with excellent practical performance; deterministic
with guaranteed performance; and randomized. In the randomized context both
Monte Carlo and Las Vegas algorithms have been developed.

Interesting applications of randomization to Smith normal form computation
problems for integer matrices are given by Giesbrecht [8, 9] as Monte Carlo algo-
rithms using black-box methods. The GCD of many integers problem of Section 2
arises in this context. The upshot is algorithms with improved space and time
complexity for both sparse and dense input. However no comparably efficient Las
Vegas versions are known.

In a polynomial matrix context, Storjohann and Labahn [17] present a Las
Vegas probabilistic algorithm which finds the Smith normal form in Q[x]n×n of a
nonsingular input matrix in Z[x]n×n. Their complexity results improve significantly
on previous algorithms in both theory and practice.
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