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Motivation

I Parallel Computations on the Cloud

I Not everybody uses MPI: IaaS (Infrastructure as a Service)

I Flexibility and maintainability

Imagine if you could...

I deploy complex software configuration in a secure
environment

I gain high reliability by running within a virtual machine that
is set to take snapshots every minute

I checkpoint a network of virtual machines including the state
of a parallel computation
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Related Work

I Virtual Machine checkpointing
I QEMU, KVM, Xen, VMware: Snapshotting
I Remus: High Availability on Xen-based servers
I VM-µCheckpoint: High frequency checkpointing on Xen
I Emulab: Distributed checkpointing with Xen; record-replay of

network packets
I BlobSeer

I Checkpoint-restart
I BLCR: Kernel-space
I CryoPid2: Process Pods; 32-bit only
I CRIU: User-space; Linux containers
I DMTCP: User-space; distributed
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DMTCP and Plugins

DMTCP:

I Distributed MultiThreaded Checkpointing

I User-space

I Transparent checkpointing

I Distributed processes

I Wide range of supported applications: MPI, Perl/Python,
GDB, X-windows , Matlab, R

DMTCP Plugins:

I DMTCP extensions; shared libraries

I Short, well-defined API

I Add support to handle the checkpoint-restart of specific
resources
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DMTCP Plugins: Features

Two essential features:
I Wrapper Fuctions:

I Interpose on library and system function calls
I Process the arguments; call the interposed function; and return

back (possibly modified) return value

I DMTCP Events:
I Notify plugin of several events: Pre-checkpoint, Post-restart,

etc.
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Generic Checkpoint-Restart for VMs: Background

I DMTCP:
I Handle user-space memory, file descriptors, sockets, etc.

% d m t c p c h e c k p o i n t qemu <args−f o r−qemu>
% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp



Checkpoint-Restart for KVM: Key Ideas
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I Re-generating the virtual network
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Challenges for checkpointing a network of VMs: Solutions
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I Re-generating the virtual network
I Saving and restoring in-flight data

I DMTCP TUN/TAP Plugin: Heuristic:
I Quiesce the user-application threads
I Wait for a fixed time: assume all packets have arrived
I Write the checkpoint image (if additional packets continue to
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I Alternative approach: broadcast a cookie
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Experimental Results: Setup

I Network of Virtual Machines
I 12-node cluster (at University of Alabama, Birmingham)
I Each node: 12-core Intel Xeon (1.6 GHz) server; 24 GB RAM
I KVM/QEMU with Tap
I Host OS: 64-bit CentOS; Linux Kernel 2.6.32
I Guest OS: Ubuntu 12.04 Server

I Others:
I Btrfs (nested VMs)
I DMTCP optimizations
I Commodity computer



Experimental Results: Scalability
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Experimental Results: Optimizations - I

I Btrfs filesystem
I Fast, incremental checkpoints
I Copy-on-write filesystem
I Going to be the default filesystem (soon?)
I Nested VMs

I DMTCP optimizations
I Forked checkpointing : copy-on-write: fork a child to write

checkpoint; parent continues
I mmap-based fast restart: on-demand paging from the

checkpoint image
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Experimental Results: Optimizations - II
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Experimental Results: Optimizations - II
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Conclusion

Summary

I Generic mechanism for checkpoint-restart: QEMU
(user-space), Lguest (paravirtualization), QEMU/KVM
(hardware-assisted virtualization)

I Btrfs: fast, incremental snapshots

I Low maintainability, high flexibility: plugin with 400 LOC



Questions?
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