
Checkpoint-Restart for a Network of Virtual
Machines

Rohan Garg, Komal Sodha, Zhengping Jin, Gene Cooperman

College of Computer and Information Science
Northeastern University, Boston
Boston, Massachusetts 02115

{rohgarg, komal, jinzp, gene}@ccs.neu.edu

September 24, 2013

Outline

Motivation

Related Work

Design and Implementation
DMTCP and Plugins
Generic Checkpoint-Restart for Virtual Machines
Checkpointing a network of VMs

Experimental Results

Conclusion

Outline

Motivation

Related Work

Design and Implementation

Experimental Results

Conclusion

Motivation

I Parallel Computations on the Cloud

I Not everybody uses MPI: IaaS (Infrastructure as a Service)

I Flexibility and maintainability

Imagine if you could...

I deploy complex software configuration in a secure
environment

I gain high reliability by running within a virtual machine that
is set to take snapshots every minute

I checkpoint a network of virtual machines including the state
of a parallel computation

Motivation

I Parallel Computations on the Cloud

I Not everybody uses MPI: IaaS (Infrastructure as a Service)

I Flexibility and maintainability

Imagine if you could...

I deploy complex software configuration in a secure
environment

I gain high reliability by running within a virtual machine that
is set to take snapshots every minute

I checkpoint a network of virtual machines including the state
of a parallel computation

Outline

Motivation

Related Work

Design and Implementation

Experimental Results

Conclusion

Related Work

I Virtual Machine checkpointing
I QEMU, KVM, Xen, VMware: Snapshotting
I Remus: High Availability on Xen-based servers
I VM-µCheckpoint: High frequency checkpointing on Xen
I Emulab: Distributed checkpointing with Xen; record-replay of

network packets
I BlobSeer

I Checkpoint-restart
I BLCR: Kernel-space
I CryoPid2: Process Pods; 32-bit only
I CRIU: User-space; Linux containers
I DMTCP: User-space; distributed

Related Work

I Virtual Machine checkpointing
I QEMU, KVM, Xen, VMware: Snapshotting
I Remus: High Availability on Xen-based servers
I VM-µCheckpoint: High frequency checkpointing on Xen
I Emulab: Distributed checkpointing with Xen; record-replay of

network packets
I BlobSeer

I Checkpoint-restart
I BLCR: Kernel-space
I CryoPid2: Process Pods; 32-bit only
I CRIU: User-space; Linux containers
I DMTCP: User-space; distributed

Outline

Motivation

Related Work

Design and Implementation
DMTCP and Plugins
Generic Checkpoint-Restart for Virtual Machines
Checkpointing a network of VMs

Experimental Results

Conclusion

DMTCP and Plugins

DMTCP:

I Distributed MultiThreaded Checkpointing

I User-space

I Transparent checkpointing

I Distributed processes

I Wide range of supported applications: MPI, Perl/Python,
GDB, X-windows , Matlab, R

DMTCP Plugins:

I DMTCP extensions; shared libraries

I Short, well-defined API

I Add support to handle the checkpoint-restart of specific
resources

DMTCP and Plugins

DMTCP:

I Distributed MultiThreaded Checkpointing

I User-space

I Transparent checkpointing

I Distributed processes

I Wide range of supported applications: MPI, Perl/Python,
GDB, X-windows , Matlab, R

DMTCP Plugins:

I DMTCP extensions; shared libraries

I Short, well-defined API

I Add support to handle the checkpoint-restart of specific
resources

DMTCP Plugins: Features

Two essential features:
I Wrapper Fuctions:

I Interpose on library and system function calls
I Process the arguments; call the interposed function; and return

back (possibly modified) return value

I DMTCP Events:
I Notify plugin of several events: Pre-checkpoint, Post-restart,

etc.

Generic Checkpoint-Restart for VMs: Background

Generic VM Architecture

with user space)
tables (shared

v
C

P
U

0

v
C

P
U

n

Guest VM
(user space component)

VM Shell

 (peripherals, IRQ, etc.)

Hardware description

Kernel Module for VM:

Kernel Space Memory

User Space Memory

vCPU threads

Async I/O
threads

virtual cores
vCPUs for

w/ kernel space)
tables (shared

Special Cases:

I Xen, VMware ESXi Server:
very thin hypervisor;
bare-metal; no host OS

I QEMU: Software emulation;
user-space

Generic Checkpoint-Restart for VMs: Background

Generic VM Architecture

with user space)
tables (shared

v
C

P
U

0

v
C

P
U

n

Guest VM
(user space component)

VM Shell

 (peripherals, IRQ, etc.)

Hardware description

Kernel Module for VM:

Kernel Space Memory

User Space Memory

vCPU threads

Async I/O
threads

virtual cores
vCPUs for

w/ kernel space)
tables (shared

Special Cases:

I Xen, VMware ESXi Server:
very thin hypervisor;
bare-metal; no host OS

I QEMU: Software emulation;
user-space

Generic Checkpoint-Restart for VMs: Background

I DMTCP:
I Handle user-space memory, file descriptors, sockets, etc.

% d m t c p c h e c k p o i n t qemu <args−f o r−qemu>
% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Checkpoint-Restart for KVM: Key Ideas

I DMTCP KVM Plugin:
I Launch empty VM shell
I Copy the checkpoint

image (they’re just bits)
from the old
checkpointed VM

I Restore kernel VM driver
parameters

I Patch kernel VM driver
parameters v

C
P

U
0

v
C

P
U

n

with user space)
tables (shared

Guest VM
(user space component)

VM Shell

Kernel Module for VM:

Kernel Space Memory

User Space Memory

(Empty H/W description)

virtual cores
vCPUs for

vCPU threads

Async I/O
threads

w/ kernel space)
tables (shared

% d m t c p c h e c k p o i n t \
−−with−p l u g i n dmtcp kvm plug in . so \
qemu −e n ab l e−kvm <args−f o r−qemu>

% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Checkpoint-Restart for KVM: Key Ideas

I DMTCP KVM Plugin:
I Launch empty VM shell
I Copy the checkpoint

image (they’re just bits)
from the old
checkpointed VM

I Restore kernel VM driver
parameters

I Patch kernel VM driver
parameters v

C
P

U
0

v
C

P
U

n

with user space)
tables (shared

Guest VM
(user space component)

VM Shell

Kernel Module for VM:

Kernel Space Memory

User Space Memory

(Empty H/W description)

virtual cores
vCPUs for

vCPU threads

Async I/O
threads

w/ kernel space)
tables (shared

% d m t c p c h e c k p o i n t \
−−with−p l u g i n dmtcp kvm plug in . so \
qemu −e n ab l e−kvm <args−f o r−qemu>

% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Challenges for checkpointing a network of VMs

Challenges:

I Synchronization between VMs

I Re-generating the virtual network

I Saving and restoring in-flight data

Challenges for checkpointing a network of VMs

Challenges:

I Synchronization between VMs

I Re-generating the virtual network

I Saving and restoring in-flight data

Challenges for checkpointing a network of VMs: Solutions

I Synchronization between VMs

I DMTCP Co-ordinator

I Re-generating the virtual network
I Saving and restoring in-flight data

I DMTCP TUN/TAP Plugin: Heuristic:
I Quiesce the user-application threads
I Wait for a fixed time: assume all packets have arrived
I Write the checkpoint image (if additional packets continue to

arrive, try again)
I Alternative approach: broadcast a cookie

% d m t c p c h e c k p o i n t \
−−with−p l u g i n dmtcp kvm plug in . so \
−−with−p l u g i n d m t c p t u n p l u g i n . so \
qemu −e n ab l e−kvm <args−f o r−qemu>

% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Challenges for checkpointing a network of VMs: Solutions

I Synchronization between VMs
I DMTCP Co-ordinator

I Re-generating the virtual network
I Saving and restoring in-flight data

I DMTCP TUN/TAP Plugin: Heuristic:
I Quiesce the user-application threads
I Wait for a fixed time: assume all packets have arrived
I Write the checkpoint image (if additional packets continue to

arrive, try again)
I Alternative approach: broadcast a cookie

% d m t c p c h e c k p o i n t \
−−with−p l u g i n dmtcp kvm plug in . so \
−−with−p l u g i n d m t c p t u n p l u g i n . so \
qemu −e n ab l e−kvm <args−f o r−qemu>

% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Challenges for checkpointing a network of VMs: Solutions

I Synchronization between VMs
I DMTCP Co-ordinator

I Re-generating the virtual network
I Saving and restoring in-flight data

I DMTCP TUN/TAP Plugin: Heuristic:
I Quiesce the user-application threads
I Wait for a fixed time: assume all packets have arrived
I Write the checkpoint image (if additional packets continue to

arrive, try again)
I Alternative approach: broadcast a cookie

% d m t c p c h e c k p o i n t \
−−with−p l u g i n dmtcp kvm plug in . so \
−−with−p l u g i n d m t c p t u n p l u g i n . so \
qemu −e n ab l e−kvm <args−f o r−qemu>

% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Challenges for checkpointing a network of VMs: Solutions

I Synchronization between VMs
I DMTCP Co-ordinator

I Re-generating the virtual network
I Saving and restoring in-flight data

I DMTCP TUN/TAP Plugin: Heuristic:
I Quiesce the user-application threads
I Wait for a fixed time: assume all packets have arrived
I Write the checkpoint image (if additional packets continue to

arrive, try again)
I Alternative approach: broadcast a cookie

% d m t c p c h e c k p o i n t \
−−with−p l u g i n dmtcp kvm plug in . so \
−−with−p l u g i n d m t c p t u n p l u g i n . so \
qemu −e n ab l e−kvm <args−f o r−qemu>

% dmtcp command −−c h e c k p o i n t
% d m t c p r e s t a r t ckpt−qemu−img . dmtcp

Outline

Motivation

Related Work

Design and Implementation

Experimental Results

Conclusion

Experimental Results: Setup

I Network of Virtual Machines
I 12-node cluster (at University of Alabama, Birmingham)
I Each node: 12-core Intel Xeon (1.6 GHz) server; 24 GB RAM
I KVM/QEMU with Tap
I Host OS: 64-bit CentOS; Linux Kernel 2.6.32
I Guest OS: Ubuntu 12.04 Server

I Others:
I Btrfs (nested VMs)
I DMTCP optimizations
I Commodity computer

Experimental Results: Scalability

0 2 4 6 8 10 12
Number of Nodes

2

4

6

8

10

12
Ti

m
e

(s
ec

on
ds

)

Checkpoint
Restart

Checkpoint-restart of HPCC benchmark on a Gigabit Ethernet
cluster, (Memory allocated in each case is 1024 MB.)

Experimental Results: Optimizations - I

I Btrfs filesystem
I Fast, incremental checkpoints
I Copy-on-write filesystem
I Going to be the default filesystem (soon?)
I Nested VMs

I DMTCP optimizations
I Forked checkpointing : copy-on-write: fork a child to write

checkpoint; parent continues
I mmap-based fast restart: on-demand paging from the

checkpoint image

Experimental Results: Optimizations - I

I Btrfs filesystem
I Fast, incremental checkpoints
I Copy-on-write filesystem
I Going to be the default filesystem (soon?)
I Nested VMs

I DMTCP optimizations
I Forked checkpointing : copy-on-write: fork a child to write

checkpoint; parent continues
I mmap-based fast restart: on-demand paging from the

checkpoint image

Experimental Results: Optimizations - II

1 2 4
Number of Nodes

0

5

10

15

20

25

30

35

40
Ti

m
e

(s
ec

on
ds

)
Ckpt w/ Btrfs
Ckpt w/o Btrfs
Restart w/ Btrfs
Restart w/o Btrfs

Snapshotting up to four distributed VMs running HPCC under
KVM/QEMU. The Btrfs filesystem is used to snapshot the
filesystem using nested VMs. (Memory allocated in each case is
384 MB. The size of the guest filesystem is 2 GB.)

Experimental Results: Optimizations - II

1 2 4 8 12
Number of Nodes

0

2

4

6

8

10

12

Ti
m

e
(s

ec
on

ds
)

Ckpt
Ckpt w/ F/C
Ckpt w/ F/R
Ckpt w/ F/C + F/R

Checkpoint of HPCC benchmark on a Gigabit Ethernet cluster, as
influenced by DMTCP’s optional optimizations: forked checkpoint
(F/C) and fast restart (F/R). DMTCP’s default gzip compression
of checkpoint images is incompatible with DMTCP F/R, and so is
not used in those cases. (Memory allocated in each case is
1024 MB.)

Experimental Results: Optimizations - II

1 2 4 8 12
Number of Nodes

0

1

2

3

4

5

6

Ti
m
e
(s
ec
on
ds
)

Restart
Restart w/ F/C
Restart w/ F/R
Restart w/ F/C + F/R

Restart of HPCC benchmark on a Gigabit Ethernet cluster, as
influenced by DMTCP’s optional optimizations: forked checkpoint
(F/C) and fast restart (F/R). DMTCP’s default gzip compression
of checkpoint images is incompatible with DMTCP F/R, and so is
not used in those cases. (Memory allocated in each case is
1024 MB.)

Outline

Motivation

Related Work

Design and Implementation

Experimental Results

Conclusion

Conclusion

Summary

I Generic mechanism for checkpoint-restart: QEMU
(user-space), Lguest (paravirtualization), QEMU/KVM
(hardware-assisted virtualization)

I Btrfs: fast, incremental snapshots

I Low maintainability, high flexibility: plugin with 400 LOC

Questions?

	Motivation
	Related Work
	Design and Implementation
	DMTCP and Plugins
	Generic Checkpoint-Restart for Virtual Machines
	Checkpointing a network of VMs

	Experimental Results
	Conclusion

