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Abstract—In cluster computing, power and cooling represent
a significant cost compared to the hardware itself. This is of
special concern in the cloud, which provides access to large
numbers of computers. We examine the use of ARM-based
clusters for low-power, high performance computing. This work
examines two likely use-modes: (i) a standard dedicated cluster;
and (ii) a cluster of pre-configured virtual machines in the
cloud. A 40-node department-level cluster based on an ARM
Cortex-A9 is compared against a similar cluster based on
an Intel Core 2 Duo, in contrast to a recent similar study
on just a 4-node cluster. For the NAS benchmarks on 32-
node clusters, ARM was found to have a power efficiency
ranging from 1.3 to 6.2 times greater than that of Intel. This is
despite Intel’s approximately five times greater performance.
The particular efficiency ratio depends primarily on the size
of the working set relative to L2 cache. In addition to energy-
efficient computing, this study also emphasizes fault tolerance:
an important ingredient in high performance computing. It
relies on two recent extensions to the DMTCP checkpoint-
restart package. DMTCP was extended (i) to support ARM
CPUs, and (ii) to support checkpointing of the Qemu virtual
machine in user-mode. DMTCP is used both to checkpoint
native distributed applications, and to checkpoint a network
of virtual machines. This latter case demonstrates the ability to
deploy pre-configured software in virtual machines hosted in
the cloud, and further to migrate cluster computation between
hosts in the cloud.

I. INTRODUCTION

High performance computing is facing a power crisis. The

largest supercomputers today consume power and cooling

comparable in electricity use to a small city. The ARM

architecture is promising as a low-power alternative that

supports cluster computing.

While the ultimate target for ARM-based cluster com-

puting will be the 64-bit ARMv8 low-power CPU (see

discussion in Section II), we can estimate the benefits of such

a low-power cluster by examining an ARM-based cluster

using today’s 32-bit Cortex-A9 CPU.

We analyze the performance of a cluster of 32-bit

1 GHz ARMv7 dual-core CPUs based on Texas Instruments

OMAP4 CPUs. For a cluster of up to 40 OMAP4 ARM
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CPUs, we show a performance-to-power ratio that is from

1.3 to 6.2 times better than a similar cluster of 3 GHz Intel

Core 2 Duo CPUs running in 32-bit mode. The Intel Core 2

Duo consumes approximately 70 Watts, while the ARM

Cortex-A9 consumes approximately 5 Watts. Nevertheless,

in raw speed, the Intel Core 2 Duo is approximately 5 times

faster than the ARM Cortex-A9.

This is a preliminary study based on the 32-bit architec-

tures. Much of the speed advantage of Intel appears due to

the three-times higher clock rate of the Intel CPU — a ratio

that will change with the next generation of ARM CPUs.

According to ARM roadmaps, at the 64-bit level (ARMv8),

ARM will have increased their performance, allowing them

to come closer to Intel speeds, while maintaining their

current power usage. The added performance will come from

an increased ARM clock rate (2 GHz and higher), the 64-bit

architecture, and more cores per chip. Current Intel CPUs

also show a performance improvement over the Intel Core 2

Duo, but not to as great an extent. Nevertheless, even at the

32-bit level, the ARM architecture demonstrates attractive

possibilities.

We present a comparison that tests two different domains

of high performance computing (HPC):

1) standard high performance computing on a dedicated

cluster; and

2) a cluster of Qemu virtual machines running in the

cloud.

Performance and energy measurements are presented for

ARM and for Intel in both domains. Further, times for

checkpoint-restart are presented.

In order to support these experiments, DMTCP was ex-

tended in two ways. First, it was extended to support the

ARM architecture (new with version 1.2.5; released in June,

2012). Second, an internal version of DMTCP was extended

to checkpoint the Qemu virtual machine. We do not know of

any other checkpoint-restart package that has demonstrated

this capability.

A further contribution of this work is to test scalability of

ARM and Intel Core 2 Duo for realistic clusters scaling up

to 40 nodes. Two other recent studies had only considered

clusters of 4 nodes [1] and of 5 nodes [2].



In the rest of this paper, Section II provides background on

the roadmap of the ARM CPU architecture, while Section III

reviews DMTCP. Section IV briefly reviews the power mea-

surements. Section V presents the experimental results and

analysis. Section VI describes related work, and Section VII

presents the conclusions.

II. BACKGROUND: ARM CPU ARCHITECTURE

ARM is the most widely used general purpose CPU

based on number of units. ARMv7 is the latest 32-bit ARM

architecture, and ARMv8 is the previously announced 64-bit

ARM architecture. The ARM Limited corporation does not

manufacture CPUs, but instead licenses their ARM designs

to other companies.

32-bit ARMv7: Within the ARMv7 architecture, the cur-

rent generation for high performance computing is the 32-bit

Cortex-A9. The TI OMAP4 CPU used here is an implemen-

tation of the Cortex-A9. In late 2012, the next generation of

ARM processors, the Cortex-A15, will be available.

64-bit ARMv8: Up to a year later (in late 2013), current

roadmaps project availability in quantity of the follow-on

generation (64-bit ARMv8 architecture). In one example,

AppliedMicro projects in their roadmap a 3 GHz ARMv8

CPU consuming 2 Watts per core [3].

Figure 1 provides a view of the TI PandaBoard cluster,

along with a chair placed beside it in order to show the scale.

Figure 1. TI PandaBoard cluster used for experiments (photo by Lisa
DeLacey)

III. BACKGROUND: DMTCP

DMTCP [4] (Distributed Multi-Threaded CheckPointing)

is open source software. It supports transparent checkpoint-

restart. In particular, it checkpoints the several dialects of

MPI directly at the socket level, without the use of any MPI-

specific hooks. Figure 2 shows the architecture of DMTCP.

The three core commands of DMTCP are:

dmtcp_command a.out

dmtcp_command --checkpoint

dmtcp_restart ckpt_a.out_*.dmtcp

When the user invokes a.out, via the command

dmtcp_command, the LD PRELOAD environment vari-

able causes a DMTCP-specific “hijack” library to be loaded

prior to executing the end user’s “main” routine. This library

creates a checkpoint thread and creates a signal handler

for SIGUSR2, the intra-process checkpoint signal. The

library also creates wrappers for several system calls. The

checkpoint thread then connects to the DMTCP coordinator,

and waits for a checkpoint command.

Upon receiving a checkpoint request from the coordinator,

the checkpoint thread quiesces each of the user threads by

sending the SIGUSR2 checkpoint signal. Next, DMTCP

“drains” any data from the user sockets. To do this the

DMTCP checkpoint thread sends a “cookie” through the

sender end of each socket, and then reads from the receiver

end of each socket until seeing the “cookie.” In-transit data

in socket buffers is thus saved in user space. Next, the

checkpoint thread interrogates the kernel for information

such as the open sockets, ptys, various file descriptors,

mapped memory regions, etc. Information such as socket

options and the current file offset for open files are also

saved.
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Figure 2. Architecture of DMTCP

DMTCP is also “inherited” within and between processes.

Any calls to pthread_create() cause DMTCP to note

the new thread. Any calls to fork() cause the DMTCP

“hijack” library to be loaded into the child process. Similarly,

remote shell calls are detected, and the “hijack” library is

also loaded into the remote process when it starts up.

IV. POWER MEASUREMENTS

For the Intel Core 2 Duo, power measurements per node

were taken from the Green500 list [5], as being more

representative. Specifically, number 115 on the June, 2008

list of the Green500 appears as the largest cluster using Intel

Core 2 Duo nodes. That cluster consisted of 1024 dual-

core nodes, consuming 71.93 kW total power (excluding

the network switch and disks). Based on this, the power per



node used in this paper for Intel nodes is 71930/1024 =

70.24 Watts per node. Note that the Core 2 Duo from June,

2008 was running at 1.5 GHz. Our own newer cluster was

running at 3.0 GHz. We conservatively continue to use the

value of 70.24 Watts for Intel, thereby giving the benefit of

doubt to the Intel CPU.

Power consumption on the ARM CPUs was found to

vary from 3 Watts when idle to 5 Watts under load. Direct

power measurements were taken periodically to compute

performance-to-energy ratios. Specifically, power measure-

ments were taken every 5 seconds. Power was found to vary

by about 15% during a single benchmark run. An average

of the power during the benchmark was used.

The TI OMAP4 CPU has the unusual feature of being able

to separately turn individual cores on and off. Anecdotally,

HPCC/Linpack consumes 23 Watts on a six-node single-core

configuration. This increases to only 30 Watts for a six-node

dual-core configuration.

V. EXPERIMENTAL RESULTS

A. Configuration

We compare nodes on a cluster of ARM OMAP4 pro-

cessors against Intel Core 2 Duo processors, a recent dual-

core CPU architecture, with 6 MB of L2 cache. The ARM

CPU is a TI OMAP 4430 with 1 MB L2 cache on a

PandaBoard motherboard. The Intel architecture is part of

a Dell Optiplex 960 computer. Both CPUs are dual-core.

The TI OMAP4 runs at 1 GHz, with 1 GB of RAM, while

the Intel Core 2 Duo runs at 3 GHz, with 4 GB of RAM.

We present ARM and Intel results for 32 to 40 nodes

below. In our experiments, The ARM computers were using

gcc-4.7 under Ubuntu 12.04, while the Intel computers

were using gcc-4.5 under Ubuntu 9.10. Both use 100 Mbps

Switched Fast Ethernet.

As described in Section IV, the assumed power usage was

taken as 70.24 Watts per CPU core for the Intel processors,

based on values for the Intel Core 2 Duo from the Green500

list [5]. This was considered fairer for Intel measurements,

since the local computers used for time measurements were

not designed for low power.

Power measurements do not include the power of the

Ethernet switch. This was measured separately at 23 Watts

for a 48-port switch in the ARM cluster. Hence, power used

by the cluster dominates power used by the switch. The

ARM computers were run from local SD media.

The benchmarks used were from the NAS Parallel Bench-

marks for MPI [6], [7]. MPICH-2 was used as the MPI

dialect in all tests. To demonstrate native distributed com-

putation, six NAS benchmarks were run using 32 nodes.

In addition, NAS/LU (Lower-Upper Gauss-Seidel Solver)

was used in experiments to test scaling our ARM cluster

to 40 nodes in dedicated cluster and cloud-based modes.

The choice of Intel Core 2 Duo to represent the x86

architecture is motivated by the work of Keys et al. [2].

They showed the Intel Core 2 Duo to have performance per

unit of power better than many other Intel and AMD CPUs,

including several server processors.

Researchers at Aalto University [1] have shown that the

performance to power ratio of a 4-node ARM-based cluster

of PandaBoards is superior to that of a similar 4-node x86-

based cluster by a factor of 1.2 for video transcoding and

up to a factor of 9.5 for an in-memory database.

B. Dedicated Cluster Results

Table I shows time and energy performance for the NAS

Parallel Benchmarks [6] running on dedicated ARM- and

Intel-based clusters, without virtual machines.

Benchmark ARM Intel Ratio

Time (s) Energy (KJ) Time (s) Energy (KJ) (ARM/Intel)

NAS/CG.A 7.79 1.18 3.27 7.35 6.2

NAS/EP.A 13.00 1.97 1.12 2.52 1.3

NAS/FT.A 13.25 2.01 3.61 8.12 4.0

NAS/IS.A 3.37 0.51 1.16 2.61 5.1

NAS/LU.A 138.98 21.08 12.03 27.04 1.3

NAS/MG.A 4.50 0.68 0.68 1.53 2.3

Table I
NATIVE APPLICATIONS (NO VM). CLUSTERS FOR ARM AND INTEL

BOTH CONTAIN 32 NODES. THE ARM/INTEL RATIO COMPARES THE

PERFORMANCE-TO-ENERGY RATIOS FOR THE TWO ARCHITECTURES.
THE ENERGY IS THE READING FROM A POWER METER, INTEGRATED

OVER THE TIME OF THE BENCHMARK FOR THE 32 NODES. AN

ARM/INTEL RATIO GREATER THAN 1.0 FAVORS ARM.

Table I, above, presents results for a variety of NAS-

MPI benchmarks. The tests show a performance to power

advantage for ARM over Intel that ranges from a ratio of 1.3

to 6.2. The ratios correlate well with whether the working

set fits in L2 cache. The Intel CPU has 6 MB of cache, while

ARM has only 1 MB. CG (conjugate gradient: eigenvalue of

a single matrix) and IS (integer sort using bucket sort) have

relatively small working sets, while LU matrix factorization

(64× 64× 64 for LU.A), and MG (MultiGrid; 3-D discrete

Poisson equation) have larger working sets due to the

problems being of higher dimension. The EP benchmark

(embarassingly parallel) seems to be a special case due to

its extensive use of square roots and logarithms. This takes

advantage of Intel’s CPU hardware support.

Table II, below, demonstrates the scalability of the ARM

and Intel clusters running a native application as the number

of nodes in the cluster varies. The NAS/LU.A benchmark

used in Table II was chosen for scalability tests. NAS/LU.A

was conservatively chosen because it favored the Intel CPU

the most (aside from the EP special case). The energy

efficiency ratios in Table II immediately highlight the two

regimes of one to four nodes, and eight or more nodes.

One to four nodes favor Intel due to the heavy pressure

on the CPU cache, which is only 1 MB in the case of

ARM. For eight nodes or more, network communication

stress the computation to a greater extent, thus bringing the

performance of ARM and Intel closer together.. We stress



again that LU was chosen to be conservative. The choice

of NAS/CG or NAS/IS would very strongly favor ARM, as

already seen by the large ratios in Table I.

Num. nodes ARM Intel Ratio

Time (s) Energy (KJ) Time (s) Energy (KJ) (ARM/Intel)

NAS-MPI/LU.A

1 949.11 10.7 125.7 8.8 0.86

2 502.72 10.4 63.21 8.9 0.85

4 380.5 12.30 39.93 11.2 0.91

8 341.5 15.25 31.79 17.9 1.17

16 183.8 16.41 16.11 18.1 1.10

32 139.2 21.39 12.03 27.0 1.26

40 120.0 22.60 10.12 28.4 1.25

Table II
NATIVE APPLICATION (NO VM). SCALABILITY IS DEMONSTRATED AS

THE NUMBER OF NODES IN A CLUSTER VARIES. THE NAS/LU.A
BENCHMARK IS USED. THE RATIO IN THE LAST COLUMN IS DEFINED AS

IN TABLE I.

Next, Table III shows the checkpoint times for the

NAS/LU.A benchmark.

Num. nodes ARM Intel

Ckpt (s) Ckpt (s)

NAS-MPI/LU.A

1 8.2 2.65

2 8.4 2.95

4 8.2 3.13

8 9.6 3.28

16 12.0 3.9

32 20.1 4.68

40 26.7 9.36

Table III
NATIVE APPLICATION (NO VM). SCALABILITY FOR CHECKPOINTING IS

DEMONSTRATED AS THE NUMBER OF NODES IN A CLUSTER VARIES.
CHECKPOINTS ARE TAKEN TO /TMP, RESIDING ON A LOCAL DISK

(INTEL) OR A LOCAL SD CARD (ARM). FOR THE 40-NODE INTEL

CASE, IT IS CONJECTURED THAT ONE NODE WAS PARTICULARLY SLOW.

Although writing to local disk (Intel) or an SD card

(ARM) can contribute to the total time, operating systems

hide this time by buffering disk writes. Further, DMTCP

dynamically invokes gzip for compression. So, we believe

the times to be limited largely by speed of RAM. The ARM

clock speed is three times slower than that of Intel, which

is consistent with checkpoint times for ARM being up to

three times slower than Intel. Nevertheless the ARM CPU

consumes less than a tenth the energy of the Intel CPU. This

gives ARM an overall energy efficiency advantage.

C. Cloud-Based Cluster Results

Table IV shows the ability to use the Qemu virtual

machine to run distributed computations in the cloud.

In Table IV, the times for checkpointing a virtual machine

are now much closer between ARM and Intel. We believe

this is because the memory footprint of a virtual machine is

too large for the operating system to buffer most writes.

Since checkpointing in both clusters is limited by disk-

write speed, Intel loses much of its speed advantage, thereby

yielding energy efficiency ratios heavily in favor of ARM.

Num. nodes ARM Intel Ratio

Time (s) Energy (KJ) Time (s) Energy (KJ) (ARM/Intel)

NAS-MPI/LU.A

1 19.3 0.22 13.3 0.93 4.2

2 22.3 0.46 16.6 2.32 5.0

4 22.2 0.65 20.8 5.84 9.0

8 24.1 1.08 21.3 11.97 11.1

16 29.9 2.67 21.8 24.50 9.2

32 35.2 5.34 25.2 56.64 10.6

40 60.2 11.34 40.8 113.65 10.0

Table IV
CHECKPOINTING EFFICIENCY ON ARM VERSUS INTEL USING THE

QEMU VM. QEMU IS RUN IN USER-MODE. CLUSTERS ON ARM AND

INTEL BOTH CONTAIN UP TO 40 NODES. THE ARM/INTEL RATIO IS

DEFINED AS IN TABLE I.

VI. RELATED WORK

Our work on leveraging checkpoint-restart for fault-

tolerant, energy-efficient high performance computing

(HPC) builds on earlier work by others (e.g. libckpt [8],

Condor [9], and Sun Grid Engine [10]) and also our own

work [4]. Using DMTCP to run HPC applications in a cluster

also complements work by others [11], which explores

using DMTCP to implement speculative software parallelism

for large-scale distributed memory applications. This study

enables HPC applications linked with DMTCP, potentially

running on user-mode Qemu virtual machines [12], to check-

point, restart and migrate as required.

Using ARM-based systems as the building block of

choice for our HPC cluster is motivated by the research of

several groups. For example, the AppleTV cluster research

at Ludwig-Maximilians-Universität [13] has demonstrated

mobile or consumer ARM-based systems a feasible tech-

nology basis for future HPC system designs. The results

in [1] improve on cluster computing energy-efficiency results

based on processors for embedded systems [14], and also on

processors for laptops [2].

Recently, there has also been an emphasis on NVIDIA

GPUs to provide another low-power alternative for cluster

computing, e.g. [15]. However, the NVIDIA architecture

depends on special tuning of GPU kernels to accommodate

a SIMD style of programming. Most of the software tested

in Section V has not been ported to the NVIDIA GPU.

Finally, our work assumes that chip and board designs

have an ideal configuration and clock speed that delivers

the best performance per unit of power for most HPC appli-

cations. (Recall that the TI OMAP-based PandaBoard con-

sumed 23 Watts for six cores running a representative HPC

workload, but only 30 Watts for twelve cores.) We therefore

argue that power- or energy-proportional designs [16] for

HPC should adjust the aggregate performance of a cluster

by running servers (or blades) in their ideal configuration and

turning them on and off on demand. The merit of this idea

has been demonstrated by others, e.g. [17], and can leverage

DMTCP to consolidate and distribute tasks among nodes

either within a cluster or between clusters, possibly hosted



in the cloud. This approach is in contrast to dynamic voltage

and frequency scaling (DVFS) [7], [18], which recently has

been shown to provide limited power savings [1].

VII. CONCLUSION

The 1 GHz dual-core ARM Cortex-A9 demonstrated an

energy efficiency ratio 1.3 to 6.2 times greater than a 3 GHz

Intel Core 2 Duo in 32-node cluster configurations. ARM

was more energy efficient despite Intel having approximately

five times greater performance. For those benchmarks with

the largest working sets and smallest cluster sizes (just one,

two, or four nodes), the ratio fell as low as 0.9, since this

stressed primarily the CPU cache and not the network. The

benchmarks favored ARM especially when the benchmark

had a small working set, since the ARM CPU had only a

1 MB L2 cache, as opposed to Intel’s 6 MB cache. A large

cluster size also favored ARM, since the problem data could

be distributed across the network. This stresses the network,

but not the CPU cache. As the current ARM Cortex-A9

generation is replaced by by the 32-bit ARM Cortex-A15

and then the future 64-bit ARMv8, this may further bias the

ratios toward ARM. In particular, AppliedMicro projects in

their roadmap a 3 GHz ARMv8 CPU consuming 2 Watts per

core [3]. The comparison here using the Cortex-A9 provides

designers of energy-efficient systems with initial estimates of

energy consumption on realistic benchmarks for department-

level clusters, or in the cloud.
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