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ABSTRACT
This poster paper summarizes our solution for mining max
frequent generalized itemsets (g-itemsets), a compact repre-
sentation for frequent patterns in the generalized environ-
ment.

Categories and Subject Descriptors: H.m Information
Systems: Miscellaneous

General Terms: Algorithms.

Keywords: data mining, max frequent itemsets.

1. INTRODUCTION
Mining generalized frequent patterns is a well-motivated

existing problem [2, 3]. Here, generalized itemsets (or pat-
terns) employ a taxonomy of items, rather than a flat list of
items. This produces more natural frequent itemsets such
as (meat, milk) instead of (beef, milk), (chicken, milk), etc.

We address the problem of mining max generalized fre-
quent itemsets: those without frequent supersets. This is
an extremely compact representation of all generalized fre-
quent itemsets. This compact representation solves a stan-
dard dilemma in mining patterns: with a small threshold for
frequency, the user is overwhelmed by the hordes of identi-
fied patterns; but with a large threshold for frequency, some
interesting patterns fail to be identified.

2. PROBLEM DEFINITION
The set of all items form a taxonomy T , which is a tree

structure. An example is shown in Figure 1(a). Think of leaf
items A as apple, B as banana, and C as candy. And think
of non-leaf items W as fruit and Y as food. A transactional
database D is a list of transactions, each of which containing
some items from the leaf level of T .

Definition 1. Given a taxonomy T , a generalized item-
set, or g-itemset in short, is a non-empty set of items from
T , where no two of the items have an ancestor-descendant
relationship in T .

Hence, the set {apple, fruit} is not considered a g-itemset
since it is not compact. (The equivalent compact itemset is
{apple}.)
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Given an item i ∈ T and a g-itemset S, we say i belongs to
S with respect to T , denoted as i ∈T S, if ∃j ∈ S such that
i = j or i is an ancestor of j in T . Intuitively, any trans-
action that contains apple is considered to contain fruit.
Therefore fruit ∈T {apple}.

Given two g-itemsets S1 and S2, we say S1 is a subset
of S2 with respect to T , denoted as S1 ⊆T S2, if ∀i ∈ S1,
i ∈T S2. We also have the proper subset notation (⊂T ) with
its obvious meaning.

The support of a g-itemset S is the percentage of trans-
actions in D that are supersets of S with respect to T . A
g-itemset is frequent if its support is above a given threshold
minsupport.

Definition 2. Given a taxonomy T , a transactional
database D, and a threshold minsupport, a max frequent
g-itemset is a frequent g-itemset without a frequent proper
superset with respect to T .

We are interested in efficiently mining the set of all max
frequent g-itemsets.

3. THE CLASSIFICATION SOLUTION
The classification-based solution has two components. Sec-

tion 3.1 defines a conceptual classification tree. Section 3.2
describes the algorithm MFGI class which dynamically gen-
erates the needed part of the tree, while pruning entire
branches using three pruning techniques.

3.1 The Conceptual Classification Tree
This section provides a conceptual classification tree. Ev-

ery g-itemset corresponds to exactly one leaf node in the
tree. An index node also corresponds to a g-itemset, which
is a superset of all g-itemsets in the sub-tree. An example
of a classification tree is shown in Figure 1(b).

In particular, every node in our classification tree has
three components, (S1)(S2)(S3). Any g-itemset in the sub-
tree must-literally-have-all-of the g-items in S1, must-have-
part-or-all-of the g-items in S2, and may-have-part-or-all-of
the g-items in S3. For instance, let the root of the taxon-
omy be Y . The root of the classification tree is ()(Y )(). Any
g-itemset in the subtree must contain some g-items in the
sub-taxonomy of Y .

The children of the classification tree node will be:
()(W )(C), (C)()() and (Y )()(). The first sub-tree corre-
sponds to the g-itemsets that contain some g-item in the
sub-taxonomy of W . The second sub-tree corresponds to
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Figure 1: A taxonomy and the corresponding classification tree.

the g-itemsets that contain some g-item in the sub-taxonomy
of C but not any g-item in the sub-taxonomy of W . And
(Y )()() is a leaf node in the classification tree, which corre-
sponds to a single g-itemset {Y }.

3.2 The Mining Algorithm MFGI class
The algorithm MFGI class dynamically generates the

classification tree as defined in Section 3.1, with pruning
techniques to prune unnecessary branches. This section fo-
cus on the pruning techniques.

Every index node in the classification tree has a corre-
sponding g-itemset, which is the smallest superset of all g-
itemsets in the sub-tree. For example, the corresponding
g-itemset for (W )()(C) is WC, and the corresponding g-
itemset for ()(Y )() is ABC.

• Pruning Technique 1: If the corresponding g-itemset
of a node N is frequent, prune subtree(N).

• Pruning Technique 2: When generating the child
nodes of some index node (S1)(X)(S3), we check the
frequency of S1 ∪ {Xi} for every child g-item Xi of X
in T . If S1 ∪ {Xi} is not frequent, prune Xi before
generating the child nodes.

As an example, at node ()(Y )(), we check the frequency of
W and C. Suppose W is not frequent, we know no g-itemset
that contains W or descendants of W in T can be frequent.
So to generate the child nodes, we should imagine W does
not exist, and Y has a single child C in T . Thus only two
child nodes should be generated: (C)()() and (Y )()().

• Pruning Technique 3: When generating the child
nodes of some index node (S1)()(S3), where S3 only
contains leaf g-items in T , instead of enumerating all
subsets of S3, we should use MaxMiner [1].

4. EXPERIMENTAL ANALYSIS
There is no existing algorithm to directly compare with

our new algorithm MFGI class, simply because this is the
first work that mines max frequent g-itemsets. We instead
compare with BASIC [2]. Note that BASIC was proposed
to find all frequent g-itemsets. So we give MFGI class
the additional handicap of producing all frequent g-itemsets
from the set of identified max frequent g-itemsets.

The algorithms were implemented in Sun Java 1.5.0, and
executed on a Sun Blade 1500 with 1 GB of memory running
SunOS 5.9. The experimental data were generated using the
widely used Quest Synthetic Generator with the following
parameters. The taxonomy has 1000 g-items. The database
contains 10,000 transactions with average size being 5.

We choose to compare with BASIC because it has been
widely used as a baseline algorithm and it has a clear, stan-
dard implementation whose speed will not be greatly bi-
ased by the implementation. But since Srikant and Agrawal
also presented Cumulate and EstMerge [2] and reported that
they are 2 to 5 times faster than BASIC, in Figure 2 we in-
clude a band of a factor of 5 in the speed of BASIC (the
“previous best” line was manually generated by taking 1/5
of the execution time of BASIC).
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Figure 2: Comparison against BASIC.

Figure 2 demonstrates that MFGI class is exponentially
faster than BASIC as the number of levels of the taxonomy
increases. The huge speedup over BASIC that we achieve
especially for taxonomy levels of 4 and above are far beyond
what is achieved by other algorithms for mining frequent
g-itemsets.
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