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ABSTRACT

This poster paper summarizes our solution for mining max
frequent generalized itemsets (g-itemsets), a compact repre-
sentation for frequent patterns in the generalized environ-
ment.

Categories and Subject Descriptors: H.m Information
Systems: Miscellaneous

General Terms: Algorithms.

Keywords: data mining, max frequent itemsets.

1. INTRODUCTION

Mining generalized frequent patterns is a well-motivated
existing problem [2, 3]. Here, generalized itemsets (or pat-
terns) employ a taxonomy of items, rather than a flat list of
items. This produces more natural frequent itemsets such
as (meat, milk) instead of (beef, milk), (chicken, milk), etc.

We address the problem of mining max generalized fre-
quent itemsets: those without frequent supersets. This is
an extremely compact representation of all generalized fre-
quent itemsets. This compact representation solves a stan-
dard dilemma in mining patterns: with a small threshold for
frequency, the user is overwhelmed by the hordes of identi-
fied patterns; but with a large threshold for frequency, some
interesting patterns fail to be identified.

2. PROBLEM DEFINITION

The set of all items form a taxonomy 7, which is a tree
structure. An example is shown in Figure 1(a). Think of leaf
items A as apple, B as banana, and C as candy. And think
of non-leaf items W as fruit and Y as food. A transactional
database D is a list of transactions, each of which containing
some items from the leaf level of 7.

DEFINITION 1. Given a tazonomy 7T, a generalized item-
set, or g-itemset in short, is a non-empty set of items from
T, where no two of the items have an ancestor-descendant
relationship in T .

Hence, the set {apple, fruit} is not considered a g-itemset
since it is not compact. (The equivalent compact itemset is

{apple}.)
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Given an item ¢ € 7 and a g-itemset S, we say ¢ belongs to
S with respect to 7', denoted as i €7 .5, if 35 € S such that
i = j or i is an ancestor of j in 7. Intuitively, any trans-
action that contains apple is considered to contain fruit.
Therefore fruit €7 {apple}.

Given two g-itemsets S1 and Sa, we say S1 is a subset
of Sz with respect to 7, denoted as Si1 Cr Sa, if Vi € Sy,
i €7 S2. We also have the proper subset notation (Cr) with
its obvious meaning.

The support of a g-itemset S is the percentage of trans-
actions in D that are supersets of S with respect to 7. A
g-itemset is frequent if its support is above a given threshold
mainsupport.

DEFINITION 2. Given a tazonomy 7, a transactional
database D, and a threshold minsupport, a max frequent
g-itemset is a frequent g-itemset without a frequent proper
superset with respect to T .

We are interested in efficiently mining the set of all max
frequent g-itemsets.

3. THE CLASSIFICATION SOLUTION

The classification-based solution has two components. Sec-
tion 3.1 defines a conceptual classification tree. Section 3.2
describes the algorithm MFGI_class which dynamically gen-
erates the needed part of the tree, while pruning entire
branches using three pruning techniques.

3.1 The Conceptual Classification Tree

This section provides a conceptual classification tree. Ev-
ery g-itemset corresponds to exactly one leaf node in the
tree. An index node also corresponds to a g-itemset, which
is a superset of all g-itemsets in the sub-tree. An example
of a classification tree is shown in Figure 1(b).

In particular, every node in our classification tree has
three components, (S1)(S2)(S3). Any g-itemset in the sub-
tree must-literally-have-all-of the g-items in S1, must-have-
part-or-all-of the g-items in S2, and may-have-part-or-all-of
the g-items in Ss. For instance, let the root of the taxon-
omy be Y. The root of the classification tree is ()(Y)(). Any
g-itemset in the subtree must contain some g-items in the
sub-taxonomy of Y.

The children of the classification tree node will be:
OM)(C), (C)O)() and (Y)()(). The first sub-tree corre-
sponds to the g-itemsets that contain some g-item in the
sub-taxonomy of W. The second sub-tree corresponds to
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Figure 1: A taxonomy and the corresponding classification tree.

the g-itemsets that contain some g-item in the sub-taxonomy
of C' but not any g-item in the sub-taxonomy of W. And
(Y)()() is a leaf node in the classification tree, which corre-
sponds to a single g-itemset {Y}.

3.2 The Mining Algorithm MFGI _class

The algorithm MFGI_class dynamically generates the
classification tree as defined in Section 3.1, with pruning
techniques to prune unnecessary branches. This section fo-
cus on the pruning techniques.

Every index node in the classification tree has a corre-
sponding g-itemset, which is the smallest superset of all g-
itemsets in the sub-tree. For example, the corresponding
g-itemset for (W)()(C) is WC, and the corresponding g-
itemset for ()(Y)() is ABC.

e Pruning Technique 1: If the corresponding g-itemset
of a node N is frequent, prune subtree(N).

e Pruning Technique 2: When generating the child
nodes of some index node (S51)(X)(S3), we check the
frequency of S U {X;} for every child g-item X; of X
in 7. If S; U{X;} is not frequent, prune X; before
generating the child nodes.

As an example, at node ()(Y)(), we check the frequency of
W and C. Suppose W is not frequent, we know no g-itemset
that contains W or descendants of W in 7 can be frequent.
So to generate the child nodes, we should imagine W does
not exist, and Y has a single child C' in 7. Thus only two
child nodes should be generated: (C)()() and (Y)()().

e Pruning Technique 3: When generating the child
nodes of some index node (S1)()(S3), where S3 only
contains leaf g-items in 7, instead of enumerating all
subsets of S3, we should use MaxMiner [1].

4. EXPERIMENTAL ANALYSIS

There is no existing algorithm to directly compare with
our new algorithm MFGI _class, simply because this is the
first work that mines max frequent g-itemsets. We instead
compare with BASIC [2]. Note that BASIC was proposed
to find all frequent g-itemsets. So we give MFGI_class
the additional handicap of producing all frequent g-itemsets
from the set of identified max frequent g-itemsets.

The algorithms were implemented in Sun Java 1.5.0, and
executed on a Sun Blade 1500 with 1 GB of memory running
SunOS 5.9. The experimental data were generated using the
widely used Quest Synthetic Generator with the following
parameters. The taxonomy has 1000 g-items. The database
contains 10,000 transactions with average size being 5.

We choose to compare with BASIC because it has been
widely used as a baseline algorithm and it has a clear, stan-
dard implementation whose speed will not be greatly bi-
ased by the implementation. But since Srikant and Agrawal
also presented Cumulate and EstMerge [2] and reported that
they are 2 to 5 times faster than BASIC, in Figure 2 we in-
clude a band of a factor of 5 in the speed of BASIC (the
“previous best” line was manually generated by taking 1/5
of the execution time of BASIC).
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Figure 2: Comparison against BASIC.

Figure 2 demonstrates that MFGI _class is exponentially
faster than BASIC as the number of levels of the taxonomy
increases. The huge speedup over BASIC that we achieve
especially for taxonomy levels of 4 and above are far beyond
what is achieved by other algorithms for mining frequent
g-itemsets.
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