
Checkpointing as a Service in Heterogeneous Cloud
Environments

Jiajun Cao∗, Matthieu Simonin†, Gene Cooperman∗, Christine Morin†

∗College of Computer and Info. Science,
Northeastern U., Boston, MA, USA
{jiajun,gene}@ccs.neu.edu

†Inria
IRISA, Rennes, France
{Matthieu.Simonin, Christine.Morin}@inria.fr

Abstract—A non-invasive, cloud-agnostic approach is demon-
strated for extending existing cloud platforms to include
checkpoint-restart capability. Most cloud platforms currently rely
on each application to provide its own fault tolerance. A uniform
mechanism within the cloud itself serves two purposes: (a) direct
support for long-running jobs, which would otherwise require a
custom fault-tolerant mechanism for each application; and (b) the
administrative capability to manage an over-subscribed cloud
by temporarily swapping out jobs when higher priority jobs
arrive. An advantage of this uniform approach is that it also
supports parallel and distributed computations, over both TCP
and InfiniBand, thus allowing traditional HPC applications to
take advantage of an existing cloud infrastructure. Additionally,
an integrated health-monitoring mechanism detects when long-
running jobs either fail or incur exceptionally low performance,
perhaps due to resource starvation, and proactively suspends the
job. The cloud-agnostic feature is demonstrated by applying the
implementation to two very different cloud platforms: Snooze
and OpenStack. The use of a cloud-agnostic architecture also
enables, for the first time, migration of applications from one
cloud platform to another.

Keywords- checkpoint-restart, cloud computing, distributed
application, infrastructure-as-a-service, virtualization, scalability,
self-healing.

I. INTRODUCTION

Cloud computing provides users with the illusion of an

infinite pool of resources available over the Internet, from

which they can access on demand and through self-service

the resources they need for their applications. In less than

a decade numerous cloud providers have flourished, each

of them operating one or several data centers in differ-

ent locations. Cloud providers target transparent failure and

maintenance management, with the twin goals of satisfying

their customers, and providing the high resource utilization

that maximizes their profit. Many failure, reconfiguration and

resource management strategies rely on the ability to migrate

virtual machines (VMs) both between data centers and within

a single data center. Customers want their applications to be

executed reliably in the cloud, and they seek to escape the

vendor lock-in phenomenon by taking advantage of a market

of heterogeneous clouds.

We propose a novel Checkpointing as a Service approach,

which enables application checkpointing and migration in

heterogeneous cloud environments. Our approach is based on

∗This work was partially supported by the National Science Foundation
under Grants ACI-1440788 and OCI 1229059, and by a grant from Intel
Corporation.

a non-invasive mechanism to add fault tolerance to an existing

cloud platform after the fact, with little or no modification to

the cloud platform itself. It achieves its cloud-agnostic prop-

erty by using an external checkpointing package, independent

of the target cloud platform.

Such a cloud-agnostic checkpointing service is important

for at least three distinct reasons:

1) provision of fault tolerance for long-running tasks;

2) improved cloud efficiency (low-priority applications can

be suspended to stable storage, and restored only when

idle CPU cycles are available); and

3) migration of tasks between distinct IaaS clouds (e.g.,

between one operated by the Snooze system and one

operated by the OpenStack system).

The proposed Cloud-Agnostic Checkpointing Service
(CACS) is retro-fitted into multiple cloud platforms. This is

demonstrated for two cloud platforms: Snooze and OpenStack.

A necessary component of CACS is a health-monitoring

mechanism that not only detects when an application has

“died”, but generally when an application is unhealthy. Detect-

ing the latter is non-trivial, since only the application developer

knows if the termination or non-responsiveness of one process

is fatal to the overall computation. Hence, a hook is provided

for each application to determine its own “health”.

Our contributions are three-fold:

• We provide the first transparent checkpointing scheme for

centralized, parallel and distributed computations in the

Cloud.

• The transparent checkpointing scheme is cloud-agnostic.

The minimal assumptions of this approach allow it to be

extended to most cloud architectures.

• Migration of computations among heterogeneous clouds

is provided.

CACS employs the DMTCP package [1], a checkpointer for

distributed multithreaded applications. This was chosen for its

transparent support of distributed applications, including both

TCP/IP and the InfiniBand network [2].

Moreover, we show that our approach toward checkpointing

and migration scales with application size and with the number

of applications hosted in a data center.

The remainder of this paper is organized as follows. Sec-

tion II presents further background and motivation for the

approach. In Section III we discuss the principles that guided

the design of the cloud checkpointing service. Section IV

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.160

61

provides an overview of CACS. Section V presents some

typical scenarios, from application submission through check-

point, recovery and/or migration to a new cloud, and finally

application termination. Section VI presents our prototype

implementation. In Section VII we analyze the results from a

first experimental evaluation. Section VIII describes the related

work, while the conclusions are presented in Section IX.

II. MOTIVATION

The cloud-agnostic checkpointing service is intended to

provide a single checkpointing solution for heterogeneous

computing services. This eliminates the need for each comput-

ing service to implement its own checkpointing solution. Such

solutions are required not only for long-lived computations,

but also for numerous other use cases.

A. Context: IaaS and Heterogeneity among Clouds
IaaS clouds provide resources on demand to their customers

in the form of virtual machines. IaaS clouds are heterogeneous,

each coming with its own marketplace of Virtual Machine
Images (VMI). Customers of an IaaS cloud provider select

VMIs among those offered. Different VMIs correspond to

different, possibly customized, combinations of an operating

system kernel, an OS distribution, and a processor architec-

tures (32- or 64-bit). Instances are characterized by the amount

and type of resources they use (e.g., number of cores, memory

capacity, disk capacity).

The IaaS cloud management system manages the life cycle

of a VM from submission to termination. In particular, it

allocates the server resources among the VMs and performs

VM scheduling. Servers and VMs are monitored in order to

determine efficient resource management strategies. In a cloud

environment, a distributed application is executed using a set

of interconnected VMs called a virtual cluster.

Different cloud environments also introduce heterogeneity

among dimensions other than those described in the previous

paragraph. Servers may have different hardware configurations

(e.g., Intel versus AMD processors), and may run different

combinations of VMs and hypervisors (e.g., KVM/QEMU,

Xen, and Linux containers).

A sufficiently robust checkpoint-restart package, such as

the DMTCP package used here, can overcome these sources

of heterogeneity. As a prerequisite, an end user must design

her applications for a common denominator: compiling for

the intersection of Intel and AMD instruction sets, avoiding

the most recent system calls in order to provide backward

compatibility, programming scalability to adjust for fewer or

more cores, and even compiling for a 32-bit instruction set

if a combination of 32- and 64-bit CPUs is anticipated. In

this way, a cloud-agnostic checkpointing service can directly

migrate applications among such heterogeneous resources.

Finally, a cloud-agnostic checkpointing service must be

tolerant of the different types of IaaS cloud management

systems that exist today. These include OpenStack [3] (widely

adopted in production data centers), Nimbus [4] (targeting

scientific computing), and Eucalyptus [5], OpenNebula [6] and

Snooze [7] (originating from academia), and Amazon EC2

(the most widely used public commercial cloud). IaaS cloud

systems may use different VM disk image formats (e.g.

QCOW, VMDK) and provisioning methods. They may provide

different APIs for storage and VM management. However,

some popular interfaces (EC2 for VM management and S3

for storage, for example) have become de-facto standards.

Recently, there have been a number of emerging standard APIs

such as DMTF CIMI [8] and OGF OCCI [9], which have not

yet become mainstream.

B. Use Cases
Many motivating use cases demonstrate the need for a

portable efficient cloud checkpointing service. A first use

case is fault-tolerant application execution in the cloud. Long-

running jobs (such as OpenMP-based or MPI-based scientific

applications) should be periodically checkpointed, so that they

can be restored from their last checkpoint in the event of a

failure.

Ideally, it should be possible to restore an application either

in the same data center or in another one from the same

cloud provider to survive catastrophic failures affecting a

whole data center. However, although a second data center

may be available, it may be running under a different type of

infrastructure. This gives rise to the second use case: migration

among heterogeneous clouds.

A third use case occurs when the cloud provider needs to

transparently carry out maintenance operations. Providers can

stop all applications and checkpoint them or migrate them to

other clusters, before taking down a cluster for maintenance.

A fourth use case occurs in the scientific world, in the

framework of advanced VM scheduling algorithms. Periods

of low demand may lead to potentially low utilization rates.

A VM scheduler attempts to increase resource utilization.

Opportunistic preemptible leases running on backfill VMs

have been proposed for this case by Marshall et al. [10]. Such

leases give a user access to a resource at an indeterminate time

and for an indeterminate amount of time, but are less expensive

than traditional on-demand leases. Transparent cloud-agnostic

checkpointing allows any scientific application to use such a

lease.

Proactive cloud migration provides a fifth use case. For

a cloud provider operating multiple possibly heterogeneous

data centers it is desirable to be able to migrate VMs from

one cloud to another. Energy-efficient resource management

policies such as follow-the-sun (aimed at exploiting renewable

energy sources to the extent possible) and cloud bursting are

two illustrating use cases [11] .

A sixth use case is vendor lock-in. Cloud customers cur-

rently face vendor lock-in issues in re-targeting their dis-

tributed applications from one cloud provider to another. A

cloud-agnostic checkpointing service would overcome hetero-

geneity issues and empower cloud users to take advantage of

the competitive cloud computing market by outsourcing their

applications to another provider.

Last but not least is the seventh use case. Migrating legacy

distributed applications to the cloud remains a tedious task for

users who don’t have system administration skills. In the con-

text of IaaS clouds, porting from a cluster to a virtual cluster in

the cloud may require the skills of a system administrator and

62

the domain-specific knowledge of an end-user. The portable

checkpointing service proposed here is a key building block

for a cloudification service, significantly reducing the burden

of legacy applications users in moving their application to

the cloud. In principle, a user would simply use the CACS-

based cloudification service to migrate her application from

her desktop or local cluster to a selected IaaS provider, since

the design of CACS will extend to run on other resource

management services, including a Linux desktop system and

the resource management system (RMS) (e.g., batch system)

of an HPC cluster.

There is no claim that the current CACS design will

satisfy all of the above use cases. Some use cases might

require specialized cloud configurations or specialized data

services [12].

III. DESIGN PRINCIPLES OF CACS

To address the requirements presented in the previous sec-

tion, we developed a Cloud-Agnostic Checkpointing Service.

We discuss five principles that guided its design.

A. Why Using a Process-level Checkpointer rather than VM
Snapshots?

A key design principle of the Cloud-Agnostic Checkpoint-

ing Service is that it leverages a process-level checkpointer

for checkpointing distributed applications executed in virtual

machines. There are two primary reasons why a process-level

checkpointer was chosen instead of using the VM snapshot

mechanism offered by hypervisors. First, snapshotting a set

of virtual machines is more expensive than checkpointing a

set of processes. In the latter case the operating system is not

checkpointed, and the checkpoint size is much smaller. While

data deduplication techniques [11] can be used to reduce the

cost of live migration, our approach has a broader applicability

being hypervisor-agnostic.Second, process-level checkpointers

like DMTCP manage dependencies among communicating

multithreaded processes when saving a checkpoint. When

checkpointing a distributed application running in multiple

VMs using VM snapshots, hypervisors fail to handle the inter-

process communications of distributed processes.

VM snapshots have been extensively used to checkpoint an

application running in a single VM, since it provides a generic

checkpointing mechanism transparent to the application, which

does not need to be modified. A process-level checkpointer

like DMTCP is fully transparent to the application and generic,

including support for checkpointing sets of communicating

multi-threaded processes. Moreover, in an environment of

multiple heterogeneous clouds, a process-level approach to

checkpointing the distributed applications of a virtual cluster

provides better portability and interoperability than one based

on VM snapshots. This avoids the difficulty of porting VM

images and adapting to multiple IaaS cloud management APIs,

when dealing with different cloud management systems.

B. Eliminating the Checkpoint Management Burden
Checkpointing should come as a service, implying a min-

imal burden for users. In our approach, users request their

VMs from CACS rather than directly from the IaaS cloud

manager, and submit their application to CACS while spec-

ifying the checkpointing policy (e.g., checkpoint frequency).

CACS obtains the VMs, installs and configures the process-

level checkpointer and the application inside the VMs, and

then automatically triggers checkpoints according to the user-

defined policy.

C. Portability and Interoperability
CACS has been designed to execute on top of unmodified

existing IaaS cloud management systems, to address a broad

IaaS cloud market. Thus, it relies on the de facto standard

APIs offered by most IaaS clouds systems, namely EC2 for

VM and S3 for storage management.

An important requirement is to be able to detect failures

at the level of the server, the VM and the application, within

the underlying IaaS cloud management system. For instance,

OpenStack does not provide an API to report infrastructure

failures to clients. So CACS must include a cloud-agnostic

monitoring system. Yet at the same time, CACS should be

able to exploit any existing monitoring mechanisms of the

underlying IaaS cloud where they exist, as in the case of the

Snooze VM management system.

Another portability issue arises from the fact that different

IaaS management systems may use different VMI formats and

offer different types of VM. This further motivated the first

design decision: to use application-level checkpointing rather

than VM snapshots.

D. Scalability
CACS should scale with the number of concurrent VMs so

that it can be used to tolerate failures in data centers; and it

should scale with the size of the applications (with the number

of VMs per application) so as to have a limited impact on the

execution time of large distributed applications.

The choice of implementation for stable storage has an im-

portant impact on these two types of scalability. Thus, CACS

relies on distributed parallel file systems such as Ceph [13]

in order to cope with the huge volume of data to be stored

when several checkpoints are taken simultaneously. Similarly,

efficient VM management is also essential to limit as much as

possible the recovery time.

E. Usability
Nowadays, providing a REST API for a service is a key

feature. Resources are served using various server representa-

tions. This eases the interaction with users and with third-

party software (e.g., CLI, web-based GUI). Moreover, the

statelessness of server requests in a REST API provides for

server scalability, since communication between clients and

server is loosely coupled.

IV. OVERVIEW OF CACS

Next, the CACS architecture and its core components are

presented. First, the underlying technology, DMTCP, is intro-

duced. Then the CACS internal components are examined.

A. DMTCP Application Checkpointer
The choice of DMTCP (Distributed MultiThreaded

CheckPointing) [1] for checkpoint-restart was dictated

by the maturity of that ten-year old project [14]

available as binary packages for Debian/Ubuntu,

63

Fedora/CentOS/Scientific Linux/Red Hat, and OpenSUSE).

In particular, DMTCP supports the types of migration of

processes among heterogeneous environments that were

described in Section II.

In DMTCP, each application is associated with a unique

DMTCP application coordinator in charge of coordinating

the checkpointing of processes running on distinct computer

nodes. The coordinator need not reside on a host that is

hosting application processes, and directly communicates with

DMTCP daemons running on each node hosting application

processes. When an application is restarted, a new DMTCP

coordinator is used, thus avoiding any single point of failure.

B. Architecture of CACS
Figure 1 depicts the overall architecture of the service. The

RESTful API allows users to manage their applications and

their corresponding checkpoints. The Coordinators Database
stores all the applications information. The Application Man-
ager orchestrates application management (start and restart)

and enforces failure recovery mechanisms. It communicates

with the Cloud Manager to manage (create, destroy) virtual

clusters. The Cloud Manager interacts with the underlying IaaS

cloud system to manage the VMs. The Provision Manager
takes on the burden of efficiently configuring the virtual clus-

ters. The Checkpoint Manager component is for managing the

application checkpoint images. The Monitoring Manager com-

ponent enables VM and application process failure detection.

It is notified about application health issues and VM failures by

monitoring daemons running in each VM of the virtual cluster

executing the application. In the event of a notification, it

interacts with the Application Manager in order to stop and/or

recover the application from a previous checkpoint.

Virtual Cluster

VM

CACS

Applications Storage

user API

Cloud
Manager

Checkpoint
Manager

NFS

Snooze

Application
Manager

Client Client Client Client

Monitoring
Manager S3

DFS

EC2

coordinators

Physical StorageVM

DMTCP coordinator
monitoring daemon

DMTCP program
monitoring daemon

VM

VMVM VM

Provision
Manager
pSSH

Fig. 1: Cloud Checkpointing Service Architecture

An application is executed under the control of DMTCP

whose daemons run in each VM hosting the application

processes, with one of them running the DMTCP coordinator.

V. TYPICAL SCENARIOS

We describe five scenarios of a typical CACS user, ordered

according to the life cycle of an application comprising of n
processes running in n different virtual machines. This section

describes in greater details some mechanisms used to handle

user requests. Table I depicts the description of the resources

managed by the API and the available operations.

coordinators resource
GET /coordinators returns the list of coordinators

known by the system
POST /coordinators add a new coordinator to the

system
coordinator resource
GET /coordinators/:id returns the information of the

coordinator with id : id
DELETE /coordinators/:id delete the coordinator
checkpoints resource
GET /coordinators/:id/checkpoints returns the list of the check-

points of the coordinator
POST /coordinators/:id/checkpoints trigger a checkpoint for the

coordinator or upload a check-
point image

checkpoint resource
GET /coordinators/:id/checkpoints/:id returns the information of a

checkpoint
POST /coordinators/:id/checkpoints/:id restart the coordinator from the

checkpoint
DELETE /coordinators/:id/checkpoints/:id delete the checkpoint

TABLE I: REST API description

A. Application Submission
Here we describe application submission to CACS. A POST

request is issued to the coordinators resource and the

body contains the representation of an Application Submission
Request (ASR). The ASR encapsulates the VM templates and

the configuration parameters of DMTCP needed to start the

application.

Once the Application Manager validates the ASR, the

application enters the CREATING phase (see Figure 2) during

which virtual resources are claimed by the Cloud Manager.

Once the VMs have been given to the computation, the

PROVISION phase starts. In this phase, the Provision Manager

remotely executes specific commands to prepare the com-

putation to be run. The provision includes internal actions

(e.g., creation of checkpoint directory in the VMs) but also

user-defined configuration (e.g., periodicity of the checkpoints,

specific initializations). The provisioning phase may differ

according to the storage back-end used.

The READY state is introduced to reflect the fact that all the

VMs are ready to start the computation. The RUNNING state

indicates that the computation is in progress. In this phase,

checkpoints can be saved.

An alternative way of starting an application is described in

section V-C.

B. Saving Checkpoints
Three modes of transparent checkpointing are supported:

(1) user-initiated checkpointing; (2) periodic checkpointing;

and (3) application-initiated checkpointing (for example, at

64

the end of each application iteration). The first case can be

fulfilled by issuing a POST request to the corresponding

checkpoints resource. In the second and third case,

DMTCP triggers the checkpoint without the need for a POST

request. CACS distinguishes between local and remote storage.

Where fast local storage is available (e.g., a local disk, an SSD,

or a RAM disk inside RAM itself), the checkpoint image is

written first to the local storage. For redundancy, it is also

copied (on a lazy basis) to remote storage, such as Ceph and

NFS.

C. Application Recovery, Cloning and Migration
The API enables the following scenarios: (1) application

restarting (the application state is reset to a previous check-

pointed state and restarted); (2) application cloning (a new ap-

plication is created and restarted from a previous checkpointed

state of the original application); and (3) application migration

(an application is cloned to another cloud and terminated on

the source cloud).
In the first case, metadata for the checkpoints is retrieved

from the Checkpoint Manager. Then the Application Manager

triggers a passive recovery mechanism: new VMs can be

restarted and provisioned if some VMs of the original set are

not reachable any more. Finally each VM in the computation

downloads its corresponding checkpoint images from the

storage. The process of restarting the application is delegated

to DMTCP.
Cloning and migrating provide alternative ways of creating

an application. In these cases, a new application is created by

issuing a POST request to the coordinators resource.

Second, n POST requests are sent to the corresponding

checkpoints resource to upload a set of checkpoint

images. Finally, a POST to the checkpoint resource
will restart the application. This will trigger the passive
recovery mechanism to generate a new virtual cluster where

the application will run.

D. Application Termination
Terminating an application consists of removing all refer-

ences to the application in the system. This can be decomposed

as: (1) deletion of the corresponding entry in the coordinator
database; (2) removal of all the stored checkpoint images from

the storage; and (3) release of the allocated VMs back to the

pool of idle VMs in the underlying infrastructure.
The TERMINATING state is reached when an end user

issues a DELETE request to the coordinator resource
or when the ERROR state is set for the application.

VI. IMPLEMENTATION OF CACS

This section describes in detail some technical aspects of

CACS.

A. Cloud Manager
The current CACS prototype supports two underlying IaaS

technologies (Snooze and EC2 compatible VM management

systems) allowing us to demonstrate the portability and in-

teroperability of CACS in heterogeneous cloud environments.

Snooze [7] is a scalable highly available system. It has been

primarily designed as a small system easing the deployment

of VMs and easing experimentation with VM management

READY

CREATING

PROVISIONING ERROR

DELETEDRESTARTING

RUNNING

Fig. 2: CACS Coordinator states

strategies. The Cloud Manager uses the specific REST API of

Snooze to manage virtual clusters. Snooze provides a server

and VM failure notification API that can be directly used by

the Monitoring Manager. (Thus with Snooze, no monitoring

daemons need to be executed in the VMs.) EC2 compatible

Cloud (like Openstack [3]) are supported as well. OpenStack

does not provide a failure notification interface and thus the

cloud-agnostic monitoring service is used.

B. Checkpoint Manager and Storage System
The Checkpoint Manager, depicted in Figure 1, enables

different storage systems to be plugged into CACS. The

current implementation of the service is stateless and supports

two storage systems: (1) NFS and (2) S3. NFS is suitable

for small-scale deployment and especially for prototyping.

S3 is the de facto standard API of Amazon Web Service

for manipulating stored objects. Supporting S3 gives CACS

compatibility with the major Cloud providers, but also with

other solutions such as Ceph.

Since checkpoint images may be generated periodically,

under application control, or by the end user, a decision was

made to save checkpoint images asynchronously. The Check-

point Manager is not aware of the existence of checkpoint

images until a restart is required. At that time, the Checkpoint

Manager will choose the most recent checkpoint image, by

default, but a user may also specify an earlier image.

C. Monitoring Manager
Some cloud platforms support an external API for mon-

itoring if the VMs are alive. However, those cloud-specific

mechanisms are not sufficiently flexible. Our goals are three-

fold: (1) being cloud-agnostic; (2) testing the liveness of the

VMs; and (3) testing the “health” of the application.

The concept of health is application-specific. An application

may fail due to unreachability of a computer node, insufficient

memory, internal busy waiting within an application, bugs

in the application code, issues induced by the execution

context, the reception of spurious signals such as SIGCHILD

and SIGPIPE, and a myriad of other causes. A user-defined

application-specific routine can define and test the applica-

tion’s health using a function hook offered by CACS.

The current implementation is based on a binary broadcast

65

tree for each application. Each node of the broadcast tree is

represented by a daemon, which calls the user’s hook function

to determine if the processes on that node are healthy. A

standard broadcast tree then allows the root node to report

a list of nodes that are unhealthy or unreachable to the

Monitoring Manager. If problems are reported, the Monitoring

Manager interacts with the Application Manager to trigger an

application recovery.

There are two cases:

1) VM failure: A VM is unreachable. CACS reserves a new

VM from the underlying cloud infrastructure and restarts

the application from a previous checkpoint.

2) Application failure: If all VMs are reachable, the ap-

plication itself may still be reported as unhealthy. As

an optimization, one then kills the processes of the

application within their VMs, and restarts the application

processes within their original VMs.

D. Resilience: Avoiding Single Points of Failure
CACS should be resilient to node failures. Its managers

are stateless thus they can be easily restarted in the event

of a failure. For purpose of high availability, traditional

server replication and failover approaches leveraging Apache

Zookeeper [15] can extend the current design. The coordi-

nators database could be implemented relying on a NoSQL

reliable distributed database technology such as Cassandra or

MongoDB that does not exhibit any single point of failure.

The stable storage properties of the checkpoint storage are

guaranteed through the use of a fault-tolerant distributed file

system (e.g. Ceph) that provides persistent and highly available

storage.

The Snooze IaaS cloud management system has been de-

signed to be highly available in the event of simultaneous fail-

ures [7]. Nevertheless, it does not ensure automatic recovery of

virtual clusters in the event of the failure of the server hosting

one of their VMs. By integrating CACS in Snooze, computa-

tions running in virtual clusters can be automatically restarted

in the event of a failure. Users of the enhanced Snooze system

can enjoy both reliable application execution and a highly

available IaaS cloud tolerating multiple simultaneous failures

of physical machines hosting VMs and/or VM management

services.

E. Other Implementation Details
CACS is implemented in Java and makes use of the scalable

RESTlet [16] framework to expose its API. The user requests

are mostly treated in background using a pool of threads to

optimize the parallelization and the responsiveness of the API.

In the current implementation the coordinators database is

stored in memory. The provision manager uses parallelization

of SSH connection, to act on virtual clusters.

VII. EXPERIMENTAL EVALUATION

The experiments are divided into four parts: scalability with

application size up to 128 nodes using Snooze as a testbed

(Section VII-A); resource consumption of CACS, including

the performance of the monitoring system (Section VII-B); a

performance study of migration between different clouds or

between desktop and cloud (Section VII-C); and a study of

the cloud-agnostic feature of CACS as applied to Snooze and

OpenStack (Section VII-D).

The evaluation of the system was conducted on the

Grid’5000 [17] testbed. A typical workflow for experimenting

on the platform is to reserve physical nodes, then to deploy a

Linux-based environment, and finally to deploy and configure

the desired software stack. The Debian Wheezy distribution

(3.2.0-4-amd64 Linux kernel) served as the base environ-

ment for deploying Snooze (version 2.1.6) and Ceph storage

(Firefly). Ubuntu 12.04 (kernel version 3.2.0-24-generic) was

used for deploying Openstack (Icehouse). On the two clouds

we used an Ubuntu 13.10 x86 64 base image, preconfigured

with the DMTCP distribution (version 2.3). Both clouds use

KVM/QEMU.

A. Scalability with Application Size
The scalability test was conducted using Snooze configured

with more than 400 vCPUs and nearly 1 TB of memory

available, enough for holding more than 128 virtual machines,

each of which requires one virtual core and 2 GB of memory.

The NAS MPI test for LU (Class C) was employed [18]. Each

MPI ran on a separate VM. We measured the performance

for three phases: time to finish the application submission,

time to perform a checkpoint, and time to perform a restart.

Figure 3 shows that creation of the VMs and execution of com-

mands (provisioning, checkpoint, restart) require significant

time. Time for submission depends strongly on the underlying

infrastructure used (see Section VII-D for more details), while

the latter two times are related to the number of VMs involved

in the application.

Figure 3a shows the performance for application submis-

sion, which includes two steps: the underlying cloud allocates

the VMs; and CACS provisions the VMs. The proposed CACS

implementation optimizes the command execution mechanism

through: (1) the parallelization of the SSH connections; and

(2) re-use of the connections of the open SSH sessions. As a

result, increasing the number of nodes increases only slightly

the time for executing commands, up until the configured

maximum limit of SSH connections is reached. This occurs

after 16 nodes in the current setup.

Number of processes 1 2 4 8 16
Ckpt size (MB) 655 338 174 92 49

TABLE II: Checkpoint image sizes for the NAS benchmark

lu.C, under different configurations. The checkpoint image size

is for a single MPI process.

The time for a single checkpoint is shown in Figure 3b.

Also, Table II shows the checkpoint image size as the number

of nodes varies. Here, the primary workload contains two

parts: DMTCP writes the checkpoint image to local storage;

and each VM uploads the image to the remote file system.

Figure 3c illustrates the performance for restart. In this case,

the trend becomes unstable for a large number of nodes. This

is due to network traffic when all nodes try to simultaneously

download the checkpoint images. As a consequence, restarted

processes do not join the computation concurrently, leading to

jitter and less reproducible timings for DMTCP restart.

66

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

1

10

20

40

60

80
T
im

e
(s
)

Underlying cloud processing

Provisioning due to CACS

Total

(a) Submission time

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

0

20

40

60

80

100

120

140

T
im

e
(s
)

DMTCP Checkpointing

Uploading

Total

(b) Checkpoint time

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

0

10

20

30

40

50

60

T
im

e
(s
)

DMTCP Restarting

Downloading

Total

(c) Restart time

Fig. 3: CACS over Snooze

B. Resource Consumption and Monitoring System
This section focuses on the resource consumption of

CACS, as well as the performance of the monitoring system.

They share the same experimental configuration: for Snooze,

7 servers hosting VM management services and 12 servers

hosting VMs (264 cores in total) were deployed. The target

application used was dmtcp1, a single-process lightweight

application found in the DMTCP test suite [1].

1) Resource Consumption of the Service
In this experiment, 100 applications were submitted to

CACS, with one new application submitted every second.

The network consumption and memory usage are shown in

Figure 4a and Figure 4b, respectively. The vertical line at 100

seconds shows when the 100 applications had been submitted,

but were not necessarily executing yet. Both figures show a

decreasing trend as processing continues.

Figures 4a and 4b can be understood better through a review

Of the CACS implementation. CACS maintains a thread pool

to handle incoming submissions. Theoretically, it can concur-

rently handle as many applications as there are threads in the

thread pool (100 in this experiment). But the underlying cloud

infrastructure has its own limitations: most clouds can handle

only a relatively small number of applications concurrently.

The linear decline in network bandwidth observed after the

vertical line in Figure 4a can be explained as follows. Assume

that the cloud can handle n submissions concurrently, implying

that there are n threads running SSH commands on the VMs

provided by the cloud. Meanwhile, there are m threads polling

the cloud front-end as it causes the VMs to be built. Assume

also that the network bandwith consumed by a polling thread

and an SSH thread are both constants, namely, c 1 and c 2.

Based on these assumptions, we conclude that at any given

time, the network traffic is:

mc 1 + nc 2.

In our case, m is initially 100. Since VMs are processed at a

uniform rate, m will decrease at a uniform rate, thus explaining

the linear trend in Figure 4a. A similar analysis also explains

the decreasing trend seen in Figure 4b.

2) Performance of the Health Monitoring System
The health monitoring system was discussed in Sec-

tion VI-C. To measure its performance, we submitted appli-

cations with varying numbers of VM requests, and recorded

the time required to finish one round-trip for a heartbeat (em-

ploying the binary broadcast tree described earlier). Figure 4c

shows the result: the time to finish one heartbeat round-trip

is logarithmic in the number of nodes, as expected. This pro-

vides strong evidence that the broadcast tree implementation

consumes few network resources and scales to support large

distributed applications.

C. Migration Evaluation
Migration of distributed applications are important in the

real world. CACS is evaluated in two migration scenarios.

Section VII-C1 evaluates the cloudification of an NS-3 [19]

application. NS-3 simulations are known for requiring long

periods of time, and thus are good candidates for migra-

tion from commodity hardware to the cloud. Section VII-C2

demonstrates the migration of applications between two dis-

tinct clouds: Snooze and OpenStack.

1) From Hardware to Cloud
Cloudification refers to migrating a conventional desktop or

laptop application to the cloud. Statistics were obtained for

migrating an NS-3 application from a physical machine to

the OpenStack destination cloud. The target application was

tcp-large-transfer from the NS-3 distribution. The parameters

of the application were set to simulate a 1 Gb transfer rate

transferring 2 GB of data over a period of 30 seconds.

The application was checkpointed after 10 seconds. A 50-

line Python script invokes CACS, which checkpoints on the

current machine and restarts in the destination cloud. The

application contains a single process and the checkpoint image

was approximately 260 MB Application restart on OpenStack

required 21 seconds. Note that in the destination cloud none

of the VMs have NS-3 installed. DMTCP checkpoint images

include a copy of the memory of the process. Since the

NS-3 libraries were already present in memory, they were

transported to the destination cloud as part of the checkpoint

images.

2) From Cloud to Cloud
Next, application migration between Snooze and Open-

Stack was studied. Two instances, CACS-Snooze and CACS-

Openstack, were deployed each relying on its corresponding

IaaS platform. The target application is dmtcp1, the same as in

67

100 200 300 400 500 600 700 800 900 1000 1100

Time (s)

10

20

30

40

50

60

70

80
K
B
/s

Receiving Rate

Sending Rate

Submission Ending

Receiving Rate

Sending Rate

(a) Network bandwith

100 200 300 400 500 600 700 800 900 1000 1100

Time (s)

0

100

200

300

400

M
B

Submission Ending

Memory Consumption

(b) Memory consumption

1 2 4 8 16 32 64 128

Number of MPI processes (lu.C)

0

10

20

30

40

50

60

70

80

90

100

T
im

e
(m

s
)

Round-trip time of monitoring

(c) Performance of the monitoring system
(Note: logarithmic x-axis)

Fig. 4: CACS resource evaluation

Section VII-B. 40 different instances of the application were

incrementally started on CACS-Snooze and then cloned to

CACS-OpenStack using a 90-line Python script. The script

checkpoints on the current cloud and restarts on the destination

cloud. The experimental setup used a single instance of

Ceph-based storage for both services, since both clouds were

deployed on Grid’5000. Alternatively, two distinct storage

systems could have been used as well with no modification.

The application checkpoint periodicity was set to 60 seconds.

The checkpoint image sizes were approximately 3 MB each.

Figure 5 depicts the overall network utilization at the storage

level. It shows a linear increase of network utilization after

start of the submissions. A plateau indicates that the appli-

cations’ checkpoint images were received and stored and no

submissions remain. The migration phase lasts for 2.5 minutes.

The network utilization during this phase increases due to

the data transfer of the checkpoint images. Note that the

time to transfer checkpoint images from CACS-Snooze to

CACS-OpenStack is negligible in this case, due to the small

size of the checkpoint images. The network utilization then

reaches another plateau, indicating that two instances of each

application are now running on the two different clouds (80

applications in total). After a certain period of time, all

applications are terminated.

The experiment also demonstrates the ability of CACS to

handle numerous concurrent restart requests (up to 40 re-

quests).

D. Comparison of Different IaaS Technologies
Next, we compare the performance of CACS, when targeted

toward two distinct cloud management systems: Snooze and

OpenStack. The configuration for Snooze is the same as in

Section VII-A, while OpenStack is configured with the same

computing resources. Figure 6 reports the submission times,

including both the time for the IaaS to process the VM

submissions, and the time for CACS to provision the VMs.

Figure 7 reports the checkpoint and restart times. Note that the

same checkpoint policy was used for both clouds. Hence, the

checkpoint sizes are the same (see Table II). This implies that

the uploading time during checkpoint and the downloading

time during restart should be comparable, except to the extent

that different network traffic conditions exist during the two

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (s)

2000

4000

4500

K
B
/s

Receiving Rate

Sending Rate

Receiving Rate

Sending Rate

submission

start / end

migration

start end

Fig. 5: Migration performance of 40 applications

phases. For this reason, Figure 7 reports a single time for

checkpoint/restart, since the times for checkpoint and restart

are comparable.

Figure 6 shows that although the underlying IaaS systems

are different, the time for CACS to provision the VMs remains

comparable. In contrast, the time for different IaaS systems to

process VM allocation differs greatly. The preceding break-

down into CACS-specific and IaaS-specific times illustrates

that CACS is able to support different cloud management

systems, with little or no CACS-specific difference in perfor-

mance.

Figure 7 shows a similar trend, except that the restart time

for OpenStack is not stable. This occurs for a pragmatic

reason: normally, OpenStack recommends that network man-

agement and applications be located on different networks.

However, the limitations of the Grid’5000 testbed forced

the placement of both types of network data onto the same

network. This leads to data variability, as seen in the figure.

VIII. RELATED WORK

We first review previous work on application checkpointing

and virtual machine snapshot mechanisms. We then study ex-

isting approaches for reliable application execution in clouds.

68

1 2 4 8 16

Number of MPI processes (lu.C)

1

10

20

30

40

50

60

70

T
im

e
(s
)

Snooze Processing

Snooze Provisioning

OpenStack Processing

OpenStack Provisioning

Fig. 6: Comparison of submission time

1 2 4 8 16

Number of MPI processes (lu.C)

1

10

20

30

40

50

60

70

80

90

T
im

e
(s
)

Snooze Checkpointing

OpenStack Checkpointing

Snooze Restarting

OpenStack Restarting

Fig. 7: Comparison of Checkpoint/Restart time

A. Options for Checkpointing Distributed Applications
In addition to DMTCP, several other checkpointing pack-

ages are in common use today. The survey [20] describes sev-

eral checkpoint/restart implementations for high performance

computing. More generally, we review the checkpoint-restart

packages in widespread use today.

For distributed computation, most checkpointing services

today were built around MPI-specific checkpoint-restart ser-

vices. Unfortunately, this was not an option for the current

work, since a cloud-agnostic checkpointing service must also

be application-agnostic. Nevertheless, historically there has

been much effort toward MPI-specific custom checkpoint-

restart service. This came about when InfiniBand became the

preferred network for high performance computing, and there

was still no package for transparent checkpointing over Infini-

Band. Examples of checkpoint-restart services can be found in

Open MPI [21] (CRCP coordination protocol), LAM/MPI [22]

(now incorporated into MVAPICH2 [23]), and MPICH-V [24].

Each checkpoint-restart service disconnected the network prior

to checkpoint, called on a single-node checkpointing package

such as the kernel-based BLCR [25], and then re-connected

after restart.

The current work is based on a new approach, implemented

within DMTCP, which enables transparent checkpointing over

InfiniBand [2] as well as over TCP. This uniformly supports

both MPI and other distributed applications.

B. Mechanisms Based on VM Snapshots
VM snapshots provide an alternative for checkpointing. The

well-known packages KVM/QEMU, VirtualBox, and VMware

all support snapshots of VMs. However, the choice of a

particular VM for a particular cloud platform is contrary to

the goal of a cloud-agnostic service in this work. Furthermore,

saving just the application is more efficient than saving an

entire VM, in part due to the smaller memory footprint of a

bare application.

C. Fault Tolerance and Efficiency in the Cloud
There exist several alternative approaches to fault tolerance

in the Cloud. Tchana et al. argue for shared responsibil-

ity between provider and user [26]. Zhao et al. follow a

middleware approach [27]. Egwutuoha et al. take a process-

level redundancy approach [28]. Di et al. present an adaptive

algorithm to optimize the number of checkpoints for cloud-

based applications [29].

Nicolae et al. show how to checkpoint an MPI application

using distributed VM snapshots using the BlobSeer distributed

repository [30]. This approach is MPI-specific, since it em-

ploys the MPI checkpoint-restart service with BLCR. (See

Section VIII-A for a discussion of MPI checkpoint-restart

services.) Kangarlou et al. [31] and Garg et al. [32] each show

how to take a distributed snapshot of VMs. Kangarlou et al.

base this on a modification of Xen’s live migration, while

Garg et al. employ DMTCP to take a distributed snapshot

of KVM/QEMU VMs. The last three investigations ([30],

[31], [32]) contrasts with the cloud-agnostic (and application-

agnostic) approach employed here by directly checkpointing

the processes along with their network connections.

Several works study detection of failure modes [33], [34].

The approach of the Gamose system [35] for monitoring the

health of Grid applications can extend the CACS checks for

application health without requiring application hooks. Such

a system relies on interposing on systems calls, and does not

require any modification to the operating system.

The work of Marshall et al. [10] demonstrates the utility

of backfill VMs in maintaining a high utilization rate for the

processors of the cloud. The backfill VMs can be combined

with a checkpointing policy so as to always guarantee a supply

of checkpoint images that can be restarted on demand to

instantiate the backfill VMs.

IX. CONCLUSION

The Cloud-Agnostic Checkpointing Service demonstrates

checkpointing as a service on top of heterogeneous IaaS

cloud systems in an environment of multiple heterogeneous

clouds. A key design principle of CACS is that it is built

around the DMTCP mechanism for taking checkpoints of

distributed processes, rather than employing distributed VM

snapshot mechanisms. This creates a cloud-agnostic service

that is independent of the cloud platform, and independent of

the cloud’s choice of virtual machine technology. Preliminary

experimental evaluations demonstrate portability between two

IaaS cloud management systems and demonstrate scalability

with the number of applications and the application size.

CACS also supports migration between heterogeneous clouds,

69

and cloudification, migration from a traditional environment

to the cloud. In our next steps, we will further improve

the scalability of CACS, study its efficiency in different

computing environments varying the resource, VM and storage

management systems, and experiment with a broader range of

distributed applications.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using

the Grid’5000 experimental testbed, being developed under

the INRIA ALADDIN development action with support from

CNRS, RENATER and several universities as well as other

funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 23rd IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS-09).
IEEE, 2009, pp. 1–12.

[2] J. Cao, G. Kerr, K. Arya, and G. Cooperman, “Transparent checkpoint-
restart over InfiniBand,” in ACM Symposium on High Performance
Parallel and and Distributed Computing (HPDC’14). ACM Press,
2009.

[3] “OpenStack project,” https://wiki.openstack.org/wiki/Main Page, 2014.
[4] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,

“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud computing and applications, vol. 2008, pp. 825–
830, 2008.

[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[6] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 0011–
14, 2011.

[7] E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable and autonomic
virtual machine management framework for private clouds,” in Proceed-
ings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012.

[8] (2013) Cloud Infrastructure Management Interface (CIMI) Model
and RESTful HTTP-based Protocol An Interface for Manag-
ing Cloud Infrastructure. http://dmtf.org/sites/default/files/standards/
documents/DSP0263 1.1.0.pdf.

[9] (2012) Open Cloud Computing Interface — OCCI. http://occi-wg.org/.
[10] P. Marshall, K. Keahey, and T. Freeman, “Improving utilization of

infrastructure clouds,” in 2011 IEEE/ACM Int. Symp. on Cluster, Cloud
and Grid Computing (CCGrid), May 2011, pp. 205–214.

[11] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe,
“CloudNet: Dynamic pooling of cloud resources by live WAN migration
of virtual machines,” SIGPLAN Not., vol. 46, no. 7, pp. 121–132, Mar.
2011. [Online]. Available: http://doi.acm.org/10.1145/2007477.1952699

[12] D. Ghoshal and L. Ramakrishnan, “Frieda: Flexible robust intelligent
elastic data management in cloud environments,” in High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:. IEEE, 2012, pp. 1096–1105.

[13] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[14] G. Cooperman, J. Ansel, and X. Ma, “Adaptive checkpointing for
master-worker style parallelism (extended abstract),” in Proc. of 2005
IEEE Computer Society International Conference on Cluster Computing.
IEEE Press, 2005, conference proceedings on CD.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX Annual Technical
Conference, vol. 8, 2010, p. 9.

[16] Restlet: RESTful web framework for java. http://www.restlet.org.
[17] (2013) The Grid’5000 experimentation testbed. http://www.grid5000.fr/.
[18] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks,” International Journal

of High Performance Computing Applications, vol. 5, no. 3, pp. 63–73,
1991.

[19] “Ns-3 simulator,” http://www.nsnam.org/, 2014.
[20] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of

fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, Sep. 2013.

[21] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The design
and implementation of checkpoint/restart process fault tolerance for
Open MPI,” in Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS) / 12th IEEE Workshop on
Dependable Parallel, Distributed and Network-Centric Systems. IEEE
Computer Society, March 2007.

[22] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman, “The LAM/MPI checkpoint/restart
framework: System-initiated checkpointing,” International Journal of
High Performance Computing Applications, vol. 19, no. 4, pp. 479–493,
2005.

[23] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent
checkpoint/restart for MPI programs over InfiniBand,” in ICPP ’06: Pro-
ceedings of the 2006 International Conference on Parallel Processing.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 471–478.

[24] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V project: a multiprotocol automatic fault tolerant MPI,”
International Journal of High Performance Computing Applications,
vol. 20, pp. 319–333, 2006.

[25] P. Hargrove and J. Duell, “Berkeley Lab Checkpoint/Restart (BLCR)
for Linux clusters,” Journal of Physics Conference Series, vol. 46, pp.
494–499, Sep. 2006.

[26] A. Tchana, L. Broto, and D. Hagimont, “Approaches to cloud comput-
ing fault tolerance,” in Computer, Information and Telecommunication
Systems (CITS), 2012 International Conference on, May 2012, pp. 1–6.

[27] W. Zhao, P. Melliar-Smith, and L. Moser, “Fault tolerance middleware
for cloud computing,” in Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, July 2010, pp. 67–74.

[28] I. Egwutuoha, S. Chen, D. Levy, and B. Selic, “A fault tolerance
framework for high performance computing in cloud,” in Cluster, Cloud
and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on, May 2012, pp. 709–710.

[29] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and F. Cappello, “Op-
timization of cloud task processing with checkpoint-restart mechanism,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: ACM, 2013, pp. 64:1–64:12.

[30] B. Nicolae and F. Cappello, “BlobCR: Efficient checkpoint-restart for
HPC applications on IaaS clouds using virtual disk image snapshots,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 34:1–34:12.

[31] A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking snapshots of
virtual networked infrastructures in the cloud,” Services Computing,
IEEE Transactions on, vol. 5, no. 4, pp. 484–496, 2012.

[32] R. Garg, K. Sodha, Z. Jin, and G. Cooperman, “Checkpoint-restart for a
network of virtual machines,” in Proc. of 2013 IEEE Computer Society
International Conference on Cluster Computing. IEEE Press, 2013,
8 pages, electronic copy only.

[33] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337–350, Oct 2010.

[34] N. Xiong, A. Vasilakos, J. Wu, Y. Yang, A. Rindos, Y. Zhou, W.-Z. Song,
and Y. Pan, “A self-tuning failure detection scheme for cloud computing
service,” in Parallel Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, May 2012, pp. 668–679.

[35] T. Ropars, E. Jeanvoine, and C. Morin, “Gamose: An accurate monitor-
ing service for Grid applications,” in Sixth Int. Symp. on Parallel and
Distributed Computing, 2007, July 2007, pp. 40–40.

70

