
D
isk-based computation rep-
resents a major new use of
disks, in addition to the

three historical uses: file systems,
databases, and virtual memory.
We recently demonstrated the
importance of this fourth case
by showing progress on a 25-

year-old conjecture: determine how many moves
suffice to solve Rubik’s Cube. We chose Rubik’s
Cube because it has long served as a computation-
ally challenging problem in which practitioners
from a variety of disciplines have tested the efficacy
of their techniques.

Our working group coined the term “disk-based
computation” to describe our five-year effort to
make use of parallel disks in scientific computation,
including the many disks already available in a com-
putational cluster. In doing so, the humble disk is
elevated to a status normally reserved for RAM.
RAM equivalence gives an application several orders
of magnitude more working space for the same
financial price. Such parallel disk-based methods are
often based on lower-level external memory algo-
rithms (such as those surveyed in [3]).

Our work reached the mainstream media in 2007
when we showed that Rubik’s Cube can be solved in
26 moves or less [1]. At its heart, our computation
simply enumerates and stores possible configurations
of the puzzle. But, with more than 4.3�1019 possi-
ble configurations, proving that 26 moves suffice

requires many terabytes of main memory. It was
only our insight that “disk is the new RAM” that
enabled us to overcome this memory barrier.

Rubik’s Cube is an example of a large enumera-
tion problem for which disk-based computation
may lead to breakthroughs in many different prob-
lem domains, including group theory, hardware and
software verification, coding theory, and constraint
satisfaction. In them, one has an initial state, a
method to produce neighboring states, and a need
to store all reachable states. New powerful multi-
core computers are beginning to allow us to generate
neighboring states faster than ever before. However,
the ability to do so often means we also reach the
limits of RAM more quickly than ever before.

Limiting ourselves to 4GB of main memory per
computer is an arbitrary restriction not required by
current technology. We are all conditioned by decades
of history to regard disk as a hopelessly slow cousin to
RAM. However, a simple back-of-the-envelope calcu-
lation shows this does not have to be so. The band-
width of commodity disks is on the order of
100MB/s. A computer cluster with 50 disks provides
50 times the aggregate bandwidth, or 5GB/s, which is
close to the bandwidth of commodity RAM. Thus 50
local disks provide the moral equivalent of a single
extremely large RAM subsystem.

Viewed this way, a 50-node scientific computing
cluster would be able to perform like a powerful
parallel computer endowed with a single 10TB
RAM subsystem. Justifying the use of distributedLI

SA
H

A
N

EY

Viewpoint Daniel Kunkle and Gene Cooperman

Solving Rubik’s Cube:
Disk Is the New RAM

COMMUNICATIONS OF THE ACM April 2008/Vol. 51, No. 4 31

Substituting disk for RAM, disk-based computation is a way to increase working
memory and achieve results that are not otherwise economical.

32 April 2008/Vol. 51, No. 4 COMMUNICATIONS OF THE ACM

disks as a multi-terabyte main memory requires a
small amount of math, as well as several somewhat
larger caveats. A typical scientific computing cluster
includes 200GB of often-unclaimed disk space per
computer. A 50-node cluster provides 10TB of disk.
As a nice side benefit, in today’s commodity com-
puter market, this 10TB of idle local disk space is
essentially free.

How can we treat 10TB of disk space as if it were
RAM? The answer depends on consideration of disk
bandwidth, disk latency, and network bandwidth:

Thesis. Because 50 disks provide approximately
the same bandwidth as a single RAM subsystem, the
local disks of a computer cluster can be regarded as if
they were a single very large RAM subsystem;

Caveat 1. Disk latency is much more limiting
than disk bandwidth. Therefore, despite the fact that
RAM stands for random access memory, we would
almost never use the “new RAM” (disk) in random-
access mode. The old-fashioned RAM already serves
as our random-access cache;

Caveat 2. The new RAM is distributed across the
local-area network. The aggregate network band-
width of a cluster (even gigabit Ethernet) may not
fully support the ideal 5GB/s aggregate bandwidth
of the new RAM. Parallel algorithms must therefore
be restructured to emphasize local access over net-
work access. (This restriction is familiar to practi-
tioners, who have long been aware of the
impossibility of accessing traditional remote RAM at
full speed over the network.)

TESTBED
The details of the Rubik’s Cube computation illus-
trate the benefits of disk-based computation.
Whereas people usually solve Rubik’s Cube in four

or five stages, each involving fewer than one mil-
lion combinations, the large main memory of disk-
based computation allows a programmer to provide
a two-stage solution where the largest subproblem
involves 1014 combinations.

A person might first solve the top layer of the
Cube (with nine smaller cubies, or individual box-
like segments), then the bottom layer, and finally the
remaining middle pieces. Solving the bottom and
middle layers requires the use of macro moves, or
sequences of moves that preserve the previous layers.

The programmer solves each of the two subprob-
lems by performing a breadth-first search over all
possible configurations, starting with the solved
state. For the smaller of the two subproblems (105

configurations), this is easy.
For the larger of the two subproblems (1014 con-

figurations), we first used the symmetries of Rubik’s
Cube to reduce it to 1012 configurations. We then
analyzed several possible algorithms, settling on the
final version, enumerating the 1012 configurations in
63 hours with the help of 128 processor cores and
7TB of disk space.

T
he primary difficulty in trying to extend a naive
enumeration algorithm to execute on disk is
how to efficiently perform duplicate detection,

that is, to determine when a newly generated state
has been seen before. This is typically done using a
hash table or some other data structure that relies on
random access. In the disk-based version, we avoid
random access by delaying duplicate detection and
collect many new states we check for duplicates in a
later phase.

A brief description of the methods we considered
when solving Rubik’s Cube illustrates the kinds of

Viewpoint

Despite the fact that RAM stands for random access memory, we would almost
never use the “new RAM” (disk) in random-access mode.

data structures and algorithms we have found useful
in disk-based computation. The first method is
based on external sort—a well-known disk-based
sort that avoids random access at the cost of per-
forming several passes through the data. New states
discovered during the breadth-first search are saved
to disk without checking for duplicates. When an
entire level of the search is completed, the new states
are externally sorted and merged into a sorted list
containing all previously discovered states.

In this way, we eliminate random-access data
structures, using sorted lists in their place. Eliminat-
ing random access comes at the cost of having to
maintain the sorted order of the lists. Further, this
method requires that we save all known states. For
our Rubik’s Cube computation, storing all configura-
tions would require 11TB, not counting the buffer
space for newly generated states.

T
he second method avoids storing all seen states
and also removes the need for expensive exter-
nal sorting operations. Instead of explicitly stor-

ing the known states, we use a disk-based table to
record the previously discovered states. To avoid ran-
dom access, we split this table into contiguous pieces
such that each piece fits into RAM. When perform-
ing duplicate detection, we load one piece of the
table into RAM at a time and remove duplicate
states that correspond to that portion of the search
space.

Even though this method avoids storing explored
states, it still requires the storage of the open list of
new states from which duplicates have not been
removed. For our Rubik’s Cube computation, the
open list has a maximum size of 50TB. To avoid this
limitation, we use a technique we call implicit
open list to encode the open states using a hash
table, rather than an explicit list. This allows us to
complete the computation using just 7TB of disk
space.

ORGANIZING PRINCIPLE

A unified framework is required to broaden the
appeal of disk-based computation beyond Rubik’s
Cube. Our team is now searching for an organizing

principle that will allow for the construction of a
software library or language extension that does for
disk-based computation what numerical libraries
have done for numerical analysis. As an initial step,
we have begun a comparative analysis of eight dif-
ferent techniques for disk-based enumeration [2].
This analysis is based on the methods we used for
Rubik’s Cube, along with our solutions to several
model problems in computational group theory.

The search cuts across many areas of computer
science. For example, in systems and architecture,
how can we design disk-based computations to bal-
ance the use of CPU, RAM, network, and disk? In
theory and algorithms, what class of computations
can be converted to efficient disk-based computa-
tion? In software engineering and programming lan-
guages, how can we separate disk-specific data
structures and algorithms from problem-specific con-
cerns? By answering such questions, we will advance
the use of disk-based computation, enabling solu-
tions to problems requiring even petabytes of
memory.

References
1. Kunkle, D. and Cooperman, G. Twenty-six moves suffice for Rubik’s

Cube. In Proceedings of the 2007 International Symposium on Symbolic
and Algebraic Computation (Waterloo, Ontario, Canada, July 29–Aug.
1). ACM Press, New York, 2007, 235–242.

2. Robinson, R., Kunkle, D., and Cooperman, G. A comparative analysis
of parallel disk-based methods for enumerating implicit graphs. In Pro-
ceedings of the 2007 International Workshop on Parallel Symbolic Compu-
tation (London, Ontario, Canada, July 27–28). ACM Press, New York,
2007, 78–87.

3. Vitter, J. External memory algorithms and data structures: Dealing with
massive data. ACM Computing Surveys 33, 2 (June 2001), 209–271.

Daniel Kunkle (kunkle@ccs.neu.edu) is a Ph.D. candidate in
computer science in the College of Computer and Information Science
at Northeastern University, Boston, MA.
Gene Cooperman (gene@ccs.neu.edu) is a professor in the College
of Computer and Information Science at Northeastern University,
Boston, MA., where he is also the director of the Institute for Complex
Scientific Software and the head of the High Performance Computing
Laboratory.

c

COMMUNICATIONS OF THE ACM April 2008/Vol. 51, No. 4 33

© 2008 ACM 0001-0782/08/0400 $5.00

DOI: 10.1145/1330311.1330319

