
Updated October 2005 1

Record Storage, File Organization,

and Indexes

ISM6217 - Advanced Database

Updated October 2005 2

Physical Database Design Phase

! Inputs into the Physical Design Phase
" Logical (implementation) model

" Documentation/Definitions

" DBMS Characteristics

" Response time requirements

" Security, Backup, Recovery, Retention,
Integrity requirements

! Logical Design Phase focuses on What;
Physical Design Phases focuses on How.

Updated October 2005 3

Physical Database Design Phase

! Outputs:
" Produces a Description of the Implementation

of the Database on Secondary Storage.

" Describes the storage structures and access
methods used to achieve efficient access to the
data.

! Focus on Data Processing Efficiency

Updated October 2005 4

Steps in

Physical Database Design

! Translate Logical (Implementation) Data
Model for Target DBMS
" Design base relations and constraints

Updated October 2005 5

Steps in

Physical Database Design

! Design Physical Representation
" Analyze transactions

" Choose file organizations

" Choose secondary indexes

" Introduction of controlled redundancy
(Denormalization)

" Estimate disk space requirements

! There are additional steps that we’ll talk
about next week.

Our focus

today

Updated October 2005 6

Files and Records

! Records
" Contain fields (fixed and variable length fields)

" Fixed-length

" Variable-length

" Spanned

" Unspanned

Updated October 2005 7

Files and Records

! Block (page): The amount of data read or
written in one I/O operation.

! Blocking Factor: The number of physical
records per block.

! File Organization: How the physical
records in a file are arranged on the disk.

! Access Method: How the data can be
retrieved based on the file organization.

Updated October 2005 8

Index Classification

! Primary vs. secondary: If search key contains
primary key, then called primary index.
" Unique index: Search key contains a candidate key.

! Clustered vs. unclustered: If order of data
records is the same as, or `close to’, order of
data entries, then called clustered index.
" A file can be clustered on at most one search key.

" Cost of retrieving data records through index varies
greatly based on whether index is clustered or not!

Updated October 2005 9

Hash-Based Indexes

!Hash function calculates the
address of the page on which the
record is stored.

!The field that’s used in the hash
function is called the hash field.

" Called a hash key if the hash field is
also a key field.

!Good for equality searches

!Not good for range searches

Updated October 2005 10

Hash File

Updated October 2005 11

Tree Indexes

! Many DBMS use tree data structures to hold
data/indexes.

! Tree contains a hierarchy of nodes

! Root node has no parent

! Other nodes have one parent

! Nodes can (but don’t have to) have child nodes.

! A node with no children is called a leaf node.

! Balanced tree: depth (number of levels) between
root and each leaf node is the same.

Updated October 2005 12

B+ Tree

! A B-tree that follows certain rules:
" If the root is not a leaf node, it must have at

least two children.

" For a tree of order n, each node (other than
root/leaf nodes) must have between n/2 and n
pointers and children.

" … (other rules)

" Tree must always be balanced
! Every path from the root to a leaf must have same

length. # This is what matters.

! This means that it always takes about the same time
to access any record.

Updated October 2005 13

B+ Tree Indexes

$ Leaf pages contain data entries, and are chained (prev & next)
$ Non-leaf pages contain index entries and direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

Leaf

Updated October 2005 14

Example B+ Tree

! Insert/delete: Find data entry in leaf,
then change it. Need to adjust parent
sometimes.
" And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Updated October 2005 15

Ordered Indexes

! An ordered file that stores the index field
and a pointer.

! Requires a binary search on the index file.

! Types of Ordered Indexes
" Primary

" Clustering

" Secondary

Updated October 2005 16

Primary Indexes

!An ordered, fixed-length file that
stores the primary key and a pointer.

!Each record in the index file
corresponds to each block in the
ordered data file.

!Sparse / nondense index

Updated October 2005 17

A Primary Index

Updated October 2005 18

Clustering Indexes

! When the records of a data file are
ordered on a non-key field, this field is
called a clustering field.

! The clustering field does not have a
distinct value for each record in the data
file.

! A clustering index is an ordered file that
stores the clustering field and a pointer.

Updated October 2005 19

Clustering Indexes

! There is one record in the index file for
each distinct value of the clustering field.

! Sparse / nondense index

Updated October 2005 20

Updated October 2005 21

Secondary Indexes

! A secondary index is an ordered file that
stores the nonordering field of a data file
and a pointer.

! If the indexing field is a secondary or
candidate key, then the index is dense.

! If the indexing field is a nonkey field, then
the index is sparse.

! Introduces the idea of adding a level of
indirection

Updated October 2005 22

Secondary Index on a
Secondary Key

Updated October 2005 23

Secondary Index on
a Nonkey field

Updated October 2005 24

Indexed Sequential

Data File Organization

! Ordered data file with a multilevel
primary index file based on the
ordering key field.

! IBM’s ISAM is an indexed sequential file
organization with a two-level index.

Updated October 2005 25

Understanding the Workload

! For each query in the workload:
" Which relations does it access?

" Which attributes are retrieved?

" Which attributes are involved in selection/join
conditions? How selective are these conditions
likely to be?

! For each update in the workload:
" Which attributes are involved in selection/join

conditions? How selective are these conditions
likely to be?

" The type of update (INSERT/DELETE/UPDATE),
and the attributes that are affected.

Updated October 2005 26

Choice of Indexes

! What indexes should we create?
" Which relations should have indexes? What

field(s) should be the search key? Should we
build several indexes?

! For each index, what kind of an index
should it be?
" Clustered? Hash/tree?

Updated October 2005 27

Choice of Indexes (Contd.)

! One approach: Consider the most important
queries in turn. Consider the best plan using the
current indexes, and see if a better plan is
possible with an additional index. If so, create it.
" Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation
plans!

" For now, we discuss simple 1-table queries.

! Before creating an index, must also consider the
impact on updates in the workload!
" Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

Updated October 2005 28

Index Selection Guidelines

! Attributes in WHERE clause are candidates
for index keys.
" Exact match condition suggests hash index.

" Range query suggests tree index.
! Clustering is especially useful for range queries; can

also help on equality queries if there are many
duplicates.

Updated October 2005 29

Index Selection Guidelines (2)

! Multi-attribute search keys should be considered
when a WHERE clause contains several
conditions.
" Order of attributes is important for range queries.

" Such indexes can sometimes enable index-only
strategies for important queries.

! For index-only strategies, clustering is not important!

! Try to choose indexes that benefit as many
queries as possible. Since only one index can be
clustered per relation, choose it based on
important queries that would benefit the most
from clustering.

Updated October 2005 30

Rules-of-Thumb for Indexes

! Index primary key fields
" DBMS may do this automatically

" Composite keys require composite indexes

! Index foreign key fields

! Index other fields frequently used in:
" WHERE clauses

" GROUP BY clauses

" ORDER BY clauses

! Consider composite indexes when fields
are used together in conditions

Updated October 2005 31

Index Method Benefits/Costs

! Heap file:
" Efficient storage; fast scanning; fast inserts

" Slow searches; slow deletes

! Sorted file:
" Efficient storage; faster searches than heap

" Slow inserts and deletes

Updated October 2005 32

Index Method Benefits/Costs (2)

! Clustered file:
" Efficient storage; faster searches than heap

" Faster inserts/deletes than sorted file

" Only one clustering factor per file

! Unclustered tree:
" Fast searches, fast inserts/deletes

" Slow scans and range searches with many
matches

! Hash:
" Same as unclustered, but faster on equality

searches

" Does not support range searches

Updated October 2005 33

Summary

! Many alternative file organizations exist, each
appropriate in some situation.

! If selection queries are frequent, sorting the file
or building an index is important.
" Hash-based indexes only good for equality search.

" Sorted files and tree-based indexes best for range
search; also good for equality search. (Files rarely kept
sorted in practice; B+ tree index is better.)

! Index is a collection of data entries plus a way to
quickly find entries with given key values.

Updated October 2005 34

Summary (Contd.)

! Data entries can be actual data records,
<key, rid> pairs, or <key, rid-list> pairs.

! Can have several indexes on a given file of
data records, each with a different search
key.

! Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have
important consequences for
utility/performance.

Updated October 2005 35

Summary (Contd.)

! Understanding the nature of the workload for the
application, and the performance goals, is
essential to developing a good design.
" What are the important queries and updates? What

attributes/relations are involved?

! Indexes must be chosen to speed up important
queries (and perhaps some updates!).
" Index maintenance overhead on updates to key fields.

" Choose indexes that can help many queries, if possible.

" Build indexes to support index-only strategies.

" Clustering is an important decision; only one index on a
given relation can be clustered!

" Order of fields in composite index key can be important.

