
Efficient Analysis of Complex Diagrams using
Constraint-Based Parsing'

Robert P. Futrelle and Nikos Nikolakis

Biological Knowledge Laboratory, College of Computer Science
161 Cullinane Hall, Northeastern University, Boston, MA 021 15,

{ futrelle,nikos} @ccs.neu.edu

Abstract
This paper describes substantial advances in the analysis
(parsing) of diagrams using constraint grammars. The
addition of set types to the grammar and spatial indexing
of the data make it possible to efficiently parse real
diagrams of substantial complexity. The system is
probably the first to demonstrate eficient diagram parsing
using grammars that easily be retargeted to other
domains. The work assumes that the diagrams are
available as a $at collection of graphics primitives: lines,
polygons, circles, Bezier curves and text. This is
appropriate for future electronic documents or for
vectorized diagrams converted from scanned images. The
classes of diagrams that we have analyzed include x,y data
graphs and genetic diagrams drawn from the biological
literature, as well as finite state automata diagrams {states
and arcs). As an example, parsing a four-part data graph
composed of 133 primitives required 35 sec using
Macintosh Common Lisp on a Macintosh Quadra 700.

Introduction
Future electronic documents will be enhanced by

graphics that are represented as structured objects, rather
than bitmaps. Diagrams of anatomy or cells in textbooks
could be accessed by their components; maps could be
accessed by reference to specific buildings or streets, etc.
Incorporating structured graphics into future information
systems will require progress on many fronts, including
systems for analyzing existing graphics, knowledge-based
tools for creating graphics, and intelligent tools for
retrieving and interacting with structured graphics.

There are specialized systems that can efficiently
analyze complex diagrams (one hundred or more instances
of primitives). But it has been difficult to adapt them to
domains other than what they were designed for. At the
other end of the spectrum, there are approaches to visual
parsing that use general grammatical models and are thus
adaptable. But these have not been efficient enough in
practice to analyze complex diagrams. Our approach is

* Work supported in part by grant from the Department of Energy,
Award NO. DE-FGO2-93ER61718.

both efficient and adaptable. Many of these systems have
been applied to domains such as engineering drawings and
circuit diagrams. But the published technical literature
contains far more diagrams. For example, the biological
literature that we focus on publishes about 2.5 million
diagrams per year, mostly data graphs and gene diagrams.

Descriptions of certain aspects of our system have been
published [l , 21. In this paper, we first explain our
constraint grammars and show an example of a complex
data graph the system can parse. Then a small grammar is
given and the parsing process is explained in detail.
Spatial indexing, the key to much of the system's
efficiency, is described. Some aspects of the large
grammar used to parse the data graph are discussed (the
grammar is presented in the Appendix). Gene diagrams
and finite-state automata diagrams the system has parsed
are shown. Finally, we discuss the relation of this work to
other methods.

Constraint grammars and efficient parsing
Graphics constraint grammars are particularly useful in

diagram analysis [2, 31. In these grammars a rule consists
of a production with a left-hand-side symbol (LHS), one
or more right-hand-side (RHS) constituents, and a body.
In our grammar there are two rule types, ordinary rules
and set rules. Some constituents are primitive graphical
objects such as lines, polygons, circles, Bezier curves and
text; others may reference LHS symbols, which are higher
level objects. The body of the rule contains constraints on
constituents, including geometric relations among them,
on set members, and on sets as a whole. Constraints can
refer to a variety of geometric properties such as position,
shape, length, size, components (e.g., endpoints of a line,
center of an object), etc. More powerful constraints
operate between objects, such as nearness or relative
position (above, below). The most powerful constraints
are those that operate across entire sets of objects, such as
requiring that all the objects in a set be horizontally
aligned, or connected. These latter relations allow the
parser to rapidly collect together large sets of related
items, reducing the effective size of the problem.

0-8186-7128-9/95 $4.00 0 1995 IEEE
782

mailto:ccs.neu.edu

n a
E

rn
W

.-
6
Y

0.61

0.2 0*4k0J
0

1.01 I I 1

Site 2 I

0 5 10 0 5 10

Time After Aspartate Addition (min)

1. A four-part data gra h consisting of 133 graphics primitives (lines, curves, circles, polygons and text) taken irom [4]. Parsing the

86 sec was required to precompute the spatial indexes). The parse resulted in 4 solutions, one for each part, including the
the grammar e 2 in the Appendix, required 35 sec on a Macintosh Quadra 700, running Macintosh Common Lisp 2.0. (An

of the scale lines with tick marks and tick labels, the axis labels, the data points and data curves.

et may satisfy a relation, our
hooser; the maximal set. A precomputed

e the computation of the
Solutions of a rule are

ndirig tuples of constituents in the diagram
constraints in the body of a rule. At this

I LHS objects are created with those
:h LHS object has full status as a

1 object, with region, bounding box, center, etc.,
participate as a constituent in other rules.

system, parsing proceeds top-down and depth-
re is no ordering of constituents implied by the

he rule controls the order. A user can
les that lead to efficient parsing by
nts that cut down on the number of

that need to be examined or that are passed to
lution dtrategy is more in the spirit of
n [5] than classical parsing - limited
enerated and then further restricted by

\

Example: A simple diagram and a small grammar
In x,y data graphs, the long scale lines together with

their short tick marks can involve a large number of lines
and pieces of text. But these lines have a very regular
organization, as shown in Fig. 1. When the a-e portions
of the diagram in Fig. 2 (24 items) are analyzed for
X-Ticks, a horizontal line with attached tick marks, only
the two analyses XT1 and XT2 will result, according to
the grammar G1, below. In particular,

In a the two ticks on the far left are excluded because
they don't touch the horizontal line,

In b, the four lower ticks are aligned with one another,
forming a set distinct from those in a.

In c there are only two ticks, less than required.

In d there are three vertical lines, which are too long.

In e the ticks are not associated with a horizontal line.

I 783

The constraint grammar G1 for X-Ticks is:

Rule 1:
X-Ticks -> Ticks X-Line

(X-Line)
(Ticks (touch X-Line ?)

:constraints
(> (number-of Ticks) 2) ;

Rule 2:
X-Line -> Line

(:constraints
(horizp Line) (long Line) 1 ;

Rule 3:
Ticks -> Set (Line)

(: element-constraints
(vertp Line) (short Line))

(:constraints (horiz-aligned));

For each X-Line solution, the Ticks rule, Rule 3, is
entered, inheriting the context attribute determined by
the form "(touch X-Line I?)" in Rule 1. The value of
context in this case, the value of "?", is all graphical
objects which touch the given X-Line. Rule 3 states
that every Ticks solution is a set, in this case a set of
Lines. The Lines must be drawn from the set of objects
in the context inherited by Ticks. The constraints on
each member of the set are that they are vertical and
short. The constraints on each set as a whole is that the
elements are horizontally aligned with one another.
The processing returns to Rule 1 where the set size
constraint is imposed, eliminating the two-tick
structure c. The top-level Rule 1 is complete, giving
two solutions XT1 and XT2.

The analysis is efficient because of the continued

XT2

Figure 2. A diagram with 24 lines in the a-e portion which yields two
X-Tick structures, XT1 and XT2. according to the grammar G1.

Grammar G1 illustrates our strategy:

In Rule 1, "(X-Line)" appears first in the body, so it is
processed first. It refers to X-Line in Rule 2 where it
expands to the primitive, Line.
A solution space for X-Line is generated by Rule2
which consists of all lines which are horizontal and
long. There are three such lines in Fig. 2, leading to
three potential solutions. The "long" constraint is one
related to the overall size of the diagram and to the
distribution of line lengthsz.

One of the most important characteristic lengths in diagrams is the
height (font size) of the smallest text. Anything of that size is considered
small or short and anything that is many times that size is large or long.
This follows naturally from the standard conventions that people use for
constructing diagrams - text is typically made as small as possible
subject to the constraint that it be clearly legible. The other

restriction of the context as it is passed down the search
tree. The set intersections needed for this are performed
with a linear time algorithm using tagged objects. The
pre-computed spatial index is used to achieve substantial
speedup in computing a wide variety of geometric
relations and constraints. The analysis of Fig. 2 (N=24)
required 0.28 sec. to parse and return the two solutions
plus 9 seconds to build the spatial index.

The approach just described integrates a number of
techniques that make it easy to write grammars that
describe a wide variety of types of complex diagrams. But
at the same time, parsing is efficient. The success of the
approach rests on a number of factors:

Matching all aspects of the system to the spatial
organization that people perceive in diagrams and use
in drawing diagrams.

Using sets as a fundamental component of the
grammatical formalism.

Using equivalence relations (near, aligned) to partition
object collections into sets, typically in linear time.

Using constraints to continually restrict sets until the
desired solution sets are obtained.

Performing top-down analysis to effectively direct the
parsing process.

Allowing objects to participate in more than one
structure, e.g., a shared wall between two rooms. This
is a natural consequence of the constraint approach.

characteristic length is the width of the page or column in which the
graphic appears.

784

uilding spatiadly associative indexes of all primitives
nd derived objects to aid searching and the P omputation of relations.

iency and Spatial Indexing
the primitives in a diagram are initially entered into

dex. In the example below, the index allows us
just those graphical items that touch a given line,
set of horizontally aligned items, in a time

t of the total diagram size. Each cell in the
corresponds to a square region in the Cartesian

of the diagram (213 x 213). The finest resolution
index is typically a 64 x 64 array of cells. In

, a pyramid containing all smaller arrays of size
6) is built with each smaller array covering the

area at a coarser resolution. This allows us to
scover objects that are more distant from one

X,Y SPATIAL INDEX y-T-=
A

Y

X
Xing of graphic primitives. A small portion of the
ray IS shown. The vertical lines A, B and C, the
the diagonal line E are shown installed in the
the Y spatial index. (X index not shown). The
also installed. The bracketed sets, (....}, are the

d in or pass through a cell. The Y index set in a
:ell contents to its right. This figure has N=5 for
It an additional 10 endpoints are installed before

e relation with a lower
of X,Y cells, single X
ed in which each cell
all objects installed in

rtion of the one-dimensional space. The X and Y
indexes allow horizontally and vertically aligned

Inverse indexes for all
ping from objects to

le of Fig. 3 can be used to understand some
of p,arsing using grammar G1. The only

11s containing them.

X-Line in Fig. 3 found by Rule 2 is line D.
"(touch X-Line ?)" generates the context value by using
the inverse index from the line D to obtain the three cells it
occupies. Then the set of all objects in those cells, the
lines B, C and D and the endpoints 3 , 5 , 7 and 8 becomes
the context value that is passed to the Ticks rule. They all
"touch" the X-Line. The Ticks set rule first filters out all
but Lines, the type specified for the set elements, leaving
only B, C and D. It then filters out all but vertical Lines,
leaving B and C and restricts to short Lines, still leaving B
and C. It then checks to see if B and C are horizontally
aligned, which they are, by seeing if their endpoints, e.g.,
their upper endpoints, 3 and 5, are contained in the same
Y index cell, which they are. Then a Ticks set solution
object containing B and C is returned to Rule 1 where, in
this case, it is rejected because it only has two elements.

As parsing proceeds, higher-level objects are also
installed in the spatial index. Thus, references to the Ticks
object in Fig. 3, would be placedl in the cells occupied by
the lines B and C. This can be done more efficiently than
the original installation, since the set of cells occupied by
B and C are immediately available from the inverse index
from objects to cells.

The spatial index can be used to generate or filter
objects. All objects within some: distance of an object 0
can be generated by looking in the cells occupied by 0, at
any chosen level of the spatial index pyramid. If a large
context is passed to a rule, it can be filtered by generating
a set obeying a constraint and intersecting it with the
context. The spatial index car1 also be used to rapidly
find all objects that are left, right, above or below a given
object. For example, a search for data points in a graph
can be done among objects that are above the x scale line
and right of the y scale line. To find all objects to the right
of some point P, the X index pyramid is searched from its
root. The computation requires performing the union of
the contents of at most n cells, where n is the depth of the
pyramid, e.g., n=6. The union computation is linear in the
total number of the (not necessarily distinct) objects in the
n cells.

A large grammar for data graphs
The data graph of Fig. 1 was parsed using grammar G2,

given in the Appendix. Much of grammar G2 is similar in
form to G1, but it includes additional constructs.

Rule X-Line has the ":additional-slots'' construct
which specifies that an additional attribute be added to the
LHS, in this case, "left-endpoint'' which is bound to the
left endpoint of the Line. Rule Y-Axis has the ":null"
construct that allows the rule to be satisfied with null
values for any or all of the constituents listed, if they

I 785

cannot be found. Rule Y-Labels contains the ":largest"
construct which forces this set rule to return only a single
solution, the maximal set with the largest number of
elements. The below constraint in the X-Axis rule contains
the keyword ":strip", which causes it to ignore all objects
that are left or right of the X-Axis-Line.

Basic functions on non-primitives are supported, e.g.,

Other approaches

There are a number of systems that perform
interpretation of engineering drawings, circuit diagrams
and maps [6, 71.3 Such systems usually start from a
scanned image and try to create a high level description of
the document. In general, those systems use complex

189 212 293 315 483 505 553
: : . . * I * 7 37 . .

a . . .
TM1 FIEEPTORDCMAIN TM2 C

Figure 4. A gene diagram (N = 35) parsed with a grammar of eight rules. Parsing required 24 sec plus 14 sec for precomputing the
sp$ial index.-

Figure 5. A finite-state automata sketch (FSA), N=124. Parsing required
65 sec plus 25 sec for precomputin the spatial index. The fact that the

accurately posed no problems for the parser because the near constraint
was used. Simple postprocessing of the parse gives the entire state-
transition table so the FSA can be run. The arrows are recognized from
their constituent lines, rather than assumed as primitives.

arc ends and arrowheads were 3 lawn roughly and did not line up

near, aligned, above. But more specialized functions such
as a-length for the high-level Data-Line object in Rule
Data-Lines must be written with some knowledge of the
structure of the object (e.g., a set of connected lines or
curves).

domain-specific knowledge representations, making it
difficult to apply the methods to different domains. In [8]
a system for interpretation of large-scale hand-drawn
logic circuit diagrams is presented. Symbols are
recognized by a combination of feature extraction and
pattern matching techniques, while decision trees and
heuristics control the analysis process. The diagrams
processed can be composed of up to 400 symbols and
experimental results have shown that the recognition
accuracy is about 95%. Other similar systems are the
REDRAW [9] and GTX 5000 [lo] that provide a more
general framework for document analysis. The CIPLAN
[ll] is a system for interpretation maps that uses
specialized domain knowledge at the pixel and higher
levels of analysis. It implements a procedural network
that associates entities with specific procedures for their
identification. CIPLAN works in the domain of French
city maps (plats). The application of CIPLAN to plats
from other countries was not done because it required the
integration of new specifications into the structure model.
This is a typical situation in which efficiency is traded for
adaptability. There is also substantial research in the low
level aspects of document analysis [12, 131. It mainly
deals with segmentation, vectorization and feature
extraction.

grammars such as we use are
recognized as useful for expressing relations among
graphical objects in 2-dimensional space [3]. Others
include Relation Grammars [14, 151, Graphical F-PATR
Grammars [16], Picture Layout Grammars [17-191 and

Constraint-based

While these have been popular application domains, the number of
diagrams in the world's published technical literature far outstrips these,
numbering over ten million a year. Our focus is on the biology literature,
the largest single literature of the sciences, and one that contains a large
proportion of diagrams.

786

how
par

are

[16:,
spaial

very

Dis4ussion

Constraint Set Grammars [20]. Despite the theoretical
fouidation that these approaches provide, it is not clear

to use them to achieve efficient parsing for
icular application domains. Most are based on

exhaustive bottom-up analysis and as a result, they are
inefficient, especially in cases of many local matches that

not part of a complete solution. Wittenburg has
developed a bottom-up tabular parsing algorithm that has
successfully applied in the some interactive domains:
flowchart and mathematical expressions interpretation

and document design [21]. In [19] an algorithm for
parsing is presented that is based on the CYK

parsing algorithm. All of these approaches appear to have
difficulty parsing diagrams of realistic size. RG/l
grammars were iritroduced [22] in order to make parsing
traotable, but the grammars were then not expressive
enoigh to deal with real diagrams. Wittenburg only gives

small examples in his various publications, so the
question of parsing realistic diagrams remains open.
Colin's thesis [19] gives some of the most detailed
infcrmation on parsing using constraint grammars, but he

most important point to be made about the other
it divides into two classes.

t class are domain-specific systems that are
analyzing complex diagrams. But those

ically have a lot of domain-specific code that
retargeted to another domain with great effort.

second class are the more grammar-based
hes. These pay a lot of attention to proving formal
es of their grammars or fitting them into a rigorous

parsing framework. They are capable of
a variety of domains. But the grammar-based

not appear to be efficient enough to parse
of any really complexity, e.g., N=lOO to 200
Our system has analyzed over twenty diagrams

oach we have presented in this paper
the flexibility of domain retargeting by writing
grammars, with the efficiency of the more

specific systems, something we believe has not
d before. Our system appears to succeed

lishecl biology literature, average N= 120.

1. Spatial indexing

2. Sets as a grammar data type

3. Equivalence relations leading to maximal sets

4. Successive restriction of contexts through top-
down analysis

Feature 1 has been described in detail. Features 2 and
3 work together. Feature 3 refers to the fact that relations
such as near and aligned are approximate equivalence
relations, which we call Generalized Equivalence
Relations (GERs) [l], e.g., the rdation coincident is a true
equivalence relation, and near is a generalization of it.
Diagrams are typically drawn with many items that are
equivalent in some way, e.g., rectangles of the same size,
arrowheads that are identical in size, data points that are
the same shape and size, tick nnarks and their numerical
labels that are aligned. This organization makes it simpler
to draw and understand a diagram - it is tuned to the
visual perceptual abilities that are innate in humans. Our
system is designed to take advantage of the standard and
natural paradigms used in diagram design.

In our top-down parsing strategy, the context is passed
down as an inherited attribute and additional slots can be
passed up as synthesized attributes [23]. Also, bounding
boxes for complex objects are synthesized from
constituents.

In conventional parsing, once a constituent is assigned
a role, it is excluded from consideration for other roles -
it cannot be "shared". But in graphics, sharing is common
and our system handles sharing. For example, the analysis
of Fig. 1 produces a solution with four parts in which each
axis label, "Time After ..." and "Fraction ..." applies to all
four graphs and the numeric tick labels apply to the two
graphs above or to the right.

The system is written in Macintosh Common Lisp and
uses the CLOS object system extensively. The grammar
is preprocessed to discover all high-level objects and
CLOS classes are created for them, including any
additional slots specified in the rules. The Common Lisp
macro facility makes it very easy to map declarative rules
onto the needed constructors. ,4 visual inspector, DUSI
(Diagram Understanding System Inspector), has been
implemented for development purposes that will highlight,
in color, any CLOS graphic abject in the display and
conversely, locate the CLOS object corresponding to any
displayed item.

787

Bibliography
Proc. of SSPR-90. 1990. Murray Hill, NJ: Int'l Assoc. for
Pattern Recognition.

1. Futrelle, R.P., Strategies for Diagram Understanding:
ObjectBpatial Data Structures, Animate Vision, and
Generalized Equivalence, in Proceedings of the 10th
ICPR. 1990, IEEE Press: p. 403-408.

2. Futrelle, R.P., et al., Understanding Diagrams in
Technical Documents. IEEE Computer, 1992.25(7): p. 75-
78.

3. Helm, A.R. and K. Marriot. Declarative graphics. in
Third International Conference on Logic Programing.
1986. Springer Verlag.

4. Terwilliger, T.C., J.Y. Wang, and D.E.J. Koshland,
Kinetics of Receptor Modification. The Journal of
Biological Chemistry, 1986. 261(23): p. 10814-10820.

5. Tsang, E., Foundations of Constraint Satisfaction.
Computation in Cognitive Science, 1993, Academic Press.
421.

6. Kasturi, R. and L. O'Gorman, Document Image
Analysis: A Bibliography. Machive Vision and
Applications, 1992.5: p. 231-243.

7. Dori, D., A Syntactic/Geometric Approach to
Recognition of Dimentions in Engineering Machine
Drawings. Computer Vision, Graphics, and Image
Processing, 1989. &: p. 271-291.

8. Okazaki, A., et al., An Automatic Circuit Diagram
Reader with Loop-Structure-Based Symbol Recognition.
Pattern Analysis and Machine Intelligence, 1988. lO(3): p.
331-341.

9. Antoine, D., C. Suzanne, and K. Tombre. Analysis of
Technical Documents: The REDRAW System. in Pre-Proc.
of SSPR-90. 1990. Murray Hill, NJ: Int'l Assoc. for Pattern
Recognition.

10. Filipski, A. and R. Flandrena, Automated Conversion
of Engineering Drawings to CAD Form. Proceedings of
the IEEE, 1992. 80(7): p. 1195-1209.

11. Antoine, D. CIPLAN: A Model-Based System with
Original Features for understanding French Plats. in
Proc. 1st Intern'l Con$ on Document Analysis and
Recognition (ICDAR). 1991.

12. Kasturi, R., et al., A System for Interpretation of Line
Drawings. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1990. PAMI-12(10): p. 978-992.

13. Kasturi, R., et al. Document Image Analysis - An
Overview of Techniques for Graphics Recognition. in Pre-

14. Crimi, C., et al. Relation Grammars for Modelling
Multi-Dimensional Grammars. in 1990 IEEE Workshop
on Visual Languages. 1990. Skokie, Illinois:

15. Crimi, C., et al., Relation Grammars and their
application to multi-dimensional languages. Journal of
Visual Languages and Computing, 1991.2(4): p. 333-346.

16. Wittenburg, K., L. Weitzman, and J. Talley,
Unification-based grammars and tabular parsing for
graphical languages. Journal of Visual Languages and
Computing, 1991.2(4): p. 347-370.

17. Golin, E. and S. Reiss. The Specification of Visual
Language Syntax. in IEEE Workshop on Visual
Languages. 1989. Rome, Italy: IEEE Press.

18. Golin, E.J., Parsing Visual Languages with Picture
layout Grammars. Journal of Visual Languages and
Computing, 1991.2: p. 371-393.

19. Golin, E.J., A Method for the Specification and
Parsing of Visual Languages. 1991, Brown University:

20. Helm, R., K. Marriott, and M. Odersky. Building
Visual Language Parsers. in CHI '91 - Proc. Con$ on
Human Factors in Computing Systems. 1991. New
Orleans, Louisiana: Addison-Wesley Pub. Co.

21. Wittenburg, K. and L. Weitzman. Relational
Grammars fo r Interactive Design. in I993 IEEE
Workshop on Visual Languages. 1993.

22. Ferrucci, F., et al. Efficient Parsing of
Multidimensional Structures. in IEEE Workshop on Visual
Languages. 1991.

23. Knuth, D.E., Semantics of Context-Free Languages.
Mathematical Systems Theory, 1968.2: p. 127-145.

788

APPENDIX - Grammar 62 for data graphs

X -Data-Graph -> Axis X-Axis Y-Axis Data
(Axis)
(X-Axis Axis)
(Y-Axis Axis) i (Data (contain Axis ?)) ;

is -> X-Line Y-Line
(X-Line)
(Y-Line (touch (left-endpoint X-Line) ?)

:constraints
(< (distance (left-endpoint X-Line) (bottom-endpoint Y-Line)) *tiny*));

(:additional-slots (left-endpoint (left-endpoint (Line self))))
(:constraints (horizp Line) (long Line));

Y- ine -> Line
(:additional-slots (bottom-endpoint (bottom-endpoint (Line self))))
(:constraints (vertp Line) (long Line));

L
*********** <X-AXIS > ****************

(:null X-Text)
(X-Axis-Line (X-Line context))
(X- Tic ks (touch X-Axis-Line ?)

(X-Labels (below ? X-Axis-Line :strip t))

X- is -> X-Axis-Line X-Ticks X-Labels X-Text

:constraints (>= (size X-Ticks) 2) (above X-Ticks X-Axis-Line))

(below-nearest ? X-Labels));

1
~ (X-Text

icks -> Set (Line)
(:element-constraints (vertp Line) (short Line))
(:constraint horiz-aligned)) ;

X- abels -> Set (Text)
(:element-constraints (horizp Text) (numeric-textp Text))
(:constraint horiz-aligned)
(: largest t) ;

X- ext -> Set (Text) T (:largest t) ;

L
(:element-constraints (horizp Text))

+**** < Y-AXIS > ****************
is -> Y-Axis-Line Y-Ticks Y-Labels Y-Text

(:nu:Ll Y-Ticks Y-Labels Y-Text)
(Y-Axis-Line (Y-Line context))
(Y-Ticks (touch Y-Axis-Line ?)

(Y- Label s (left ? Y-Axis-Line :strip t))
(Y- text (left-nearest ? (or Y-Labels Y-Axis-L,ine)));

:constraints (right Y-Ticks Y-Axis-Line))

Y- icks -> S:et (Line T (:element-constraints (horizp Line) (short Line))

(:constraint vert-aligned);

Y-Labels -> Set (Text
(:element-constraints (horizp Text) (numeric-textp Text))
(:constraint vert-aligned)
(:largest t);

Y-Text -> Set (Text 1
(:element-constraints (vertp Text))
(:largest t);

*********** < > ****************
Data -> Data-Lines Data-points ;

Data-Lines -> set (Data-Line)
(:element-constraints (> (a-length Data-Line) *very-long*));

Data-Line -> set (Line 1
(:constraint connected);

Data-Line -> set (Curve)
(:constraint connected);

Data-Points -> set (Data-Cluster 1;

Data-Cluster -> set (Data-Point)
(:constraint same-type);

Data-Point -> Circle ;

Data-Point -> Polygon
(:constraints (rectanglep Polygon) (small Polygon)) ;

790

