
The Diagram Understanding System -
Strategies and Results1

Technical Report by R. P. Futrelle - May 2007

Biological Knowledge Laboratory (BKL)
College of Computer and Information Science WVH202
Northeastern University, 360 Huntington Ave.
Boston, MA 02115

Abstract
Strategies for syntactic parsing of parsing diagrams are explained. The basic strategy
is the use of Context-based Constraint Grammars to express and guide the parsing
process, as well as spatial indexing that allows the system to evaluate spatial constraint
predicates rapidly. It is notable that the system described here was complete and op-
erational in 1996, which made it possibly the first such system to fully parse a variety of
actual diagrams drawn from the research literature, notably x,y data graphs and linear
gene diagrams, as well as finite-state automata diagrams created for the project. See:
Futrelle, R. P., & Nikolakis, N. (1995). Efficient Analysis of Complex Diagrams using
Constraint-Based Parsing. In ICDAR-95. Montreal, Canada, 782-790.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 1

1 This technical report is based on the The Diagram Understanding System Demonstration Site
http://www.ccs.neu.edu/home/futrelle/diagrams/demo-10-98/
It is available online, along with a number of other papers on the diagram research in the BKL, at:
http://www.ccs.neu.edu/home/futrelle/papers/diagrams/TwelveDiagramPapersFutrelle1205.html

http://www.ccs.neu.edu/home/futrelle/diagrams/demo-10-98/
http://www.ccs.neu.edu/home/futrelle/diagrams/demo-10-98/
http://www.google.com/ig?hl=en
http://www.google.com/ig?hl=en

Contents

 * Visualizing the Relations between Objects and Images
 * Using the Lisp Inspector
 * The Structure of Grammars for Diagram Parsing
 * How the Grammar Rules Drive the Parsing Process
 * Parsing runs with timing
 * Object Sharing in parsed structures
 * Spatial indexing and geometrical computations
 * Parsing finite-state automata diagrams and gene diagrams
 o Finite-state automata diagrams -- using sharing for context
 o Gene diagrams
 Appendix A - Complete copy of a grammar for x,y data graphs
 Appendix B - Full finite-state automata grammar
 Appendix C - Full gene diagram grammar
 Appendix D - Relation of this to ideas/systems in FRVDR98

Introduction

The original set of web pages on which this report is based was prepared for the dem-
onstration of the Diagram Understanding System (DUS) at the Fall AAAI Symposium on
Formal Reasoning with Visual & Diagrammatic Representations (FRVDR98), Orlando,
Florida, October 1998. They represented work done by Futrelle and various graduate
students over a number of years at Northeastern University, Boston. The overall goal of
the Biological Knowledge Laboratory is to develop systems that can discover and ex-
ploit the content of scientific documents, e.g., using AI techniques for representing the
conceptual structure of the documents. Biological research papers in particular contain
numerous figures, so discovering figure content is important. The discussion here fo-
cuses on diagrams, by which we typically mean figures that are made up of vector ele-
ments: lines, polygons, text, etc., as opposed to continuous-tone images, e.g., photo-
graphs. The three thumbnails on the title page of this report represent the classes of
diagrams that we initially focused on. We explain how our system works by presenting
a series of examples of its use to parse diagrams and to view the structure of the
parses. We also discuss the nature of the grammars we use. All screen shots and ex-
ample runs in this demonstration were produced on a Macintosh G3 Series PowerBook,
300MHz, using Macintosh Common Lisp, allocated 20MB of space. The typical parse
times for diagrams quoted below, a few seconds, would be in the hundreds of millisec-
onds on current machines (2007).
We have concentrated on diagrams taken directly from the published literature, rather
than simple, stylized diagrams that we create. The diagrams consist of anywhere from
50 to 1000 primitives (lines, polygons, text, circles, and Bezier curves). All diagrams in
this demonstration were redrawn by us from the printed originals to produce the vector
form needed by our system. Here is a such a diagram (Borkovich and Simon, Cell, 63,
1990, pg. 1343), as shown in the DUS Diagram Viewer.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 2

A grammar that defines the structure of such an x,y data graph (a Context-Based Con-
straint Grammar) is used to analyze (parse) the diagram. The parse is a collection of
interrelated graphical objects, from primitives such as lines or Bezier curves, to higher-
level objects such as X-Axis or Data-Cluster. Parsing proceeds by:

First - Loading a grammar using defgrammar, and installing all objects in the source
image into the spatially associative array pyramid structure (SPAS == Spatially Associa-
tive Substrate), in either order.
Second - Parsing the installed image using (parse <node>) where the <node> chosen
is usually the top-node, e.g., Image in our x,y data graph example.
The diagram viewing system, DUSI (DUS Inspector) is used to examine the relation be-
tween the solution objects and the corresponding visually observable structures. All the
figures in this set of web pages were obtained as screen shots from DUSI.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 3

Relation of this work to ideas/systems discussed in FRVDR98

This work is relevant to formal reasoning about diagrams in at least the following ways:

 * Parsing diagrams is reasoning about diagrams, in that it is a constructive proof that
the parsed entity is an instance of a certain description of a class of objects.

 * To do automated reasoning about a diagram, it is often useful to start with a struc-
tured description of the diagram, rather than a collection of primitive objects (lines, poly-
gons, etc.). A parse produces such a description.

 * Building a framework for writing grammars raises important issues about how to
specify the geometrical relations that should hold within a diagram of a certain class.

 * Designing a computational strategy for parsing a diagram forces us to think about
how to discover and keep track of geometric relations within a diagram in an efficient
way.

 * Any approach to parsing helps to elucidate problems such as ambiguity in diagrams
and their descriptions.

Viewing the relations between objects and images

Each object in the parsed diagram, whether a primitive such as a line or a higher-level
object such as X-Axis, is represented by a program object at run time, specifically a
CLOS class instance in Lisp. To visualize and examine the correspondence between
the run-time objects and their counterparts in the visual image, we developed the DUS
Inspector, or DUSI. On the next page, we show the Object Viewer (OV) and the Dia-
gram Viewer (DV) in DUSI.

The need to simultaneously view the program/parse objects and the corresponding
graphics cannot be over-emphasized. In a natural language parse of a sentence, the
resulting tree structure typically ends in a set of ordered leaves that are in close to one-
to-one correspondence with the words in the sentence.

In the figure on the next page, the x-axis tick label, "10" has been selected by clicking
on it in the DV. The corresponding object, "#<A-TEXT-LINE #x46FBB36> appears se-
lected at the top of the stack window in the OV. In addition, with the text-line item se-
lected, the "Constituent of" button in the OV was pressed, causing all ancestors of the
text-line in the parse tree to be placed on the stack. This shows that A-TEXT-LINE is a
constituent of an X-LABELS object which is in turn a constituent of an X-AXIS object
which is a constituent of a DIAGRAM object. The DIAGRAM object is the only constitu-
ent of the overall IMAGE object. (A multi-part plot, a set of x,y diagrams, can have a set
of more than one DIAGRAM in an IMAGE.)

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 4

The Object Viewer (OV) and the Diagram Viewer (DV) in DUSI (the DUS Inspector).

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 5

Using the Lisp Inspector with DUSI

If the X-AXIS object in the OV is selected, various things can be done with it. On the
next page, we show the results that follow from pressing the Highlight Object and In-
spect Object buttons.

Pressing the Inspect Object button in the OV causes a Lisp Inspector window to open,
inspecting whatever object is highlighted in the OV stack. Pressing the Highlight Object
button causes all the primitive objects which are constituents of the highlighted stack
item to be highlighted in color (in red) in the DV window.

In the bottom DV window, the components that make up the X-AXIS object are high-
lighted. These include the axis line, the axis label, "Time (sec)", the tick marks and their
numerical labels, and the annotation text and arrow. The contents of the X-AXIS CLOS
object are shown in the Lisp Inspector window above the DV. The object has many
slots, but the primary ones of interest here are the last five X-AXIS-LINE through X-
TEXT, which are the constituents of the X-AXIS production in the grammar.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 6

Showing the results that follow from pressing the Highlight Object and Inspect Object
buttons in the Object Viewer (top) and the Diagram Viewer (bottom).

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 7

Introduction to grammars -- A fragment defining the X-Axis of a data graph

 Below we briefly discuss a fragment of the full x,y graph grammar dealing with the
X-Axis structure highlighted in the previous example. The fragment consists of three
productions. The full grammar is also available for browsing. After looking over this
fragment, you can proceed to the discussion of how the grammar rules drive the parsing
process.

The overall structure of this grammar fragment is:

 * An Image is defined as a set of diagrams so that a multi-part diagram can be
parsed, e.g., two data-graphs, one above the other.

 * A Diagram is made up primarily of axes and data.

 * An X-Axis has five components:

 o The X-Axis-Line which is the long line to which the tick marks are attached.
 o The X-Ticks which are a set of short vertical lines very near the x-axis-line.
 o The X-Labels which must each be close to and below their corresponding ticks.
 o X-Annotation which is an arrow with attached text.
 o X-Text which is the overall axis label below the tick labels.

The grammar fragment:

;;; ****************** < Image > ******************

 (Image -> Set (Diagram));

;;; ****************** < Diagram > ******************

 (Diagram -> Axis X-Axis Y-Axis Data
 (Axis)
 (X-Axis ($:axis Axis))
 (Y-Axis ($:axis Axis))
 (Data
 ($ (difference* (contain Axis '?)
 (union* X-Axis Y-Axis))
 :x-ln (ln (X-Line Axis))
 :y-ln (ln (Y-Line Axis))
 :axis Axis)));

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 8

;;; ****************** < X-AXIS > ******************

 (X-Axis -> X-Axis-Line X-Ticks X-Labels X-Annotation X-Text
 (:optional X-Annotation X-Text)
 (X-Axis-Line (X-Line (get-val axis)))
 (X-Ticks ($:x-line X-Axis-Line)
      :constraints (>= (size X-Ticks) 3))
 (X-Labels (below '? X-Axis-Line :strip t))
 (X-Annotation (difference* (near X-Axis-Line 700)
      (union* X-Ticks X-Labels))) ; label-size
 (X-Text
      (near&below '? X-Labels (* 2 (height X-Labels)))))

Parsing details for a simple grammar

We will examine how parsing proceeds for a grammar that only describes the y-axis line
and its tick marks and does so in a very simple way. When a grammar is entered into
the system, a Lisp defgrammar macro expands the form into one that includes an addi-
tional defrule macro, applied to each rule structure. When the defrule forms expand,
they define the CLOS classes for each non-terminal as well as the goal predicates for
the search and the generator functions needed. These macros act as the parser gen-
erators. Once they have been applied, the parsing process then acts as a top-down
tree-search.

A simple grammar with three rules:

;;; ****************** < X-Ticks > ***************

(Y-Ticks -> Ticks Y-Line
 (Y-Line)
 (Ticks (touch Y-Line '?) :constraints (> (size Ticks) 2)))

;;; ****************** < X-Line > ***************

 (Y-Line -> Line
 (:constraints (vertp Line)
 (long Line)))

;;; ****************** < Ticks > ***************

 (Ticks -> Set(Line)
 (:element-constraints (horizp Line)
 (short Line)))

The parse is assumed to be started at the top node, Y-Ticks. Parsing proceeds by a
depth-first search to discover and build elements that satisfy the various geometric con-
straints. The order of the search is dictated by the order of the constituents in the body
of the rule (not in the order of the constituents in the "->" production).

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 9

1. In the Y-Ticks rule, the Y-Line constituent is searched for first. There are no specific
restrictions on the Y-Line search included in this Y-Ticks rule

2. In the Y-Line rule the Line primitive is the only constituent, and it must obey the con-
straints that it be vertical and long.

3. Returning to the Y-Ticks rule, Ticks are searched for next. The expression "(touch Y-
Line '?)" is a context generator. The set of all elements in the diagram that obey this
constraint is created and the Ticks constituent rule is then entered with this context re-
striction -- Ticks members can only be chosen from the set of elements in the diagram
that touch the long vertical line found by the Y-Line rule. The context is propagated to a
constituent rule as an inherited attribute.

4. The Ticks rule is then entered. Ticks is a set of Line primitives. The elements of the
set are chosen from the context inherited from the Y-Ticks rule, as explained in step 3.
The elements of this set are further filtered by constraining every one of them to be both
short and horizontal. Any subset of the y tick marks would satisfy this rule. But our algo-
rithm attempts to choose the maximal set of elements that satisfy the rule. In this way, a
single rule can return twenty tick marks or a hundred data points in one step. In the Y-
Ticks rule, an acceptable set of ticks must have greater than 2 members, the constraint
":constraints (> (size Ticks) 2))".

Our grammars, because of the way they are designed
and operate, are called Context-based Constraint
Grammars. It is essentially an Attributed Multiset
Grammar, but its use of context is new. A rule inherits a
context specified in its parent that restricts the set of
items within which the rule is allowed to search for a
solution. This successive narrowing of the search set
helps to make the parsing process more efficient. Pars-
ing generates a set of all distinct solutions that satisfy
the constraints. In the example above, the set is a sin-
gleton. In addition, the same element can be reused or
shared by various parts of a single solution, see the
discussion of sharing.

When the parse is complete we can highlight the ele-
ments in the Diagram Viewer that make up the Y-Ticks
structure, as shown on the right. Note that this simple
grammar also identifies the top and bottom sides of a
data point as tick marks. This is avoided in our more
complex grammars by requiring that a tick mark not be
a line that participates in a polygon.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 10

Parsing x,y data graphs -- Sample runs with timing

As we said earlier, the parsing run-times listed below would easily be 10 to 20 times
shorter using a contemporary system (c. 2007). The first parsing example is based on
the simple x,y data graph presented in the Introduction. Parsing proceeds in two steps:

 * Loading a grammar using defgrammar, and installing all objects in the source image
into the spatially associative array pyramid structure (SPAS == Spatially Associative
Substrate), in either order.

 * Parsing the installed image using (parse <node>) where the <node> chosen is usu-
ally the top-node, e.g., 'Image' in our x,y data graph example.

The runs below were done on a Macintosh PowerBook G3 Series, 300MHz machine
with 20MB allocated for the Lisp image.

Here is a trace of loading the grammar, which takes about 8 seconds (loading is needed
only once, for parsing any number of diagrams covered by the grammar):

? (time (load-grammar))
(LOAD-GRAMMAR) took 8,021 milliseconds (8.021 seconds) to run.
Of that, 72 milliseconds (0.072 seconds) were spent
in The Cooperative Multitasking Experience.
 3,558,448 bytes of memory allocated.
#P"Macintosh HD:Research:DUS-comps3:Demo98:Grammars:x-y-grammar-final.lisp

Then the image objects in the diagram is installed, taking about 1.3 seconds:

(INSTALL-IMAGE FILE) took 1,309 milliseconds (1.309 seconds) to run.
Of that, 39 milliseconds (0.039 seconds) were spent
in The Cooperative Multitasking Experience.
 3,499,408 bytes of memory allocated.

And then the parse itself is performed which takes just under 1 second:

(SETQ *SOLUTION* (PARSE TOP-NODE)) took 943 milliseconds (0.943 seconds) to
run.
Of that, 12 milliseconds (0.012 seconds) were spent
in The Cooperative Multitasking Experience.
 1,920,504 bytes of memory allocated.
#<INSPECTOR-WINDOW "(#<IMAGE #x30DD006>)" #x30E86A6>

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 11

A larger and more complex data graph

Here are similar timing results for the more complex multi-part data graph shown below
(Terwilliger, T.C., Wang, J.Y., and Koshland, D. E., Jr. (1986a) J. Biol. Chem. 261(3),
10814-20, Fig. 3, pg. 10187). This diagram was made up of N=146 primitives, yet it took
less than three seconds to parse, after an installation taking about nine seconds. Many
critical parts of the analysis such as discovering data point sets and tick mark sets run in
linear time, which is a major reason why such large N values can be handled efficiently.
(Nikolakis, N., Diagram Analysis using Equivalence and Constraints (PhD dissertation),
in College of Computer Science. 1996, Northeastern University: Boston, MA. 198 pgs)

(INSTALL-IMAGE FILE) took 8,912 milliseconds (8.912 seconds) to run.
Of that, 2,297 milliseconds (2.297 seconds) were spent
in The Cooperative Multitasking Experience.
860 milliseconds (0.860 seconds) was spent in GC.
 10,995,456 bytes of memory allocated.

(SETQ *SOLUTION* (PARSE TOP-NODE)) took 2,404 milliseconds (2.404 seconds) to
run.
Of that, 236 milliseconds (0.236 seconds) were spent
in The Cooperative Multitasking Experience.
 4,973,040 bytes of memory allocated.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 12

Objects in the image can be members of multiple parsed structures

This parsing example is based on a four-part x,y data graph. When the parsed elements
for the upper-right data graph, "Site 3", are highlighted, we can see that various compo-
nents below and to the left, but quite distant from the data itself, are part of the solution.
The y-axis label on the far left is shared by all four of the parses for "Site 1" through
"Site 4, that is, it appears as a constituent in all four of these components of the overall
image parse. The numerical labels and tick marks on the upper left are shared by "Site
1" and "Site 3", while the numerical labels on the lower right are shared by "Site 3" and
"Site 4". The x-axis label at the very bottom is shared by all four data graph parse com-
ponents. Sharing is common in graphics, but is not allowed in many approaches to
parsing. The "remote" components that end up being shared are found by using X-Or
rules that first look for nearby elements, but if they cannot be found, remote but properly
aligned elements are searched for (see the X-or construct in the X-Ticks rule in the
complete x,y grammar).

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 13

Objects are installed in cells in a spatial index

A spatial index (SPAS == Spatially Associative Substrate) is used to store the regions
occupied by the primitives and higher-level objects in a diagram. The basic collection of
cells is typically a 64x64 square array, covering the space occupied by the diagram.
Each object is installed in the array by creating an object reference in every array cell
that the object occupies or passes through. The spatial array operates as an associative
index mapping from 2-space to objects. In addition, two linear spatial projection arrays
for the x and the y axes are also filled in the same way. The spatial array is used to effi-
ciently compute spatial relations that are important in parsing. For example, finding out
whether two objects A and B are near one another is done by inspecting the cells occu-
pied by A for the presence of a B object (or vice-versa). To avoid near misses that can
occur in such computations, objects are also installed in the 8-neighbors of each cell.
That is, two objects can be very close together but happen to be in two distinct but adja-
cent cells. They should be considered near in such a case, and the strategy we have
used is to look in the eight nearest neighbor cells. This, in effect, essentially "coarsens"
the grid, but that can be overcome simply by using a finer grid (deeper pyramid).

Important relations such as horizontally-aligned can be computed immediately from the
projection arrays. Though it is obvious how to compute predicates, such as, are A and B
near one another?, it is often more important to generate sets of objects that satisfy a
given spatial relation. This is also easily accomplished using SPAS -- to find all objects
near A we form the union of all other occupants of cells occupied by A.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 14

To accommodate spatial predicates that operate at various levels of resolution, SPAS is
actually a pyramid of arrays of size 2ix2i, i=0,6 (the last value, 6, is a settable parame-
ter) and the objects are installed in all levels of the pyramid. Generated sets are typically
used to restrict the context that is passed to a constituent rule.

Multiple copies of higher-level objects may be constructed during a parse, but only one
copy of a given constituent with identical leaf nodes is installed in the SPAS and re-
ferred to in the solution. This retains object integrity for all constituents. In the future, it
may be possible to exploit this to even avoid rediscovering constituents, much as natu-
ral language chart parsers do. But diagram parsing cannot rely on the simple linear po-
sition index that natural language chart parsers do, so this will be a challenging effi-
ciency issue. (We have experimented with memoization, but that also needs further
work.)

One of the benefits of the spatial index is that once objects are installed, geometric
computations can be done based on cells, ignoring the objects' geometric structure, so
that it is as easy to find objects near a Bezier curve as it is to find objects near a straight
line or a text item. Higher-level objects are installed in SPAS as the parsing process
proceeds and each higher-level object occupies the cells that are the union of the cells
occupied by the primitives descendants.

In the figure on the previous page, we show how the diagram viewer can display the
cells occupied by an arbitrary object, in this case the higher-level object DATA-LINE.

When lines or Bezier curves are installed, their endpoints are also installed as distinct
but related objects. In the figure above it is clear that a connected sequence of data
lines has been identified by the parser. This is done by using the spatial index to look in
the neighborhood of a line end-point to see if the (starting) end-point of another line is
there. In this way, a chain of connected lines or curves can be built up.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 15

Finite-state automata diagrams -- using sharing for context

Here we exhibit some of the aspects of parsing the simple finite-state diagram below.
The diagram arrows are simply drawn as a line or curve and two straight lines near the
point, forming the arrowhead. The exact positioning, angles, and lengths of the arrow-
heads is not crucial to the analysis. The positioning of the three labels is not critical ei-
ther. The full finite-state automata grammar is available for perusing. It may help clarify
some of the details of the parsing whose results are illustrated below. Installation of the
diagram in the pyramid required about 700 msec and parsing required about 250 msec.
(This is relatively slow, given the simplicity of the diagram, but this is because the instal-
lation and parsing of circles is not well optimized.)

The grammar for finite-state automata uses existentially quantified variables and nega-
tion in the discovery of the start states. They must have an incoming arrow which itself
has no other state touching its tail. This is specified in the rule below:

 (Init-state -> A-state Arrow
 (A-state)
 (Arrow (touch A-state '?)
 :constraints (touch (reach-pt Arrow) A-state)
 (null (some* [a-state] :in
        (touch '? (leave-pt Arrow))))))

The top-level production has three constituents:

 FA -> Init-state Transitions Final-states

Perhaps the most interesting thing about the grammar is that the three constituents
share various elements. They do this so they can identify structures correctly by their
relations to others, by their geometrical context. This is most easily seen in the three
images below, which show the highlighted objects in the three top-level constituents.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 16

The figure below shows the highlighted elements of the Init-state. Both the state-circle
and the incoming arrow without any tail object are used to determine that "a" is the initial
state.

The figure below, shows highlighted elements of the Transitions (there is only one).
Note that the circle in the initial state show in Fig. 1 is used again (shared) in defining
the transition. Each state circle in a large diagram is a participant in all the transition ob-
jects that leave or enter that state. Because each entity such as a state is treated as a
unique object, and installed in the pyramid, they are not recreated each time they are
used in a distinct constituent parse.

The figure below, shows highlighted elements of the Final-states (there is only one). A
final state is distinguished by having one circle contained in another. Here the end-state
of the transition highlighted in Fig. 2 is reused in the final state.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 17

Gene Diagrams

Here we exhibit the results of parsing a gene diagram. The details are similar to the
previous examples. The full gene grammar is available for perusing. Here is a gene dia-
gram with one of the three genes found highlighted:

The primary components of a gene are the segments and an (optional) backbone line.
The highlighted gene has three segments. Two are crosshatched and the third, middle
segment, has further subdivisions. The grammar used had no provision for the cross-
hatching or the long vertical or diagonal connecting lines showing the correspondence
between sites in the three gene variants in the figure.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 18

Appendix A - Complete copy of a grammar for x,y data graphs

Note that the grammar is followed by definitions of some Lisp functions called during
parsing, especially to deal with the details of arrow-points (arrowheads).

;;;-*- Mode: Lisp; Package: DUS -*-

;;; -----------------------------
;;;
;;; Nikos Nikolakis
;;;
;;; created: Oct. 1994
;;; last update: 2/28/95
;;; -----------------------------

#|

 An effort to parse a diagram through a declarative approach.

 This grammar works fine for diagrams with non-overlapping axis.
 The grammar has been extended to handle special cases like
 annotations, key-specifications and other objects inside a diagram.

|#

(defvar *tiny* 35) ; it specifies the coincide predicate (old value 20)

(setf

 grammar ;; grammar object

 (defgrammar

;;; ****************** < Image > ******************

 (Image -> Set (Diagram));

;;; ****************** < Diagram > ******************

 (Diagram -> Axis X-Axis Y-Axis Data
 (Axis)
 (X-Axis ($:axis Axis))
 (Y-Axis ($:axis Axis))
 (Data
 ($ (difference* (contain Axis '?)
 (union* X-Axis Y-Axis))
 :x-ln (ln (X-Line Axis))
 :y-ln (ln (Y-Line Axis))
 :axis Axis)));

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 19

;;; ****************** < Axis > ******************
 (Axis -> X-Line Y-Line
 (X-Line)
 (Y-Line (touch (left-endpoint X-Line) '?)
 :constraints
 (coincide (left-endpoint X-Line) (bottom-endpoint Y-Line))));
 (X-Line -> Line
 (:additional-slots (left-endpoint . (left-endpoint (Line self)))
 (ln . (a-length (Line self))))
 (:constraints
 (horizp Line) (long Line)));
 (Y-Line -> Line
 (:additional-slots (bottom-endpoint . (bottom-endpoint (Line self)))
 (ln . (a-length (Line self))))
 (:constraints
 (vertp Line) (long Line)));

;;; ****************** < X-AXIS > ******************

 (X-Axis -> X-Axis-Line X-Ticks X-Labels X-Annotation X-Text
 (:optional X-Annotation X-Text)
 (X-Axis-Line (X-Line (get-val axis)))
 (X-Ticks ($:x-line X-Axis-Line) :constraints (>= (size X-Ticks) 3))
 (X-Labels (below '? X-Axis-Line :strip t))
 (X-Annotation (difference* (near X-Axis-Line 700)
    (union* X-Ticks X-Labels))) ; label-size
 (X-Text (near&below '? X-Labels (* 2 (height X-Labels)))
))

 (X-Ticks -> X-or < (Own-X-Ticks (touch '? (get-val X-Line)))
 (Remote-X-Ticks (below '? (get-val X-Line) :strip t)) >);
 (Own-X-Ticks -> Set (Line)
 (:element-constraints
 (vertp Line) (short Line) (not (polylinep Line))
 (< (distance (endpoints Line) (Line (get-val X-Line)))
 (max (* (a-length Line) .25) *tiny*)))
 (:constraint horiz-aligned-gen)
 (:largest t));
 (Remote-X-Ticks -> Set (Line)
 (:element-constraints
 (vertp Line) (short Line) (not (polylinep Line)))
 (:constraint horiz-aligned-gen)
 (:largest t));

 (X-Labels -> Set (Text)
 (:element-constraints (horizp Text) (numeric-textp Text))
 (:constraint horiz-aligned-gen)
 (:largest t));

 (X-Text -> Text
 (Text
 :constraints (horizp Text) (not (numeric-textp Text))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 20

 :select (max (text-length Text))));

 ;;; The arrow points to the X-line (=> we don't need the pointed-gos
 (X-Annotation -> Arrow Text-set
 (:optional Text)
 (:non-sharable Arrow Text-set)
 (Arrow)
 (Text-set (near (leave-pt Arrow) (* 3.5 (ln Arrow)))));

;;; ****************** < Y-AXIS > ******************

 (Y-Axis -> Y-Axis-Line Y-Ticks Y-Labels Y-Text
 (:optional Y-Ticks Y-Labels Y-text)
 (Y-Axis-Line (Y-Line (get-val axis)))
 (Y-Ticks ($:y-line Y-Axis-Line))
 (Y-Labels (left '? Y-Axis-Line :entirely nil :strip t))
 (Y-Text ($ (left '? (or Y-Labels Y-Axis-Line))
 :dist (width Y-Labels))
 :select (min (distance (center Y-Axis-Line) (center Y-Text)))));

 (Y-Ticks -> X-or < (Own-Y-Ticks (touch '? (get-val Y-Line)))
 (Remote-Y-Ticks (left '? (get-val Y-Line) :strip t)
 :filter (some* [Y-Labels] :in (touch '? Remote-
Y-Ticks) :gen t)) >);

 (Own-Y-Ticks -> Set (Line)
 (:element-constraints
 (horizp Line) (short Line)
 (not (polylinep Line))
 (< (distance (endpoints Line) (Line (get-val Y-Line)))
 (max (* (a-length Line) .25) *tiny*)))
 (:constraint vert-aligned-gen)
 (:largest t))

 (Remote-Y-Ticks -> Set (Line)
 (:element-constraints
 (horizp Line) (short Line) (not (polylinep Line)))
 (:constraint vert-aligned-gen));

 (Y-Labels -> Set (Text)
 (:element-constraints (horizp Text) (numeric-textp Text))
 (:constraint vert-aligned-gen)
 (:largest t));

 (Y-Text -> Set (Text)
 (:element-constraints (vertp Text))
 (:constraint (close-gen :how-near (get-val dist))));

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 21

;;; ****************** < DATA > ******************

 (Data -> Data-lines Data-points Annotations Key-specifications
 (:optional Data-lines Data-points Annotations Key-specifications)
 (Key-specifications)
 (Data-lines)
 (Annotations (difference* context Data-lines))
 (Data-points (difference* context Data-lines)));

;;; ****************** < DATA-LINES > ******************

 (Data-lines -> set (Data-line)
 (:element-constraints
 (> (a-length data-line) (* .25 (get-val x-ln)))));

 (Data-line -> set (Line)
 (:element-constraints
 (not (polylinep Line))
 (not (or (and (horizp line) (> (a-length line) (* .7 (get-val x-
ln)))
 (< (distance (left-endpoint line)
 (Line (Y-Line (get-val axis)))) *tiny*))
 (and (vertp line) (> (a-length line) (* .7 (get-val y-
ln)))))))
 (:constraint connected)) ;

 (Data-line -> set (Curve) (:constraint connected)) ;

;;; ****************** < Data-points > ******************

 (Data-Points -> set (Data-Cluster)); ={ circle-dp, traingle-dp,
rectangle-dp }

 ; An example of a data-cluster is the set of all circle-data points
 (Data-Cluster -> set (Data-point) (:constraint same-type)) ;

 (Data-point -> circle
 (:constraints (whitep circle))); a white circle

 (Data-point -> circle
 (:constraints (blackp circle))); a black circle

 (Data-point -> polygon ; a rectangle
 (:constraints (rectangle? polygon) (small polygon))) ;

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 22

 (Data-point -> line_1 line_2 line_3 ; a triangle
 (line_1)
 (line_2 (touch '? (right-endpoint line_1))
 :constraints
 (different line_1 line_2)
 (coincide (right-endpoint line_1) (left-endpoint line_2)))
 (line_3 (touch '? (right-endpoint line_2))
 :constraints
 (different line_2 line_3) (different line_1 line_3)
 (coincide (right-endpoint line_2) (right-endpoint line_3))
 (coincide (left-endpoint line_1) (left-endpoint line_3))));

 (Data-point -> line_1 line_2 line_3 line_4 ; a diamond
 (line_1
 :constraints (not (horizp line_1)) (not (vertp line_1)))
 (line_2 (touch '? (right-endpoint line_1))
 :constraints
 (< (distance (right-endpoint line_1) (left-endpoint line_2)) *ti-
ny*)
 (not (horizp line_2))
 (not (vertp line_2)))
 (line_3 (touch '? (right-endpoint (line_2 obj)))
 :constraints
 (< (distance (right-endpoint line_2) (right-endpoint line_3)) *ti-
ny*)
 (different line_3 line_2))
 (line_4 (touch '? (left-endpoint line_3))
 :constraints
 (< (distance (left-endpoint line_3) (right-endpoint line_4)) *ti-
ny*)
 (< (distance (left-endpoint line_1) (left-endpoint line_4)) *tiny*)
 (parallelp line_1 line_3)
 (above (right-endpoint line_1) (right-endpoint line_4))));

;;; ****************** < Annotations > ******************

 (Annotations -> set (Annotation));

 ;;; When a new set-context is specified (in a normal rule), it overwrires
the previous one.
 ;;; // extend relation for set rules.
 ;;; We could have done: (gen (intersect old-context new-fun))).

 (Annotation -> Text-set Arrow Pointed
 (:optional Text Pointed)
 (Arrow)
 (Text-set (intersect* (near (leave-pt Arrow) (* 2 (ln Arrow)))
 context)
 ;:select (min (distance (center Text) (line (arrow-back
Arrow))))
)

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 23

 (Pointed (near (pt (arrow-head arrow)) (* 2 (a-length (Line (Arrow-back
Arrow)))))));

 (Text-set -> set (Text)
 (:element-constraints
 (horizp Text) (not (numeric-textp text))));

 (Pointed -> set (Object));

 (Object -> Data-point);

 (Object -> Text);

;;; ****************** < Arrow > ******************

 (Arrow-back -> Line
 (:additional-slots
 (left-endpoint . (left-endpoint (Line self)))
 (right-endpoint . (right-endpoint (Line self)))
 (ln . (a-length (Line self))))
 (:constraints (not (polylinep line)))); <---

 (Arrow-head -> Line_1 Line_2 ; works OK
 (:additional-slots
 (pt . (get-arrow-head-pts self 'common-pt))
 (p1 . (get-arrow-head-pts self 'p1))
 (p2 . (get-arrow-head-pts self 'p2)))
 (Line_1
 :constraints (short Line_1) (not (polylinep Line_1)))
 (Line_2 (touch Line_1 '?)
 :constraints
 (left (center Line_1) (center Line_2)) ; impose ordering
 (short Line_2)
 (not (polylinep Line_2))
 (same-length Line_1 Line_2 :ratio 1.2)
 (< (distance (endpoints Line_1) (endpoints Line_2)) 40)));

 (Arrow -> Arrow-back Arrow-head ; works OK
 (:non-sharable Arrow-head)
 (:additional-slots
 (leave-pt . (if (> (distance (pt (Arrow-head self))
            (left-endpoint (Arrow-back self)))
 (distance (pt (Arrow-head self))
            (right-endpoint (Arrow-back self))))
 (left-endpoint (Arrow-back self))
          (right-endpoint (Arrow-back self))))
 (reach-pt . (pt (arrow-head self)))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 24

 (ln . (ln (Arrow-back self))))
 (arrow-head)
 (arrow-back (intersect* (near (pt arrow-head) (height Arrow-head))
    context) ;;; <-- put line_1
 :constraints
 (in-angle (pt Arrow-head) (p1 Arrow-head) (p2 Arrow-head)
        (left-endpoint Arrow-back))
 (in-angle (pt Arrow-head) (p1 Arrow-head) (p2 Arrow-head)
        (right-endpoint Arrow-back))
 (< (distance (pt Arrow-head) (endpoints (line Arrow-back)))
 (* 1.5 (a-length (line_1 arrow-head))))
 (same-angle (angle (left-endpoint Arrow-back) (pt Arrow-head))
 (angle (right-endpoint Arrow-back) (pt Arrow-head)))
 :select
 (max (a-length (line Arrow-back)))));

;;; ************** < Key-specifications > *******************

 (Key-specification -> Expl Data-Points
 (:non-sharable Data-Points)
 (Expl :constraints (>= (size Expl) 2))
 (Data-Points (near Expl 300)));

 (Expl -> Set (Text) ; Left-Aligned text
 (:element-constraints
 (horizp Text) (not (numeric-textp Text)) (> (text-length Text) 3))
 (:constraint (vert-aligned-gen :left t)));

 (Expl -> Set (Text) ; Right-Aligned Text
 (:element-constraints
 (horizp Text) (not (numeric-textp Text)) (> (text-length Text) 3))
 (:constraint (vert-aligned-gen :right t)));

 (Key-specifications -> Set (Key-specification));
))

;;; ---
;;; Terminal generators for non-primitive terminals
;;; ---
;;;
(defun gen-x-axis-line (context)
 (list context))
;;;
(defun gen-y-axis-line (context)
 (list context))
;;;
(defun coincide (x y &key (dist *tiny*))
 (< (distance x y) dist))

;;; ---
;;; Non-supported relations
;;; ---

(defmethod a-length ((data-line data-line))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 25

 (data-line-length data-line))
(defmethod data-line-length ((data-line data-line))
 (apply #'+
 (mapcar
 #'(lambda (x) (distance (left-endpoint x) (right-endpoint x)))
 (value data-line))))
(defun distance-pt-from-data-line (x dl)
 (distance-pt-from-lines x (value dl)))
;;;
(defmethod get-arrow-head-pts ((ob arrow-head) type)

 (let* ((line1-end-pts (make-array '(2)
 :initial-contents (a-line-terminators
(line_1 ob))))
 (line2-end-pts (make-array '(2)
 :initial-contents (a-line-terminators
(line_2 ob))))
 (distance-array (make-array '(2 2) :initial-element nil)))

 (dotimes (i 2)
 (dotimes (j 2)
 (setf (aref distance-array i j)
 (distance (aref line1-end-pts i) (aref line2-end-pts j)))))

 (let (common-pt f-p1 f-p2 min id-1 id-2);
 ;; common-pt corresponds to the "corner" point of the arrow head

 (setf min (aref distance-array 0 0))

 (dotimes (i 2)
 (dotimes (j 2)
 (when (<= (aref distance-array i j) min)
 (setf min (aref distance-array i j))
 (setf id-1 i)
 (setf id-2 j))))

 (setf common-pt (aref line1-end-pts id-1))
 (setf f-p1 (aref line1-end-pts (- 1 id-1)))
 (setf f-p2 (aref line2-end-pts (- 1 id-2)))

 (cond ((equal type 'all) (list common-pt f-p1 f-p2))
 ((equal type 'common-pt) common-pt)
 ((equal type 'p1) f-p1)
 (t f-p2)))))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 26

Appendix B - Full Finite-State Automata Grammar

This is the grammar used to parse the simple example shown, and other more complex,
many-state diagrams, not shown. This grammar uses specialized Lisp functions, ap-
pended the end of this grammar, to describe the detailed geometrical arrangement of
the component of arrowheads.

(setf *grammar* ; a grammar object

 (defgrammar

 ;;; ********** < Finite Automato > *************
 (FA -> Init-state Transitions Final-states
 (Transitions) (Final-states) (Init-state)) ;

 ;;; ********** < Transitions > *************
 (Transition -> A-state_1 Labeled-arrow A-state_2
 (Labeled-arrow)
 (A-state_1 (touch (leave-pt (arrow Labeled-arrow)) '?))
 (A-state_2 (touch (reach-pt (arrow Labeled-arrow)) '?))) ;

 (Transitions -> set (Transition)) ;

 ;;; ********** < Labeled-arrow > *************
 (Label -> Text
 (Text :constraints (numeric-textp Text))) ;

 (Labeled-arrow -> Arrow Label
 (Arrow)
 (Label (touch Arrow '?)
 :select (min (distance (center Label) (arrow-back Arrow))))) ;

 ;;; ********** < Arrow > *************
 (Arrow -> Arrow-back Arrow-head
 (:additional-slots (leave-pt . (get-leave-pt self))
 (reach-pt . (pt (arrow-head self))))
 (Arrow-head)
 (Arrow-back (extends (touch (pt arrow-head) '?))
 :select (min (distance (list (left-endpoint arrow-back)  
              (right-endpoint arrow-back))
 (pt arrow-head))))) ;

 ;;; ********** < Arrow-head > *************
 (Arrow-head -> Short-line_1 Short-line_2
 (:additional-slots (pt . (get-arrow-head-pts self 'common-pt)))
 (Short-line_1)
 (Short-line_2 (touch Short-line_1 '?)
 :constraints
 (different Short-line_1 Short-line_2)
 (left (center Short-line_1) (center Short-line_2) :strictly t)
 (same-length (line Short-line_1) (line Short-line_2) :ratio 1.7)

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 27

 (< (distance (endpts short-line_1) (endpts short-line_2))
 (/ (a-length (line Short-line_1)) 5.0)))) ; ~ 40

 ;;; ********** < Arrow-back > *************
 (Arrow-back -> Line
 (:additional-slots (left-endpoint . (left-endpoint (Line self)))
 (right-endpoint . (right-endpoint (Line self))))
 (:constraints (long Line :ratio 22))) ;

 (Arrow-back -> Curve-back
 (:additional-slots (left-endpoint .(left-endpoint (Curve-back self)))
 (right-endpoint .(right-endpoint (Curve-back self)))
 )) ;

 (Curve-back -> set (Curve) (:constraint connected)) ;

 ;;; ********** < Short-line > *************
 (Short-line -> Line
 (:additional-slots (endpts . (endpoints (Line self)))
 ;(length . (a-length (Line self)))
) ;; add length
 (:constraints (short Line))) ;

 ;;; ********** < A-state > *************
 (A-state -> Circle Text
 (Circle :constraints (not (contained Circle (some* [circle]))))
 (Text (contain Circle '?))) ;

 ;;; ********** < Final-states > *************
 (Final-state -> A-state
 (A-state
 :constraints (contain (circle A-state) (some* [circle] :in (touch '?
A-state))))) ;

 (Final-states -> set (Final-state)) ;

 ;;; ********** Init-state *************
 (Init-state -> A-state Arrow
 (A-state)
 (Arrow (touch A-state '?)
 :constraints (touch (reach-pt Arrow) A-state)
 (null (some* [a-state] :in (touch '? (leave-pt Arrow))))));
))

;;; ---
;;; Non supported functions
;;; ---

(defmethod left-endpoint ((go curve-back))
 (apply #'left-point (curve-cluster-endpoints (value go))))

(defmethod right-endpoint ((go curve-back))
 (apply #'right-point (curve-cluster-endpoints (value go))))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 28

(defmethod distance ((pt a-point) (go arrow-back<1>) &key (min-max 'min)) ;
<1> the first alternative in the grammar.
 (distance pt (line go)))

(defmethod distance ((pt a-point) (go arrow-back<2>) &key (min-max 'min))
 (pt-curve-cluster-dist pt (value (curve-back go))))

;;; ---
(defmethod get-arrow-head-pts ((ob arrow-head) type)

 (let* ((line1-end-pts (make-array '(2)
 :initial-contents (a-line-terminators (line (short-line_1 ob)))))
 (line2-end-pts (make-array '(2)
 :initial-contents (a-line-terminators (line (short-line_2 ob)))))
 (distance-array (make-array '(2 2) :initial-element nil)))

 (dotimes (i 2)
 (dotimes (j 2)
 (setf (aref distance-array i j)
 (distance (aref line1-end-pts i) (aref line2-end-pts j)))))

 (let (common-pt f-p1 f-p2 min id-1 id-2);
 ;; common-pt corresponds to the "corner" point of the arrow head

 (setf min (aref distance-array 0 0))

 (dotimes (i 2)
 (dotimes (j 2)
 (when (<= (aref distance-array i j) min)
 (setf min (aref distance-array i j))
 (setf id-1 i)
 (setf id-2 j))))

 (setf common-pt (aref line1-end-pts id-1))
 (setf f-p1 (aref line1-end-pts (- 1 id-1)))
 (setf f-p2 (aref line2-end-pts (- 1 id-2)))

 (cond ((equal type 'all) (list common-pt f-p1 f-p2))
 ((equal type 'common-pt) common-pt)
 ((equal type 'p1) f-p1)
 (t f-p2)))))

(defun get-head-pt (arrow-head)
)

(defun get-leave-pt (arrow)
 (let ((pt (pt (arrow-head arrow))))

 (if (> (distance pt (left-endpoint (arrow-back arrow)))
 (distance pt (right-endpoint (arrow-back arrow))))
 (left-endpoint (arrow-back arrow))
 (right-endpoint (arrow-back arrow)))
))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 29

Appendix C - Full Gene Grammar

This is the grammar used to parse the three part gene shown earlier.

;;; ---
;;;
;;; Created: 11/7/94
;;;
;;; Nikos Nikolakis
;;;
;;; A general grammar for parsing of Gene diagrams
;;; ---

(defvar *sline-ratio* 6)
(defvar *small* 100)
(defvar *large* 1050)

(setf *grammar*

 (defgrammar

 (Gene-Diagram -> Set (Gene));

 ;;; ******************** GENE ********************

 (Gene -> Gene-body Gene-Title Tick-specifs
 (:optional Gene-Title Tick-specifs)
 (Gene-body)
 (Gene-Title (difference* (intersect* (left '? Gene-body :entirely nil)
 (horiz-aligned-gen Gene-body
                :how-near (/ (height Gene-body) 1.5)))
 (Backbone Gene-body)))
 (Tick-specifs ($ (intersect* (touch '? Gene-body)
            (above&below '? Gene-body :strip t))
     :segments (Segments Gene-body))));

 (Gene-Title -> Set (Text));

 (Gene-body -> Segments Backbone
 (:optional Backbone)
 (Segments)
 (Backbone (touch Segments '? :every t)
 :constraints
 (left (left-endpoint (Line Backbone)) Segments)));

;;; ****************** Tick-specifs ******************

 (Tick-specifs -> set (Tick-specif));

 (Tick-specif -> Line Close-or-Remote-Label
 (Line :constraints (vertp Line) (short Line) (not (polylinep Line)))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 30

 (Close-or-Remote-Label ($:line Line)));

 (Close-or-Remote-Label -> X-or < (Label (touch (get-val Line) '?))
                (Label (vert-strip (get-val Line))) >);

 (Label -> Text
 (Text
 :constraints
 (not (member Text (solution->list (get-val Segments))))
        ; ignore segment-title
 (or (and (below (center (get-val Line))
        (center (get-val Segments))) (below (center Text)
          (center (get-val Segments))))
 (and (above (center (get-val Line))
        (center (get-val Segments))) (above (center Text)
          (center (get-val Segments)))))
 :select
 (min (min (abs (- (a-point-x (center (get-val Line)))
              (a-point-x (center Text))))
 (abs (- (a-point-x (center (get-val Line)))
              (a-point-x (ur-point Text))))
 (abs (- (a-point-x (center (get-val Line)))
              (a-point-x (ll-point Text))))))));

;;; ******************** BACKBONE ********************

(Backbone -> Line Left-label Right-label
 (:optional Left-label Right-label)
 (Line :constraints (horizp Line) (long Line) (not (polylinep Line)))
 (Left-label (touch '? (left-endpoint Line))
 :select (min (distance (center Left-label)
            (left-endpoint Line))))
 (Right-label (touch '? (right-endpoint Line))
 :select (min (distance (center Right-label)
                (right-endpoint Line)))));
(Left-label -> Text);

(Right-label -> Text);

;;; ******************** SEGMENTS ********************
 (Segments -> Set (Segment)
 (:constraint horiz-aligned-gen)); <--

 (Segment -> Body Divisions
 (:optional Divisions)
 (Body :constraints (< (height Body) *large*))
 (Divisions ($ (contain Body '?) :body Body :width (width Body))));

;;; ******************** BODY ********************
 (Body -> Polygon ; rectangle body
 (:constraints (rectangle? Polygon) (< (height Polygon) *large*)));

 (Body -> Line_1 Line_2 ; body made from two horizontal lines

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 31

  (Line_1
 :constraints
 (horizp Line_1) (long Line_1 :ratio 7) (not (polylinep Line_1)))
 (Line_2 (near Line_1 (/ (a-length Line_1) 4.0))
 :constraints
 (horizp Line_2) (long Line_2 :ratio 7) (same-length Line_1 Line_2)
 (not (polylinep Line_2)) (below (center Line_2) (center Line_1))));

;;; ******************** DIVISIONS ********************
 (Divisions -> Set (Division));

 (Division -> Division-Marks Division-Title
 (:optional Division-Title)
 (Division-Marks :constraints (> (width Division-marks) *small*))
 (Division-Title
 ($ (near (get-val Body) (get-val width)) :box Division-Marks)));

 (Division-Marks -> Pair (Line)
 (:element-constraints (vertp Line) (contained Line (get-val body)))
 (:constraint neighbor-pairs :direction 'x));

;;; ******************** DIVISION-TITLE ********************
 (Division-Title -> Set (Text)
 (:element-constraints (contained (center Text) (get-val box))));
))

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 32

Appendix D - Relation of this to ideas/systems in FRVDR98

This page contains discussions of some of the points of contact between this work and
the work in the FRVDR98 Fall Symposium, as recorded in the Proceedings. See the
Contents list for the symposium at the end of this page. My comments here will be rea-
sonably self-contained, but they will be more meaningful to someone who has a copy of
the proceedings in hand.

Free Rides and SPAS -- "Free rides" is a concept that is mentioned by various papers,
e.g., (Gurr), and refers to Shimojima's 1996 paper. It means that when viewing a dia-
gram, certain inferences are available directly by inspection of the diagram, and follow
directly from the spatial layout of the diagram. Examples include Euler and Venn dia-
grams. Our SPAS spatially associative data structure can be thought of from this view-
point. If you want to know if a certain object passes near a certain small region in space,
you simply look in the corresponding SPAS cell to see if it contains a reference to the
object. That is, SPAS directly represents the near relation -- it is a type of spatial cache.
(An alternate representation could store all objects near to some object O in a near list
attached to O -- another type of cache. The near lists would not necessarily have size
N2 since, for example, a set of well-spaced points would have zero entries in all their
near lists.) Similarly, if we want to know if a set of points is horizontally aligned, we can
see if they all appear in some cell in the y projection array of SPAS.

Generalized equivalence relations (GERs) -- We have stressed in the past that human
perception is one of the sources of free rides, (Futrelle, 1990). For example, a collection
of aligned items is a "pop-out" phenomena, as evidenced by the existence of illusory
contours (also called subjective contours), (Petry, 1987). These occur when for exam-
ple, a set of small objects arranged in space to form a broken circumference of a circle,
which lead to the illusion of an actual circle whose interior is lighter than the surrounding
plane. A related phenomenon is the pop-out phenomena in which psychophysical ex-
periments have determined that people can detect the presence of an "O" in a collection
of "X" distractors in the visual field in a time that is independent of the number of distrac-
tors (Treisman, 1985, 1990). Thus, the extraction of such information is a "free-ride" in
that it is done as a pre-attentive parallel operation by the visual system. In general, we
refer to uniform sets of objects that are collected together as an equivalence set or an
extension of the equivalence relation such as near or equally spaced, as obeying a
Generalized Equivalence Relation. Another example is a collection of data points in a
region of a graph all of the same size and shape, e.g., triangles. Our algorithm normally
chooses the maximal collection of the possible sets of the elements so related. This
choice can also be argued on entropy grounds and more generally by minimal-length
encoding theory or MLE (Li and Vitanyi, 1993).

Local extent -- (Foo) discusses the importance of local extent. Since diagrams are finite
objects, direct reasoning about them must have local extent. Again, we have developed
SPAS to aid such reasoning.

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 33

Perception and understanding -- (Hayes and Laforte) have an interesting and provoca-
tive paper that discusses the relation between perception and understanding using
variations on the diagrammatic proof of Pythagoras' theorem. One reason this is impor-
tant is that parsers such as ours are faced with the problem of geometric inference.
Consider the following innocent example, analogous to a class of problems met in dia-
gram parsing -- what are the letter-number pairings in the following two sequences: b 40
k 12 p 32 versus 36 b 40 k 12 p? The sequences agree precisely in the central subse-
quence b 40 k 12 p, but the first sequence clearly groups as (b 40) (k 12) (p 32) and the
second, (36 b) (40 k) (12 p). This is a potential, but in fact, resolvable, ambiguity, and
some reasoning is required to establish the grouping. The grammar-based approaches
to parsing are not well-suited for such tasks.

Scaffolding -- In (Allwein) it is pointed out that the Greek approach to geometry often
involved auxillary constructions or "scaffolding". In our grammars, because of the con-
trolled sequence of top-down expansion of productions, we can introduce "scaffolding"
and then use it to support the discovery of the constituents of interest. This is done, for
example, in the Diagram rule:

 Diagram -> Axis X-Axis Y-Axis Data

where Axis is a non-terminal that is required to be made up of a long horizontal line and
a long vertical line which touch at the lower left (details here). Once Axis is determined
in this way, the remaining constituents can refer to its components in their productions,
e.g., extracting the long horizontal line from Axis for use in the X-Axis production.

Relation of Chok and Marriott's work to ours -- Perhaps the most obvious point of con-
tact between our work and work described in the symposium, is Chok and Marriott's pa-
per on the Penguins project. They build parsers for diagrams that can operate in batch
mode or incrementally in a pen-based drawing application. They also have a solution to
the layout problem, error detection, and more. This is excellent work, which in some
ways makes our work seem modest by comparison. But our work has very different ori-
gins and goals, which explains at least some of the differences. Our projects have fo-
cused on understanding diagrams from the research literature, so our approach to pars-
ing and the examples we parse have been chosen accordingly. Nevertheless, the
grammatical formalism we use is very close to Chok and Marriott's (due in part to the
fact that we studied Marriott's work, among others, early in the development of our sys-
tem some time ago). Our system uses both synthesized and inherited attributes. The
major inherited attribute (passed down the tree as parsing proceeds) is the context,
which is the set of primitive objects that can be used by a rule in searching for a solu-
tion, an idea not in their work. The synthesized attributes, passed up the tree, are not
restricted to being chosen from attributes of the primitives. For example, we could com-
pute and pass up the smallest distance between any two of the points in a set of n
points found in solving a particular production, or the spacing of a set of equally spaced
tick marks. As they do, we implement negative constraints -- the example we mentioned
earlier was (not (polylinep Line)) in which we want to ignore any lines that are a side of
a polygon. The relation between their grammar for finite-state automata and our gram-

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 34

mar is very close. But our rule for defining a final state is notably simpler than theirs be-
cause we use the contain constraint, that one circle be contained within another, rather
than object-type-specific computations involving the centers and radii of the two circles.

Our parser is also notably slower than theirs, even on a fast machine. But they have fo-
cused on interactive applications in which speed is of the essence, and have used Born-
ing's highly refined constraint solver, itself designed for on-line operation. We have been
more concerned with expressiveness than speed, and undoubtedly could speed up our
system by an order-of-magnitude, were that required. But the literature of science that is
our focus is finite and diagrams in the hard sciences appear in the published literature at
a rate of a few million per year. An upper bound would be 10 million distinct diagrams
published per year. Since there are 32 million seconds per year, all diagrams in the pub-
lished literature could be parsed, as fast as they are produced, by a parser that could
parse a diagram in three seconds, on average. The more important questions have to
do with the goals of parsing diagrams. For us, it is the building of knowledge bases that
will give users access the huge collections of diagrammatic information that is contained
in the research literature of science and engineering.

One of the operations Chok and Marriott's system can do is related to unrestricted pro-
ductions which can have more than one left-hand-side symbol. In their Figure 2, they
create four lines from two intersecting lines. Interestingly, this brings up a major paradox
that they do not discuss, which we might call the occlusion paradox. Given a collection
of primitive objects in a representation of an image, e.g., a file listing the primitives and
their attributes, the appearance of the diagram may differ notably from the representa-
tion. In the two intersecting lines case, it is impossible for a human observer to know
whether there are two intersecting lines, or four lines with some coincident endpoints, or
indeed, two L-shaped broken lines with a common corner. Sometimes, when people
draw diagrams using an interactive drawing application, they deliberately use occlusion
to produce a particular visual effect. This is often done because of the limitation of the
drawing application. The extreme example of the paradox is the blank sheet. In this ex-
ample, an arbitrarily complex drawing is created. Then a large white opaque, borderless
rectangle (or circle or whatever) is drawn with dimensions large enough and position
chosen to totally cover all elements in the original drawing. The parser should report an
empty image, but no parser that I know of, including ours, would return such an interpre-
tation.

I will have more to say about Chok and Marriott's important paper when I act as the dis-
cussant for it at the Symposium. The reader is also referred to the recent extensive sur-
vey on visual language specification and recognition (Marriott, Meyer, and Wittenburg,
1998).

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 35

Bibliography

Allwein, G., Marriott, K., & Meyer, B. (1998). Formalizing Reasoning with Visual & Dia-
grammatic Representations. Rept. No FS-98-04. AAAI Press.

Futrelle, R. P. (1990). Strategies for Diagram Understanding: Object/Spatial Data Struc-
tures, Animate Vision, and Generalized Equivalence. In 10th ICPR, (pp. 403-408): IEEE
Press.

Li, M., & Vitanyi, P. (1993). An Introduction to Kolmogorov Complexity and Its Applica-
tions. New York: Springer-Verlag.

Marriott, K., Meyer, B., & Wittenburg, K. (1998). A Survey of Visual Language Specifica-
tion and Recognition. In K. Marriott & B. Meyer (Eds.), Visual Language Theory (pp. 5-
85): Springer Verlag.

Petry, S., & Meyer, G. E. (Ed.). (1987). The Perception of Illusory Contours: Springer-
Verlag.

Shimojima, A. (1996). Operational Constraints in Diagrammatic Reasoning. In G. All-
wein & J. Barwise (Eds.), Logical Reasoning with Diagrams (pp. 27-48). New York: Ox-
ford.

Treisman, A. (1985). Preattentive Processing in Vision. Computer Vision, Graphics, and
Image Processing, 31, 156-177.

Treisman, A., & Sato, S. (1990). Conjunction Search Revisited. Journal of Experimental
Psychology: Human Perception & Performance, 16(3), 459-478.

Excerpt from the online description of the technical report of the symposium:
Formalizing Reasoning with Visual and Diagrammatic Representations
Papers from the 1998 Fall Symposium
Gerard Allwein, Kim Marriott and Bernd Meyer, Cochairs

October 23-25, Orlando, Florida

Technical Report FS-98-04
112 pp., $25.00
ISBN 1-57735-078-2

Visual Language Specification and Recognition
Kim Marriott 1

Theories of Visual and Diagrammatic Reasoning: Foundational Issues

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 36

Corin A. Gurr 3

Diagrammatic Reasoning and Color
Michael Anderson and Chris Armen 13

Verification of Diagrammatic Proofs
Mateja Jamnik, Alan Bundy, and Ian Green 23

Diagrammatic Reasoning
Gerard Allwein 31

Diagrammatic Reasoning: Analysis of an Example
Patrick J. Hayes and Geoffrey L. LaForte 33

Diagrammatic Reasoning about Actions Using Artificial Potential Fields
Marcello Frixione, Gianni Vercelli, and Renato Zaccaria 39

Local Extent in Diagrams
Norman Foo 51

A Logic-based Formalism for Reasoning about Visual Representations
Volker Haarslev 57

Generating User Interfaces for Pen-based Computers
Sitt Sen Chok and Kim Marriott 67

Hypergraph Representations of Diagrams in Diagram Editors
Mark Minas 79

Euclid++
Gerard Allwein 87
System Demonstrations

Diamond: Diagrammatic Reasoning System Demonstration
Mateja Jamnik, Alan Bundy, and Ian Green 95

The BITPICT Computation System
George W. Furnas 97

Demonstration of the Diagram Understanding System
Robert P. Futrelle 99

GenEd: A Generic Editor for Reasoning about Visual Notations
Volker Haarslev and Michael Wessel 101

VISCO: Querying GIS with Spatial Sketches

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 37

Volker Haarslev and Michael Wessel 103

Inter-Diagrammatic Reasoning
Michael Anderson 105

Interpretation of Visual Notations in the Recopla Editor Generator
Bernd Meyer and Hubert Zweckstetter 107

R. P. Futrelle - The Diagram Understanding System - Strategies and Results - May 2007

 38

