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Terminological knowledge of the biomedical domain is important for natural language 
processing (NLP) and information retrieval (IR) applications, and a number of terminological 
knowledge sources, such as LocusLink, GeneBank, and the UMLS, already exist. However, 
because of the tremendous amount of research activity in the field, new terms and symbols 
are continually being created, many of which are published in the literature, but are not 
available in any of the other resources. Therefore, effective mining of the literature for new 
terminology is critical for furthering NLP and IR applications.  Abbreviations are widely used 
in the biomedical domain, and the understanding of abbreviations requires a terminological 
knowledge base that consists of abbreviations with their associated senses. In previous work, 
several methods have been developed for automatic construction of abbreviation knowledge 
bases from parenthetical expressions. However, these methods pair abbreviations and their 
expansions based on manually crafted patterns or rules. In this paper, we propose an 
automatic method, which is not based on patterns or rules but is based on the use of 
collocations, to extract a set of related terms from parenthetical expressions including 
abbreviations associated with their expansions and other types of related terms such as 
synonyms, or hyponyms etc.  Our method is based on the observation that terms associated 
with parenthetical expressions i) are usually related, and ii) are often collocations because 
they tend to co-occur more often than expected by chance. Our method was applied to the 
collection of MEDLINE abstracts. The method and the results were evaluated using two 
collections: Berman’s handcrafted abbreviation list and the LocusLink collection.  

1 Introduction 

In recent years, there has been a growing interest in automatic methods that 
construct and manage terminology resources for natural language processing (NLP) 
applications using large online collections of documents [1-4]. Although it is 
feasible to construct and manage terminologies manually in very limited domains, 
automatic or at least semi-automatic methods are required for applications that apply 
to domains with rich genres of context [5;6].  The domain we consider for this study 
is biomedical literature. We seek to explore the use of parenthetical expressions in 
text for automatic acquisition of terminological knowledge for NLP applications that 
are applied to biomedical text. Specifically, we consider two tasks: i) to find 
expansions for abbreviations, and ii) to find other types of semantically related 
terms. 

It has been known that the wide use of abbreviations in the biomedical domain 
affects NLP applications, such as information retrieval systems or information 
extraction systems [6-8]. In order for NLP applications to process and interpret 
abbreviations that are not defined in documents, the associated terminology should 
include abbreviations together with their corresponding expansions in that domain.  
In addition, terminologies are more useful for NLP purposes if they not only list 



  

single-word or multi-word terms but also provide semantic knowledge, such as 
semantic categories and various other kinds of semantic relations (such as 
hypernymy/hyponymy, or synonymy) [9]. 

Observing that terms associated with parenthetical expressions are usually 
related terms, and expansions together with their abbreviations are often collocations 
(i.e., they tend to co-occur more often than expected by chance), we propose an 
automatic method for acquiring terminological knowledge from parenthetical 
expressions. In the following, we first introduce background material and related 
work for this study. We then describe our method in detail. The acquisition of 
terminological knowledge from the 2002 version of the MEDLINE abstracts, the 
evaluation of the method, and  the results are presented next. We then discuss the 
results. Finally, we point out future directions of this work and conclude. 

2 Background and Related Work  

In this study, the uses of parentheses that we consider are parenthetical expressions 
“B (A)” where there is a space separating B from A1. A is the complete text string 
inside the parentheses (called the inner-text) and B is the text string to the left of the 
parentheses (called the outer-text) within a certain window size. In the biomedical 
literature domain, parenthetical expressions are popularly used to define 
abbreviations as in “estrogen receptor (ER)” or as in “GABA (gamma-
aminobutyric acid)”. They are also used to specify semantic relations such as 
synonymy as in “natural toxin (i.e., aflatoxin)” or hypernymy as in “an inactive H-
Ras protein (RasN17)”. Parenthetical expressions can also be citations as in “here 
by using a recently developed ultrasensitive HPLC technique (Sakhi et al. J. 
Chromatogr. A 828:451-460, 1998)” or measures as in “CGRP failed to inhibit 
glucose-stimulated (16.7 mM)”, etc.  

There have been studies that report on the automatic construction of 
abbreviation terminologies using parenthetical expressions. Hisamitsu and Niwa 
[10] identified technical terms using parenthetical expressions that were statistically 
significant and then applied a set of simple rules to identify whether the text string 
inside parentheses was an abbreviation for a phrase that was at the left side of 
parentheses. Oh et al.[7] proposed a statistics-based model for constructing technical 
terminology by selecting similar phrase pairs “A (B)” including abbreviation pairs 
or translation pairs from parentheses, where a phrase pair was considered as an 
abbreviation pair if a half of the uppercase letters in A appeared in B sequentially. 
The method of Yoshida et al. [11] first identified terms representing biological 
substances using the PROPER system, and then extracted abbreviations using 
parenthetical expressions from terms identified by the PROPER system. Pustejovsky 
et al. [12] developed a system called ACROMED that applied a restricted pattern for 

                                                           
1 Uses of parentheses without a space between B and A usually imply that A and B exist as a whole and 
they have no semantic relations with each other, for example, uses of parentheses in chemical names, 
e.g., Ca(OH)2. 



  

identifying expansions for abbreviations from parentheses. Yu et al. [13] used a set 
of patterns to extract expansions for abbreviations from parenthetical expressions in 
full articles. Almost all above studies reported a precision of around 97% when 
matching abbreviations to their expansions.  

However, all above studies used manually crafted patterns or rules for 
identification of expansions for abbreviations. Manually crafted patterns or rules are 
limited and often incomplete. For example, all above studies consider that 
alphabetic letters in an abbreviation occur in the corresponding expansions. Those 
methods may miss an abbreviation pair (1H MRS, proton magnetic resonance 
spectroscopy), or incorrectly identify the expansion as magnetic resonance 
spectroscopy from the sentence “we used proton magnetic resonance spectroscopy 
(1H MRS) here”. In this study, we propose an automatic method to associate 
abbreviations with expansions for the purpose of automatic acquisition of 
terminological knowledge. Our method does not require patterns or rules, and is 
based on collocations. In addition to pairs of abbreviations and expansions, our 
method extracts other types of related terms from parenthetical expressions. The 
following provides background information about collocations as well as 
background information for resources used in this study.  

Collocations considered in this paper are cohesive lexical clusters according to 
Smadja [14], where a collocation is a set of words such that the presence of one or 
several words of the set often implies or suggests the rest of the collocation. 
Parenthetical expressions, especially those used for defining abbreviations, are 
collocations. For example, given a parenthetical expression “congestive heart failure 
(CHF) ”, the presence of words CHF, heart, and failure implies the presence of 
congestive. There are several methods to select collocations from text including 
simple frequency-based methods (such as eliminating all collocations with a 
frequency of less than a threshold) as well as complicated methods such as 
hypothesis-testing methods or mutual information methods [2;14]. Our method of 
selecting collocations is a complex frequency-based method.  

We used the MEDLINE free-text collection for the experiment. MEDLINE [15] 
is the NLM bibliographic database that contains over 11 million references to 
journal articles in life sciences with a concentration in biomedicine. Each entry 
contains a unique MEDLINE identifier and citation information for the 
corresponding journal article, and often an abstract.  

Our method, which is described in the Methods section, is based on word 
normalization that utilizes the SPECIALIST Lexicon, which is a UMLS Knowledge 
Source developed by the National Library of Medicine (NLM) as part of the Unified 
Medical Language System project [16]. The SPECIALIST Lexicon is a general 
English lexicon that includes a comprehensive set of biomedical terms. The lexical 
entry for each word or term provides syntactic information such as part of speech 
information (e.g., acid is a noun), and morphological information that maps textual 
variants to base forms (e.g., discharging and discharged to discharge).  
Additionally, the SPECIALIST Lexicon includes an abbreviation table which 
includes 11,051 pairs.  



  

Two collections of abbreviations associated with their expansions were used as 
a gold standard. The first collection was a list of 12,098 pathology-related 
abbreviations that were manually collected by Berman [17]. The second collection 
consists of pairs of gene symbols together with their definitions. The list was 
extracted from LocusLink, which was developed by the NCBI of the NLM [18]. We 
excluded pairs where definitions contain the corresponding symbol as a sub-string 
with boundaries (e.g., KIAA0042 vs KIAA0042 gene product). Additionally, there 
were 11,516 pairs that belong to RIKEN cDNA genes (i.e., 5730583K22Rik vs 
RIKEN cDNA 5730583K22) that were excluded in this study in order to avoid biases 
in measures because they were formed using a simple pattern but contained almost 
20% of the total entries. The resulting collection consisted of 42,875 unique pairs. 
After normalization the total collection obtained from the two sets amounted to 
49,536 unique pairs. 

3 Methods 

The method contains three steps. The first step, COLLECT, collects parenthetical 
expressions from a large collection of text and filters out certain expressions (e.g., 
citations and measures) since they are not helpful for acquiring terminological 
knowledge. The second step, DETECT, uses the results of the first step to derive a 
set of pair-wise terms. In the third step, SEPARATE, we assess the set of pair-wise 
terms and separate them into two sets:  a set of (abbreviation, expansion) pairs and a 
set of other types of related terms such as synonyms and hyponyms, etc. 

3.1 COLLECT 

We collect all uses of parenthetical expressions “B (A)” from sentences in a large 
collection of text (we use a heuristic to determine sentence boundaries and the 
window size for extraction is generally twice the length of A). Additionally, we 
collect all uses of parenthetical expressions within nested parentheses and all uses of 
square brackets because authors use them to avoid nested parentheses. After each 
successful extraction, the text string inside the parentheses is deleted and the 
resulting string is used for subsequent extraction. For example, we extract four uses 
of parenthetical expressions (i.e., the substitution of asparagine for threonine at 
position 1405 (T1405N), … by a functional polymorphism (the substitution of 
asparagine for threonine at position 1405), …the current produced by the Na(+)-
Ca(2+) exchanger (I(NCX)), and the release of endothelin (ET))  from the 
following two sentences a) and b). 
a. … by a functional polymorphism (the substitution of asparagine for threonine at 

position 1405 [T1405N]) in …. 
b. …the current produced by the Na(+)-Ca(2+) exchanger (I(NCX)) working in …  

the possible autocrine role played by the release of endothelin (ET) in … 

Parenthetical expressions where the inner-texts occur only once in the corpus 
are filtered out since most likely they occur together by chance. In addition, we filter 



  

out certain expressions such as citations or measures since they are useless for the 
automatic acquisition of terminological knowledge. The filtering process is achieved 
using several heuristics that are consistent with patterns for citations and measures. 
For example, here by using a recently developed ultrasensitive HPLC technique 
(Sakhi et al. J. Chromatogr. A 828:451-460, 1998) and CGRP failed to inhibit 
glucose-stimulated (16.7 mM) are filtered out since the former one is a citation and 
the latter is a measure.  

3.2 DETECT 

After we have a collection of parenthetical expressions, we need to detect 
collocations from all outer-text strings of expressions that share the same inner-text. 
This step contains several components: a normalization module, a collocation 
generator, and a collocation selector.  Table 1 shows an example of the overall 
process, where the input to the process consists of all unique outer-text strings (e.g., 
treatment of community acquired pneumonia, …, hospitalized community acquired 
pneumonia) that correspond to the same inner-text (i.e., CAP) and their frequency. 
The output of the overall process is a set of pair-wise terms (e.g. CAP, community 
acquired pneumonia) 

The purpose of normalization is to unify textual variants since they usually 
represent the same sense in terminologies. The normalization module changes an 
outer-text string into lower case, removes all non-letter characters and a small set of 
stop words.  It then normalizes each word in the text string by transforming it to the 
base form in the SPECIALIST Lexicon, if applicable, and represents the normalized 
words as an array. For example, the output for an outer-text string for CAP, Patients 
with community acquired pneumonia, is an array (patient, community, acquired, 
pneumonia).  Note that for simplicity, we use the last base form listed in the 
SPECIALIST Lexicon if there are multiple entries for the corresponding word (e.g., 
acquired has two base forms: acquire when it occurs as a past particle, and acquired 
when it occurs as an adjective); otherwise, a syntax parser would be needed in order 
to choose the most likely one.     

The collocation generator generates candidate collocations associated with 
frequency information. For an array that contains l words, we generate l potential 
collocations {pcj

l, j ranges from 1 to l}, where pcj
l is formed by concatenating the 

last l-j+1words in the array. For example, the above outer-text string for CAP after 
normalization generates four potential collocations (i.e., “pneumonia”, “acquired 
pneumonia”, “community acquired pneumonia”, “patient community acquired 
pneumonia”). The number of occurrences for each potential collocation is then 
counted. For the sake of saving computational resources, we eliminate all potential 
collocations that occur only once since these words most likely occur together by 
chance (note that for parenthetical expressions that are not used for capturing 
abbreviations, this statement may not be true). The last module selects a set of 
collocations based on frequency. The collocation selector selects a set of 
collocations based on frequency information. There are two main processing phases 



Step Examples  FREQ 

Outer-texts for CAP 

treatment of community acquired pneumonia  
Patients with community acquired pneumonia  
patients with community acquired pneumonia  
group of patients with community acquired pneumonia  
blood culture of community- acquired pneumonia  
hospitalized community acquired pneumonia 
including pneumonia 

14 
10 
3 
2 
2 
1 
1 

Normalization 

(treatment, community, acquired, pneumonia) (14) 
(patient, community, acquired, pneumonia) (13) 
(group, patient, community, acquired, pneumonia) (2) 
(blood, culture, community, acquired, pneumonia) (2) 
 (hospitalize, community, acquired, pneumonia) (1) 
(include, pneumonia) 

14 
13 
2 
2 
1 
1 

Potential Collocations 

pneumonia  
acquired pneumonia 
include pneumonia 
community acquired pneumonia 
treatment community acquired pneumonia 
patient community acquired pneumonia  
culture community acquired pneumonia 
hospitalize community acquired pneumonia 
blood culture community acquired pneumonia 
group patient community acquired pneumonia 

33 
32 
1 
32 
14 
15 
2 
1* 
2 
2 

After Eliminating 
pneumonia 
acquired pneumonia 
community acquired pneumonia 

33 
32 
32 

After Subsuming community acquired pneumonia 32 

Final Collocation (CAP, community acquired pneumonia) 32 
Table 1: An example illustrating the process of detecting collocations from all
outer-texts that share the same inner-text CAP. 
  

 for the selection: eliminating, and subsuming, as shown in Figure 1. Both phases 
contain a loop associated with the number of words (LEN, ranges from 2 to the 
maximum number of words in a potential collocation, i.e., MAX) in a potential 
collocation. Let pc be a collocation with LEN words, pc’ be a collocation formed 
from the last LEN-1 words in pc, and PC(pc) be the set of potential collocations 
formed by adding a prefix word to pc. The elimination of potential collocations is 
achieved using two formulas a and b, which are described as following: 

 Formula a) states that if the number of elements in PC(pc) is larger than a 
certain threshold t0, we consider these prefix words to occur with pc by chance, and 
therefore all elements in PC(pc) are eliminated from the final set. For example in 
Table 1, when LEN = 3, pc = “community acquired pneumonia”, t0 =3, all potential 
collocations containing pc and having more than three words are eliminated from the 
final set. 



  

Formula b) states that if the ratio of the frequency of pc compared to the 
frequency of pc’ is less than a certain threshold t1, we consider it to be relatively less 
frequent, and eliminate it together with potential collocations that have it as the 
postfix string. For example in Table 1, when LEN = 2, pc = “include pneumonia”, 
and t1 = 0.1, the string “include pneumonia” is eliminated since the ratio of the 
frequency of “include pneumonia” to the frequency of “pneumonia”, i.e., 1/35, is 
less than 0.1. 

Let sc be the summation of the frequency of all collocations in PC(pc). The 
subsuming process is achieved using the formula c in Figure 1, i.e., if the ratio of sc 
to the frequency of pc is larger than certain threshold t2, we consider pc to be 
subsumed by elements in PC(pc), and delete it from the final set.  For example in 
Table 1, when t2=0.9, “pneumonia” is subsumed by “acquired pneumonia” and 
“acquired pneumonia” is then subsequently subsumed by “community acquired 
pneumonia”. Note that thresholds can be set based on experience or learned from a 
gold standard. Pairs generated by pairing the inner-text string with each collocation 
in the final set (e.g., (CAP, community acquired pneumonia)) become the output of 
the DETECT phase.  

Selecting: 
FOR LEN = 2 to MAX { 

FOR each pc that is a potential collocation with LEN words { 
    Let pc’ be the potential collocation formed by the last LEN-1 words of pc 

    IF(a). 0t)pc(PC >  { 

    Delete all potential collocations from PC where the last LEN words are the  same as pc  
    } 

     IF (b).  1t)’pc(freq
)pc(freq <  { 

     Delete pc and all potential collocations from PC where the last LEN words    are the 
same as pc  

            }         
        } 
}    
Subsuming: 
FOR LEN = 2 to MAX { 
     FOR each pc that is a potential collocation with LEN words { 
         Let sc be the summation of the frequency of all collocations formed by adding one more 
word to the left of pc  

         IF (c). 2t)pc(freq
sc > { 

         Delete pc from PC 
         } 
    } 
} 
RETURN PC 

Figure 1: The process of selecting collocations. 



  

3.3 SEPARATE 

After collocations are detected and a set of pair-wise terms are generated, we then 
separate them into two sets so that relations that are not abbreviations are treated 
separately: i) abbreviations associated with expansions, and ii) other semantically 
related terms, according to lengths of two items in a pair and the existence of 
capitalized letters since usually, an abbreviation is short and contains capitalized 
letters, and an expansion is much longer than the corresponding abbreviation. Note 
that the semantic relations for some pairs can be determined by checking the use of 
simple patterns in the original text. For example, if we assume NP represents a noun 
phrase, the patterns “a NP (NP)” or “NP (a NP)” such as, “indomethacin (a 
cyclooxygenase inhibitor)”, usually implies a hypernymy relation while the pattern  
“NP (i.e., NP)” such as “the congenital neutropenia (i.e., Kostmann’s syndrome) ” 
implies a synonymy relation. 

4 Experiments and Results 

Our method was applied to the 2002 version of MEDLINE. The threshold values for 
t0, t1, and t2 (3, 0.25, 0.9 respectively) were estimated using the abbreviation list in 
the SPECIALIST Lexicon. In the following, we described the evaluation of our 
method and assessment of the results.  

4.1 Evaluation  

We first evaluated the soundness of ignoring potential collocations with 
frequency equal to one during the selection process by counting the number of pairs 
in the gold standard set (i.e., the combination of Locus-link collection and Berman’s 
abbreviation list) that occurred only once in MEDLINE and the number of pairs that 
occurred more than once after normalization using the SPECIALIST Lexicon. We 
then evaluated the selection process by computing the percentage of pairs with the 
expansions that were correctly identified to pairs that occurred more than once in 
MEDLINE.  

We performed a manual analysis of the performance of the SEPARATE step 
using 50 randomly chosen pairs from each set (i.e., a set of abbreviations associated 
with expansions, and a set of other types of pairs). We then computed the precision 
based on the manual analysis.  

The assessment of the results concentrated on the acquired abbreviation 
knowledge base. We did not assess other types of pairs since it required a detailed 
investigation of the original context as well as expert knowledge.  

The acquired abbreviation knowledge base was assessed through several 
measures: frequency distribution, ambiguity (i.e., the number of unique expansions 
for the same abbreviation), the coverage of the abbreviation knowledge base, the 
relation of ambiguity to the length of abbreviations, the percentage of the number of 
abbreviations to the number of abbreviations that were ambiguous, and the 
percentage of abbreviations that did/did not contain digits, which were ambiguous  



  

With Digits Without Digits 
Len 

# Pairs (% Amb) AVG # Pairs (% Amb) AVG 
1 2,039  (37.0) 3.96 240 (56.3) 48.11 
2 5,676  (28.3) 1.95 2,571 (56.3) 19.21 
3 6,094  (26.1) 1.74 12,016 (66.9) 7.68 
4 3,433  (19.7) 1.50 27,540 (36.0) 2.01 
>=5 7,802 (8) 1.22 32,657 (17.1) 1.44 

Table 2: The ambiguity study results with respect to the existence of digits in 
abbreviations and the number of letters in the abbreviations. 

 (all measures were computed by transforming pairs to lower-case except frequency 
distribution). 

4.2 Results 

We collected 16,068,562 uses of parenthetical expressions. After filtering out 
certain uses, such as citations and measures as well as uses where the inner-text 
occurred only once in the current version of MEDLINE, there were 6,626,790 uses 
remaining for generating pair-wise terms.  

Among 49,536 unique normalized pairs in the gold standard, 5,232 occurred in 
MEDLINE using parenthetical expressions, and 4,809 (91.9%) occurred more than 
once in MEDLINE. Expansions associated with 96.3% of the pairs were detected 
correctly, which suggests that the recall of the method was around 88.5% (i.e., the 
product of 91.9% and 96.3%) if abbreviations were defined using parenthetical 
expressions and they were presented in the gold standard.  

 We collected 381,126 unique pairs, where 308,339 were incorporated into the 
abbreviation knowledge base, and 72,787 were considered as other types of pair-

Figure 2: The most frequent pairs in relation with their occurrences. The X-Axis 
denotes the percentage of the number of the most frequent pairs, and the Y-Axis 
denotes the percentage of the number of their occurrences. 



  

wise terms. Two of the 50 pairs from the abbreviation knowledge base that we 
manually checked were not abbreviation pairs (i.e., and two of the 50 pairs from the 
set of other types of pair-wise terms were actually abbreviations (i.e., (NESP, 
darbepoetin alfa, novel erythropoiesis stimulate protein), and (GnRH-A, GnRH 
agonist).  

Figure 2 shows the frequency distribution where the X axis denotes the 
percentage of the number of the most frequent pairs, and the Y axis denotes the 
percentage of the number of their occurrences.  The coverage of the acquired 
abbreviation knowledge base differed in the two collections: 38.3% for Berman’s 
abbreviation list, and 3% for Locuslink collection. The ambiguity of an abbreviation 
was related to the existence of digits in the abbreviation as well as to the number of 
alphabetic letters in the string. Table 2 shows the result, where LEN is the number of 
letters, and AVG is the average number of expansions. 

5 Discussion  

We have presented an automatic method for the purpose of automatic acquisition of 
terminological knowledge for NLP applications using parenthetical expressions in 
large corpora. A novel aspect of the method is consideration of parenthetical 
expressions as collocations.  Utilizing a collocation selector based on frequency, 
expansions for abbreviations are automatically recognized. The method has an 
advantage that it does not require manually crafted patterns or rules for the 
recognition of expansions. Many abbreviations (i.e., symbols) for biological 
substances do not follow rules or patterns, and including them in terminologies for 
NLP applications is important. We believe our method has a higher sensitivity for 
acquisition of pairs of abbreviations and expansions that occur frequently and should 
be useful as a complement to pattern-based methods. However, we were unable to. 
compare our method to other methods because of the absence of a common gold 
standard set 

Our method is not suitable for recognizing expansions that occur only once in 
the corpora. However, since the purpose of our method is to automatically acquire 
terminological knowledge, the exclusion of expansions of abbreviations that occur 
only once from terminological knowledge has almost no impact on NLP 
applications. Newly defined pairs of abbreviations and expansions will most likely 
be captured using the most current version of the corpus based on the intuition that if 
they are accepted by the community, they will be repeatedly referred to and defined 
in literature; otherwise, they are likely to occur infrequently.   

The frequency distribution of pairs of abbreviations and expansions follows the 
20/80 rule, i.e., 20% of the pairs contribute to 80% of the total occurrences.  

From the result of the coverage study, we found that abbreviations suggested or 
collected by humans may not be used in the literature. For example, around 10% of 
expansions from both collections existed in our abbreviation set obtained from 
MEDLINE but were associated with different abbreviations (1,361 out of 12,098 for 
Berman’s abbreviation collection, and 4,376 out of 42,875 for LocusLink 
collection).  The low coverage of LocusLink was because there are many pairs 



  

associated with digits or letters specifying members, sub-families, or types. For 
example, there are 50 members in the gene family of ATP-binding cassette where 
the symbol for ATP-binding cassette is ABC (which is not listed in LocusLink), such 
that each has been assigned a symbol by attaching a sub-family symbol (from A to 
G) and a member number (e.g., ABCA1, ABCB1, and ABCG8 etc).  The resulting 
abbreviation knowledge base contains 429 occurrences of the pair (ABC, ATP-
binding cassette), but does not contain symbols of most members in the family, 
signifying that researchers did not use the same conventions as the LocusLink 
curators.    

The assessment of the ambiguity study shows that abbreviations are highly 
ambiguous, which is consistent with our previous study [19]. For example, the 
abbreviation CAP represents not only community-acquired pneumonia, but also 
dozens of others, including the following protein names:  catabolic activator 
protein, cystine aminopeptidase, cellulose acetate phthalate, cyclase-associated 
protein, cementum attachment protein, calcium-activated protease, capsid-
associated protein etc. We noticed that abbreviations containing digits are much less 
ambiguous than those without digits. The ambiguity of an abbreviation depends on 
the number of letters it contains: ones with fewer characters are more ambiguous. In 
order to allow NLP applications to process and interpret ambiguous abbreviations 
that are not defined in documents, a disambiguation method is needed. In several 
previous studies [19], we developed disambiguation methods with a precision of 
97% for disambiguating abbreviations given a set of known expansions. The 
abbreviation knowledge base acquired here can be used as the set of expansions for 
our disambiguation methods.  

Although our method also extracts a set of related terms, we did not focus on 
this feature in the current paper. A further investigation will be performed in order to 
assign appropriate semantic relations and semantic categories to those pairs. Future 
work will also involve use of multiple biomedical databases and use of contextual 
clues other than parentheses to discover semantic collocations associated with 
terminology.  

6 Conclusion  

We proposed and evaluated an automatic method for automatic acquisition of 
terminological knowledge based on the observation that terms associated with 
parenthetical expressions are collocations. We identified expansions for 
abbreviations using frequency information associated with the collocations without 
the requirement of manually crafted patterns or rules. The method had a precision 
96.3% and a recall of around 88.5% for abbreviations that were defined using 
parenthetical expressions and were presented in the gold standard. We acquired 
381,126 unique pairs from the 2002 version of MEDLINE abstracts, where 308,339 
were incorporated into the abbreviation knowledge base, and 72,787 were 
considered as other types of pair-wise terms. Abbreviations are highly ambiguous 
and the ambiguity is related to the number of alphabetic letters in the abbreviation 
and the existence of digits: ones with fewer characters are more ambiguous, and 



  

ones with digits are less ambiguous. In the future, we plan on expanding this method 
in order to obtain a more comprehensive terminological knowledge using other 
corpora such as full articles and online databases. 
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