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A growing body of work is devoted to the extraction of protein or gene interac-
tion information from the scientific literature. Yet, the basis for most extraction
algorithms, i.e. the specific and sensitive recognition of protein and gene names
and their numerous synonyms, has not been adequately addressed. Here we de-
scribe the construction of a comprehensive general purpose name dictionary and
an accompanying automatic curation procedure based on a simple token model of
protein names. We designed an efficient search algorithm to analyze all abstracts
in MEDLINE in a reasonable amount of time on standard computers. The pa-
rameters of our method are optimized using machine learning techniques. Used in
conjunction, these ingredients lead to good search performance. A supplementary
web page is available at http://cartan.gmd.de/ProMiner/.

1 Introduction

Biological articles provide a wealth of information on genes and proteins and
their interaction under different experimental conditions. To make this amount
of data manageable to biological experts and to utilize these data in con-
junction with bioinformatics methods (e.g. for contextual analysis of DNA
microarray data) it is desirable to condense the free text information into a
machine-readable, well-defined form. One example is the generation of bio-
logical interaction networks from scientific abstracts 1'% . A requirement for
all these approaches is an accurate, sensitive and efficient recognition of the
entities under consideration, i.e. proteins and genes, in the free text. In our
opinion, however, this building block of higher level information extraction did
not receive sufficient attention.

A fundamental problem of gene name search in biological articles is the
quite frequent deviation of authors from a recommended gene nomenclature or
the absence of such a standard in some cases. Consequently, each gene might
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have several synonymous aliases and functionally unrelated genes might bear
the same name*®. For protein names the situation is even more complicated,
as synonyms often consist of several words and permutations of these tokens
may occur.

Methods for identifying gene and protein names in free text can be divided
into methods utilizing a name dictionary and methods relying on other means.
Methods which do not use a dictionary 7% can identify potential proteins in
texts which are previously not contained in standard dictionaries and can thus
be used to compose such dictionaries semi-automatically. In contrast, they face
the problem to unify different aliases of found entities. This makes them hard
to use as a building block for higher level analysis. A more straightforward
method is to utilize a database of protein and gene names. Krauthammer
et al. ? treat the search problem as an alignment of a protein name against
the database of scientific abstracts. Their approach is character-based and
utilizes the BLAST algorithm. While the character-oriented approach has
the advantage of finding slightly modified forms of words (e.g. plural forms),
it faces the problem of how to detect semantically significant mismatches of
characters (e.g. modifications in gene names). The success of all dictionary-
based approaches obviously depends on the quality of the dictionary. Ono et al.
I use a manually constructed dictionary which contains only a problem-specific
subset of proteins. Jenssen et al. 3 employ a dictionary which only contains
gene symbols and short gene names extracted from the HUGO database '°.
Thereby they circumvent the problems associated with longer synonyms, but
face a sensitivity penalty.

In this paper we will show that simple text search of gene names leads
to poor sensitivity, whereas naive search of protein synonyms incurs a loss in
specificity. Consequently, we build a large curated dictionary of protein and
gene names and a corresponding token-based search algorithm to achieve our
goal. In the following section we will discuss the underlying model for protein
and gene names. Based on this, we describe the automated generation and
curation of our synonym dictionary. This dictionary is used in the search algo-
rithm which is presented in section 4. In section 5 we optimize the parameters
of our method and validate our findings. The paper closes with a discussion of
possible further enhancements of our method.

2 Model for protein and gene names

A crucial characteristic of protein names is that they are often composed of
more than one word (or token). The order of these words is only semantically
significant up to a certain limit, i.e. permutations of tokens may occur (cf. Ta-



| Name | Description | Examples |
Modifier Semantic-modifying tokens | receptor, inhibitor
Non-descriptive | Annotating tokens fragment, precursor
Specifier Numbers and Greek letters | 1,VI, alpha, gamma
Common Common English words and, was, killer
Delimiter Separator tokens (), ;
Standard Standard tokens TNF, BMP, IL

Table 1: Definition of token classes with differing semantic significance.

ble 2 Examples 6 and 7). Moreover, we face the problem that general-purpose
dictionaries of protein names must be automatically composed (e.g. from pro-
tein databases) as only the number of human proteins in the SWISSPROT and
TREMBL databases is approximately 40.000. However, some tokens included
in those databases are only rarely used in free text (cf. Table 2 Example 1, 2).
An important observation to overcome these problems when identifying syn-
onyms in free text is that words can be partitioned according to their semantic
significance into token classes.

2.1 Definition of token classes

To assess the different significance of tokens, we extract all words from the
dictionary with frequency of occurrence greater than one hundred. On the
basis of these data, we manually define token classes which influence curation
of the dictionary and the match procedure in various ways. The class of non-
descriptive tokens contains words which often occur in databases but are rarely
used in free text (cf. Table 2 Example 1, precursor’) or have no influence on
the significance of the match (Example 6, ’type’). In contrast, the class of
modifier tokens contains words which are crucial for the correct recognition
of the underlying entity. Names 3 and 5 of Table 2 clearly describe different
proteins. The difference is expressed through the modifier token ’'receptor’.
Along the same lines, the class of specifier tokens which is comprised of Arabic
and Roman numbers and Greek letters is usually used to discriminate among
the members of a protein family (cf. examples 3 and 4). Delimiter tokens are
used to gain specificity in the matching procedure. Name boundaries in the
free text which are unknown a-priori can be detected more easily with the
help of delimiters. Usually, the capitalization of protein names is insignificant.
However, some gene identifiers are exceptions to this rule. For example, the
gene names 'KILLER’ or "'WAS’ will be detected erroneously in free text when
the search is case-insensitive. Tokens of this type can be assigned to the class
of common words by comparison to a standard English dictionary. During



1. Interleukin - - - precursor
2. | INTERLEUKIN |1 ] - PROTEIN
3. | INTERLEUKIN [T
| 4. | Interleukin - - |
| 5. ] Interleukin 1 [ RECEPTOR | [BETA |
6. Collagen type - -
7. - - type collagen

Table 2: Examples of protein names tagged with token classes. Names 1-3 refer to the same
entity, but differ in spelling and non-descriptive tokens . Examples 4 and 5 represent dis-

tinct entities differing in and _ Examples 6 and 7 are synonyms

demonstrating the presence of permutations of tokens.

the matching procedure, synonyms composed of only one common word are
considered case-sensitive. All tokens not explicitly classified are termed stan-
dard tokens. This class also includes gene identifiers as they cannot be easily
assigned to a separate class. The current definition of token classes is available
through the supplementary web page (http://cartan.gmd.de/ProMiner).

3 The protein and gene name dictionary

The quality of the used dictionary is essential for the success of the match-
ing procedure. Indeed, if a perfect general purpose dictionary of names in all
occurring spelling variants were available, the matching procedure would be
trivial. Unfortunately, it is highly unlikely that such a dictionary will be avail-
able in the near future. As a manual definition of a general purpose dictionary
is infeasible, we focus on automatic generation of a dictionary and subsequent
sensible curation and expansion steps. In this paper, we tested our approach
on the basis of human genes and proteins as this field is especially relevant for
clinical and pharmaceutical research.

3.1 Automatic generation of the dictionary

We extracted gene symbols, alias names, and full names for all human genes
from the HUGO Nomenclature database!® and created an entry in the dictio-
nary (called an object) for each official gene symbol and added the correspond-
ing names available in the OMIM database '!. Furthermore, we extracted all
synonyms of human proteins of the SWISSPROT and TREMBL databases 12
and matched these to HUGO entries.



| # | Original syn. | Curated syn. | Status | Reason

la L1 L1 keep —

1b IL 1 add separation

1c Interleukin 1 add acronym expansion

2 Transcription Factor — remove expert curation list

3 Phosphohexokinase — ambiguous list | occurs in several objects
4 EPO — ambiguous list | occurs in several objects
5 BETA SUBUNIT — remove regular expression match
6 fragment — remove regular expression match

Table 3: Examples of curation of the dictionary. Synonyms may be modified, added or
removed during the curation procedure for various reasons (cf. section 3.2).

3.2 Curation of the dictionary

To resolve ambiguities and to remove nonsensical names from the dictionary,
a curation procedure consisting of an expansion and a pruning phase was im-
plemented. Table 3 shows several curated synonyms which serve as examples
in the following explanations of the curation procedure.

In the expansion phase, further synonyms for existing records were gener-
ated. This was achieved by separating alphanumeric tokens into numbers and
words (cf. Example 1b), expanding known unambiguous acronyms within syn-
onyms to broaden the scope of our dictionary (cf. Example 1c), and collecting
a list of curation items which are maintained by biological experts to add or
remove synonyms from the dictionary (cf. Example 2).

In the pruning phase, redundancies, ambiguities and irrelevant synonyms
were removed from the dictionary. First, each token in the dictionary was
tagged with its corresponding token class generating a string of token class
identifiers for each synonym. Each string was then matched against a set of
regular expressions representing patterns for unspecific synonyms (e.g. only
non-descriptive tokens, only specifier tokens etc.). If a regular expression
matched, the corresponding synonym was pruned (cf. Example 5,6). After an
additional step of pruning manually defined superfluous synonyms, only one
synonym of several alternatives differing only in capitalization was retained,
as the matching procedure is basically case-insensitive (cf. section 4). Finally,
a list of ambiguous names found in the curated dictionary was extracted and
these names were stored in a separate dictionary with reference to their origi-
nal records. Generally, ambiguities may arise for several reasons. One problem
is the parallel invention of gene and protein names by several biologists (cf.
Example 4). Moreover, reorganization of names for protein classes leads to
inconsistent names. Besides these inherent name ambiguities, we encounter
ambiguous names because databases do not only store name aliases but some-



times also protein class identifiers (cf. Example 3). Obviously, these identifiers
apply to several entities described in our dictionary. In effect, the ambiguity
list can be used to identify such entries and move them to our manual curation
list based on their frequency of occurrence.

Using this curation procedure, we arrived at a name dictionary of reason-
ably high quality which can be used as the input for our matching procedure
described in the next section. This dictionary consists of approximately 38.200
entries with 151.700 synonyms after curation.

4 Efficient detection of names in scientific abstracts

The MEDLINE database ' contains approximately 11 million abstracts and
is rapidly growing. As our ultimate goal is the detection of protein and gene
names in all abstracts of the database, the running time of the detection al-
gorithm is an important concern. Consequently, our search procedure should
take time linear in the number of tokens of the parsed text. The basic idea is to
sweep over the abstract, processing one token at a time and keep a set, of can-
didate solutions and two associated scoring measures for the present position.
One scoring measure, the boundary score sg controls the end of the extension
of a candidate match and is increased on a token mismatch (cf. Algorithm
1, line 13). If this score rises above a threshold, i.e. if a certain number of
mismatches has occurred, the candidate is pruned from the candidate set and
checked for reporting. Then, the second score measure, the acceptance score
Sa, determines whether the candidate is reported as a match. The term s,
is a linear combination of token class specific match- and mismatch terms. A
match term is defined as the percentage of matched tokens of the respective
token class. A mismatch term counts for each token class the number of to-
kens additionally found in the text and, thus, mismatched in the candidate
synonym. With appropriate weighting, the mismatch term allows to disregard
false substring matches. To illustrate this, consider the following example:

synonym H Interleukin 1 precursor
candidate match H Interleukin 1 receptor

As only the non-descriptive token ”precursor” is unmatched in the candidate,
a nearly maximal match score would be computed (if non-descriptive tokens
receive a small weight). However, the presence of the semantically significant
modifier token ”receptor” leads to a substantial mismatch term for this token
class (if weights are set appropriately).
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| Variable | Description
S Set of all synonyms to search
T Set of all tokens
C ={ci,c2,...,en} CS | Current set of candidates
7(c),c € C Unmatched tokens of candidate ¢
o(t),teT Set of synonyms containing token ¢
#token(c),c € C Number of tokens of candidate ¢

for each token t; € T read from the abstract do
for each synonym s € o(t;) do
if (s ¢ C) then
C =CUs;
end
for each candidate ¢ € C do
if (t; € 7(c)) then do
Update match terms of s, (c);
7(c) = 7()\ty;
end
else do
Update mismatch terms of s, (c);
sp(c) +=1 / #token(c);
end
if (sp(c) > boundaryThreshold or
mismatchedDelimiter found) then do
C=0C\g
if (sqo(c) > acceptanceThreshold) then
report c;
end
end
end

Algorithm 1: Linear algorithm for detection of protein names in free text.

Delimiter tokens play a special role in the algorithm. If the current token
t; is a delimiter but is unmatched in the current candidate (cf. line 16 in Al-
gorithm 1), the candidate match will not be extended further but checked for
reporting immediately (cf. line 18). The rationale is that a delimiter signifies
a break in the text possibly followed by another protein name which should
not be mixed up with previous candidates. To further extend the sensitivity
of the search, we maintain a list of synonymous token. Most importantly, Ara-
bic and Roman numbers are treated equivalently as both variants frequently
occur in abstracts. In general, the algorithm ignores the order of the synonym
tokens. However, permuted matches of some synonyms (e.g. EC numbers) are



meaningless. Therefore, we extended the search algorithm to respect the order
of tokens when this is necessary. This complicates the operations on 7 (lines 7
and 9), but the concept is applicable analogously.

The parameters of our search procedure, namely the match- and mismatch-
weights, can be used to control the fuzziness of the search as demonstrated in
the above example. A method to optimize these parameters using a set of
training instances is discussed in the next section.

5 Parameter optimization and validation

To examine the performance of our name identification procedure, we need a
standard-of-truth of annotated abstracts. As creation of a substantial data-set
is extremely work-intensive, we based our benchmark set on the TRANSPATH
database '* on regulatory interactions (Version 2.3). We extracted all hu-
man proteins with SWISSPROT annotations and all corresponding MEDLINE
identifiers and re-examined all abstracts for further occurrences. Additionally,
we discarded abstracts if no text was available or a protein was described for
the first time and, thus, was not associated with any name, at all. Our result-
ing benchmark set consists of 611 associations (141 objects in 470 abstracts).
The subset of the curated dictionary relevant to this benchmark is available
through the supplementary web page (http://cartan.gmd.de/ProMiner).

As the acceptance score s, is a linear function of the token class specific
scoring terms, we can use robust linear programming (RLP)'5 to compute a set
of sensible weights. This supervised machine learning technique uses a set of
positive samples, i.e. correctly identified protein names, and a set, of negative
examples, i.e. erroneous matches. The RLP procedure computes a separating
hyperplane in the vector space of scoring contributions, thus determining an
optimized scoring function. We calibrated the match and mismatch weighting
parameters for delimiter-, specifier-, modifier- and standard-tokens. To this
end, we generated a number of training instances for the RLP algorithm by
setting weighting parameters to unity and acceptance and mismatch thresh-
olds to lenient values and classified the resulting matches according to our
standard-of-truth. The RLP parameter optimization consistently led to plau-
sible weightings which penalize mismatch terms of modifier and number tokens
and reward matching terms of the other token classes to various extents.

To assess the performance of our method, we use a 5-fold cross-validation
procedure, i.e. the set of abstracts is divided into five parts. Four parts are used
for optimization of parameters and the remaining one determines matching
performance. Figure 1 depicts the averaged results of our matching procedure
individually optimized for different dictionaries. Additionally, results for a
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Figure 1: Specificity (true positives/ (true positives + false negatives)) and sensitivity
(true positives/ (true positives + false positives)) of matching procedure using different dic-
tionaries of synonyms and parameters for the matching procedure. These concepts are closely
related to the alternative measures of precision and recall. Complete dictionary and non-
curated dictionary refer to the comprehensive dictionary in its fully curated and non-curated
form, respectively. For Transpath names and HUGO names only the names defined in the
respective databases are considered. In addition, three different modes of matching are em-
ployed. Optimal denotes cross-validated parameter optimization, simple refers to a simpler
choice of parameters (non-descriptive tokens ignored, permutations allowed, no additional
mismatches) and naive to performance of naive string matching.

simpler choice of weight parameters are shown.

Clearly, the optimized version in conjunction with the curated dictionary
performs best. The reason is twofold. On one hand, there is a significant gain
in sensitivity when switching from either HUGO or TRANSPATH names to the
complete dictionary. On the other hand, our matching procedure adequately
addresses the characteristics of protein names, again resulting in increased
sensitivity and near constant specificity. In contrast, the use of the non-curated
version of the dictionary leads to a large specificity penalty.

Table 4 summarizes major sources of errors in our protein name identifi-
cation algorithm. One source of error for false positive matches are unspecific
dictionary entries (e.g. glutamate receptor). Another source are semantically
ambiguous names (e.g. HEK protein and HEK cells) which could not be dis-
covered in the dictionary curation process. Imperfect parameter settings are
a cause of further false positive matches. This shortcoming could possibly be
remedied by a larger training set or an extension of token classes. Main reasons
for failures in name identification are missing synonyms. This includes renam-
ing of synonyms not reflected in our constituent databases (e.g. lymphotoxin
to lymphotoxin 1), use of delimiters within synonyms (FGF.6 for FGF 6), or
spelling variants of individual authors (e.g humEAA1 for EAA1 or pRB2 for
RB2). In some cases, synonyms were written as one token (e.g. 'IL1beta’ in-



Description of error || No. abstracts | No. objects | Type of error |

ambiguous synonyms 7 3 false positive
unspecific synonyms 14 4 false positive
not in dictionary 25 15 false negative
plural form 2 2 false negative
tokenization problem 4 4 false negative
linguistics required 10 10 false negative

Table 4: Major sources of detection errors. Upper part contains major sources of false
positive matches, lower part summarizes reasons for false negative matches.

stead of "IL 1 beta’) or plural forms were not recognized. In other cases, more
linguistic information is required to recognize the protein name.

6 Discussion and future work

Analysis of today’s large-scale experiments requires knowledge of relationships
among a large number of genes and proteins. The successful identification of
these objects including all known synonyms requires a comprehensive, curated,
general-purpose dictionary. As the manual generation of such a protein name
dictionary is infeasible, we presented a semi-automated method to arrive at a
dictionary of reasonable high quality. The procedure is based on the definition
of token classes for name components of different semantic significance and the
specification of acronym and manual curation lists. Through improvement and
adaptation of these lists to user needs, the quality of the resulting dictionary
can be enhanced. An important point is that the invested knowledge is reused
on integration or update of the underlying synonym databases. For example,
the identification of further modifier tokens could enhance specificity especially
when considering members of protein families. Manual addition or subtraction
of correct synonyms is also essential, e.g. to increase specificity for certain
objects (cf. Table 4) or to take into account lists of unspecific annotations (e.g.
in the automatically annotated TREMBL database). To this end, ambiguities
identified in the curation process can be inspected and selectively added to the
manual curation lists. As our name dictionary is based on the most relevant
reference databases, it is easily possible to link other datatypes to the generated
results. For example, co-occurrence networks can be visualized in conjunction
with data from gene expression experiments.

The inclusion of protein names to enhance sensitivity complicates the de-
sign of the search algorithm as longer phrases, permutations of tokens, and
spelling variants must be taken into account (cf. Figure 1, ”Non-curated dic-
tionary” and ”Complete dictionary (naive)”). The presented algorithm was
designed for high efficiency while respecting the defined characteristics of pro-



tein names. To this end, we approximated protein phrase boundaries by a
mismatch threshold and the use of delimiter tokens. As demonstrated in Fig-
ure 1, the method is both specific and sensitive. The biological use of the
presented work is currently evaluated in the context of the ”Leitprojekt Os-
teoarthrose” 16, a research project dedicated to elucidate the pathomechanisms
of the degenerative joint disease osteoarthritis. In that context, name search
is employed to generate co-occurrence networks of proteins associated with
the disease under consideration. Examples of networks can be found on the
supplementary web page (http://cartan.gmd.de/ProMiner/).

As future work, we would like to enhance the performance of our method
further. The incorporation of lexical rules (e.g. plural forms) during token
matching could improve sensitivity. Moreover, recent work on disambiguating
the semantic context of found names'” might be used to decrease the number
of false positive matches. In conjunction with methods that work independent
of predefined dictionaries, the name dictionary could be extended further in a
semi-automated fashion.

In addition, we plan to utilize ontological information to control ambiguous
synonyms and abstract our search results in a hierarchical manner. A good
candidate for this enhancement is GO, the gene ontology database !®, as it
provides a direct mapping to SWISSPROT which is a constituent database of
our name dictionary. In general, we feel that there is an urgent need for publicly
available, annotated, domain-specific corpora for more accurate estimation of
matching parameters and, even more important, for standardized comparison
of different algorithms for name identification on a large scale.

We plan to develop a publicly available web-interface to the matching
procedure itself, when further work on information extraction algorithms has
been incorporated. Used in conjunction, these methods promise to make the
huge body of biological literature accessible to bioinformatics methods and
biological experts alike.
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